| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com23 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 9-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3comr 1125 | . 2 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3com12 1123 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3coml 1127 3anidm13 1422 eqreu 3689 f1ofveu 7343 curry2f 8041 dfsmo2 8270 nneob 8574 nadd32 8615 f1oeng 8896 domnsymfi 9114 sdomdomtrfi 9115 domsdomtrfi 9116 php 9121 php3 9123 fodomfir 9218 suppr 9362 infdif 10102 axdclem2 10414 gchen1 10519 grumap 10702 grudomon 10711 mul32 11282 add32 11335 subsub23 11368 subadd23 11375 addsub12 11376 subsub 11394 subsub3 11396 sub32 11398 suble 11598 lesub 11599 ltsub23 11600 ltsub13 11601 ltleadd 11603 div32 11799 div13 11800 div12 11801 divdiv32 11832 cju 12124 infssuzle 12832 ioo0 13273 ico0 13294 ioc0 13295 icc0 13296 fzen 13444 modcyc 13810 expgt0 14002 expge0 14005 expge1 14006 2cshwcom 14722 shftval2 14982 abs3dif 15239 divalgb 16315 submrc 17534 mrieqv2d 17545 pltnlt 18244 pltn2lp 18245 tosso 18323 latnle 18379 latabs1 18381 lubel 18420 ipopos 18442 grpinvcnv 18885 mulgaddcom 18977 mulgneg2 18987 oppgmnd 19233 oddvdsnn0 19423 oddvds 19426 odmulg 19435 odcl2 19444 lsmcomx 19735 srgcom4 20099 srgrmhm 20107 ringcom 20165 mulgass2 20194 opprrng 20230 irredrmul 20312 irredlmul 20313 isdrngrd 20651 isdrngrdOLD 20653 islmodd 20769 lmodcom 20811 rmodislmod 20833 zntoslem 21463 ipcl 21540 evls1fpws 22254 maducoevalmin1 22537 rintopn 22794 opnnei 23005 restin 23051 cnpnei 23149 cnprest 23174 ordthaus 23269 kgen2ss 23440 hausflim 23866 fclsfnflim 23912 cnpfcf 23926 opnsubg 23993 cuspcvg 24186 psmetsym 24196 xmetsym 24233 ngpdsr 24491 ngpds2r 24493 ngpds3r 24495 clmmulg 24999 cphipval2 25139 iscau2 25175 dgr1term 26163 cxpeq0 26585 cxpge0 26590 relogbzcl 26682 negsunif 27966 grpoidinvlem2 30449 grpoinvdiv 30481 nvpncan 30598 nvabs 30616 ipval2lem2 30648 dipcj 30658 diporthcom 30660 dipdi 30787 dipassr 30790 dipsubdi 30793 hlipcj 30855 hvadd32 30978 hvsub32 30989 his5 31030 hoadd32 31727 hosubsub 31761 unopf1o 31860 adj2 31878 adjvalval 31881 adjlnop 32030 leopmul2i 32079 cvntr 32236 mdsymlem5 32351 sumdmdii 32359 supxrnemnf 32711 odutos 32910 tlt2 32911 tosglblem 32916 archiabl 33140 unitdivcld 33868 bnj605 34874 bnj607 34883 fisshasheq 35088 swrdrevpfx 35090 cusgredgex 35095 acycgr1v 35122 gcd32 35722 cgrrflx 35961 cgrcom 35964 cgrcomr 35971 btwntriv1 35990 cgr3com 36027 colineartriv2 36042 segleantisym 36089 seglelin 36090 btwnoutside 36099 clsint2 36303 dissneqlem 37314 ftc1anclem5 37677 heibor1 37790 rngoidl 38004 ispridlc 38050 opltcon3b 39183 cmtcomlemN 39227 cmtcomN 39228 cmt3N 39230 cmtbr3N 39233 cvrval2 39253 cvrnbtwn4 39258 leatb 39271 atlrelat1 39300 hlatlej2 39355 hlateq 39378 hlrelat5N 39380 snatpsubN 39729 pmap11 39741 paddcom 39792 sspadd2 39795 paddss12 39798 cdleme51finvN 40535 cdleme51finvtrN 40537 cdlemeiota 40564 cdlemg2jlemOLDN 40572 cdlemg2klem 40574 cdlemg4b1 40588 cdlemg4b2 40589 trljco2 40720 tgrpabl 40730 tendoplcom 40761 cdleml6 40960 erngdvlem3-rN 40977 dia11N 41027 dib11N 41139 dih11 41244 uzindd 41950 lcmineqlem1 42002 nerabdioph 42782 monotoddzzfi 42915 fzneg 42955 jm2.19lem2 42963 ismnushort 44274 nzss 44290 sineq0ALT 44910 lincvalsng 48401 reccot 49743 |
| Copyright terms: Public domain | W3C validator |