Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3com23 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 9-Apr-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3comr 1124 | . 2 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
3 | 2 | 3com12 1122 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3coml 1126 3anidm13 1419 eqreu 3668 f1ofveu 7266 curry2f 7939 dfsmo2 8169 nneob 8469 f1oeng 8742 domnsymfi 8968 sdomdomtrfi 8969 domsdomtrfi 8970 php 8974 php3 8976 suppr 9208 infdif 9966 axdclem2 10277 gchen1 10382 grumap 10565 grudomon 10574 mul32 11141 add32 11193 subsub23 11226 subadd23 11233 addsub12 11234 subsub 11251 subsub3 11253 sub32 11255 suble 11453 lesub 11454 ltsub23 11455 ltsub13 11456 ltleadd 11458 div32 11653 div13 11654 div12 11655 divdiv32 11683 cju 11969 infssuzle 12670 ioo0 13103 ico0 13124 ioc0 13125 icc0 13126 fzen 13272 modcyc 13624 expgt0 13814 expge0 13817 expge1 13818 2cshwcom 14527 shftval2 14784 abs3dif 15041 divalgb 16111 submrc 17335 mrieqv2d 17346 pltnlt 18056 pltn2lp 18057 tosso 18135 latnle 18189 latabs1 18191 lubel 18230 ipopos 18252 grpinvcnv 18641 mulgaddcom 18725 mulgneg2 18735 oppgmnd 18959 oddvdsnn0 19150 oddvds 19153 odmulg 19161 odcl2 19170 lsmcomx 19455 srgrmhm 19770 ringcom 19816 mulgass2 19838 opprring 19871 irredrmul 19947 irredlmul 19948 isdrngrd 20015 islmodd 20127 lmodcom 20167 rmodislmod 20189 rmodislmodOLD 20190 opprdomn 20570 zntoslem 20762 ipcl 20836 maducoevalmin1 21799 rintopn 22056 opnnei 22269 restin 22315 cnpnei 22413 cnprest 22438 ordthaus 22533 kgen2ss 22704 hausflim 23130 fclsfnflim 23176 cnpfcf 23190 opnsubg 23257 cuspcvg 23451 psmetsym 23461 xmetsym 23498 ngpdsr 23759 ngpds2r 23761 ngpds3r 23763 clmmulg 24262 cphipval2 24403 iscau2 24439 dgr1term 25419 cxpeq0 25831 cxpge0 25836 relogbzcl 25922 grpoidinvlem2 28863 grpoinvdiv 28895 nvpncan 29012 nvabs 29030 ipval2lem2 29062 dipcj 29072 diporthcom 29074 dipdi 29201 dipassr 29204 dipsubdi 29207 hlipcj 29269 hvadd32 29392 hvsub32 29403 his5 29444 hoadd32 30141 hosubsub 30175 unopf1o 30274 adj2 30292 adjvalval 30295 adjlnop 30444 leopmul2i 30493 cvntr 30650 mdsymlem5 30765 sumdmdii 30773 supxrnemnf 31087 odutos 31242 tlt2 31243 tosglblem 31248 archiabl 31448 unitdivcld 31847 bnj605 32883 bnj607 32892 fisshasheq 33069 swrdrevpfx 33074 cusgredgex 33079 acycgr1v 33107 gcd32 33711 cgrrflx 34285 cgrcom 34288 cgrcomr 34295 btwntriv1 34314 cgr3com 34351 colineartriv2 34366 segleantisym 34413 seglelin 34414 btwnoutside 34423 clsint2 34514 dissneqlem 35507 ftc1anclem5 35850 heibor1 35964 rngoidl 36178 ispridlc 36224 opltcon3b 37214 cmtcomlemN 37258 cmtcomN 37259 cmt3N 37261 cmtbr3N 37264 cvrval2 37284 cvrnbtwn4 37289 leatb 37302 atlrelat1 37331 hlatlej2 37386 hlateq 37409 hlrelat5N 37411 snatpsubN 37760 pmap11 37772 paddcom 37823 sspadd2 37826 paddss12 37829 cdleme51finvN 38566 cdleme51finvtrN 38568 cdlemeiota 38595 cdlemg2jlemOLDN 38603 cdlemg2klem 38605 cdlemg4b1 38619 cdlemg4b2 38620 trljco2 38751 tgrpabl 38761 tendoplcom 38792 cdleml6 38991 erngdvlem3-rN 39008 dia11N 39058 dib11N 39170 dih11 39275 uzindd 39982 lcmineqlem1 40034 nerabdioph 40628 monotoddzzfi 40761 fzneg 40801 jm2.19lem2 40809 ismnushort 41889 nzss 41905 sineq0ALT 42527 lincvalsng 45726 reccot 46429 |
Copyright terms: Public domain | W3C validator |