![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3com23 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 9-Apr-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3comr 1124 | . 2 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
3 | 2 | 3com12 1122 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3coml 1126 3anidm13 1419 eqreu 3737 f1ofveu 7424 curry2f 8131 dfsmo2 8385 nneob 8692 nadd32 8733 f1oeng 9009 domnsymfi 9237 sdomdomtrfi 9238 domsdomtrfi 9239 php 9244 php3 9246 fodomfir 9365 suppr 9508 infdif 10245 axdclem2 10557 gchen1 10662 grumap 10845 grudomon 10854 mul32 11424 add32 11477 subsub23 11510 subadd23 11517 addsub12 11518 subsub 11536 subsub3 11538 sub32 11540 suble 11738 lesub 11739 ltsub23 11740 ltsub13 11741 ltleadd 11743 div32 11939 div13 11940 div12 11941 divdiv32 11972 cju 12259 infssuzle 12970 ioo0 13408 ico0 13429 ioc0 13430 icc0 13431 fzen 13577 modcyc 13942 expgt0 14132 expge0 14135 expge1 14136 2cshwcom 14850 shftval2 15110 abs3dif 15366 divalgb 16437 submrc 17672 mrieqv2d 17683 pltnlt 18397 pltn2lp 18398 tosso 18476 latnle 18530 latabs1 18532 lubel 18571 ipopos 18593 grpinvcnv 19036 mulgaddcom 19128 mulgneg2 19138 oppgmnd 19387 oddvdsnn0 19576 oddvds 19579 odmulg 19588 odcl2 19597 lsmcomx 19888 srgcom4 20231 srgrmhm 20239 ringcom 20293 mulgass2 20322 opprrng 20361 irredrmul 20443 irredlmul 20444 isdrngrd 20782 isdrngrdOLD 20784 islmodd 20880 lmodcom 20922 rmodislmod 20944 rmodislmodOLD 20945 zntoslem 21592 ipcl 21668 evls1fpws 22388 maducoevalmin1 22673 rintopn 22930 opnnei 23143 restin 23189 cnpnei 23287 cnprest 23312 ordthaus 23407 kgen2ss 23578 hausflim 24004 fclsfnflim 24050 cnpfcf 24064 opnsubg 24131 cuspcvg 24325 psmetsym 24335 xmetsym 24372 ngpdsr 24633 ngpds2r 24635 ngpds3r 24637 clmmulg 25147 cphipval2 25288 iscau2 25324 dgr1term 26313 cxpeq0 26734 cxpge0 26739 relogbzcl 26831 negsunif 28101 grpoidinvlem2 30533 grpoinvdiv 30565 nvpncan 30682 nvabs 30700 ipval2lem2 30732 dipcj 30742 diporthcom 30744 dipdi 30871 dipassr 30874 dipsubdi 30877 hlipcj 30939 hvadd32 31062 hvsub32 31073 his5 31114 hoadd32 31811 hosubsub 31845 unopf1o 31944 adj2 31962 adjvalval 31965 adjlnop 32114 leopmul2i 32163 cvntr 32320 mdsymlem5 32435 sumdmdii 32443 supxrnemnf 32778 odutos 32942 tlt2 32943 tosglblem 32948 archiabl 33187 unitdivcld 33861 bnj605 34899 bnj607 34908 fisshasheq 35098 swrdrevpfx 35100 cusgredgex 35105 acycgr1v 35133 gcd32 35728 cgrrflx 35968 cgrcom 35971 cgrcomr 35978 btwntriv1 35997 cgr3com 36034 colineartriv2 36049 segleantisym 36096 seglelin 36097 btwnoutside 36106 clsint2 36311 dissneqlem 37322 ftc1anclem5 37683 heibor1 37796 rngoidl 38010 ispridlc 38056 opltcon3b 39185 cmtcomlemN 39229 cmtcomN 39230 cmt3N 39232 cmtbr3N 39235 cvrval2 39255 cvrnbtwn4 39260 leatb 39273 atlrelat1 39302 hlatlej2 39357 hlateq 39381 hlrelat5N 39383 snatpsubN 39732 pmap11 39744 paddcom 39795 sspadd2 39798 paddss12 39801 cdleme51finvN 40538 cdleme51finvtrN 40540 cdlemeiota 40567 cdlemg2jlemOLDN 40575 cdlemg2klem 40577 cdlemg4b1 40591 cdlemg4b2 40592 trljco2 40723 tgrpabl 40733 tendoplcom 40764 cdleml6 40963 erngdvlem3-rN 40980 dia11N 41030 dib11N 41142 dih11 41247 uzindd 41958 lcmineqlem1 42010 nerabdioph 42796 monotoddzzfi 42930 fzneg 42970 jm2.19lem2 42978 ismnushort 44296 nzss 44312 sineq0ALT 44934 lincvalsng 48261 reccot 48988 |
Copyright terms: Public domain | W3C validator |