![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3com23 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 9-Apr-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3comr 1125 | . 2 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
3 | 2 | 3com12 1123 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3coml 1127 3anidm13 1420 eqreu 3751 f1ofveu 7442 curry2f 8149 dfsmo2 8403 nneob 8712 nadd32 8753 f1oeng 9031 domnsymfi 9266 sdomdomtrfi 9267 domsdomtrfi 9268 php 9273 php3 9275 fodomfir 9396 suppr 9540 infdif 10277 axdclem2 10589 gchen1 10694 grumap 10877 grudomon 10886 mul32 11456 add32 11508 subsub23 11541 subadd23 11548 addsub12 11549 subsub 11566 subsub3 11568 sub32 11570 suble 11768 lesub 11769 ltsub23 11770 ltsub13 11771 ltleadd 11773 div32 11969 div13 11970 div12 11971 divdiv32 12002 cju 12289 infssuzle 12996 ioo0 13432 ico0 13453 ioc0 13454 icc0 13455 fzen 13601 modcyc 13957 expgt0 14146 expge0 14149 expge1 14150 2cshwcom 14864 shftval2 15124 abs3dif 15380 divalgb 16452 submrc 17686 mrieqv2d 17697 pltnlt 18410 pltn2lp 18411 tosso 18489 latnle 18543 latabs1 18545 lubel 18584 ipopos 18606 grpinvcnv 19046 mulgaddcom 19138 mulgneg2 19148 oppgmnd 19397 oddvdsnn0 19586 oddvds 19589 odmulg 19598 odcl2 19607 lsmcomx 19898 srgcom4 20241 srgrmhm 20249 ringcom 20303 mulgass2 20332 opprrng 20371 irredrmul 20453 irredlmul 20454 isdrngrd 20788 isdrngrdOLD 20790 islmodd 20886 lmodcom 20928 rmodislmod 20950 rmodislmodOLD 20951 zntoslem 21598 ipcl 21674 evls1fpws 22394 maducoevalmin1 22679 rintopn 22936 opnnei 23149 restin 23195 cnpnei 23293 cnprest 23318 ordthaus 23413 kgen2ss 23584 hausflim 24010 fclsfnflim 24056 cnpfcf 24070 opnsubg 24137 cuspcvg 24331 psmetsym 24341 xmetsym 24378 ngpdsr 24639 ngpds2r 24641 ngpds3r 24643 clmmulg 25153 cphipval2 25294 iscau2 25330 dgr1term 26319 cxpeq0 26738 cxpge0 26743 relogbzcl 26835 negsunif 28105 grpoidinvlem2 30537 grpoinvdiv 30569 nvpncan 30686 nvabs 30704 ipval2lem2 30736 dipcj 30746 diporthcom 30748 dipdi 30875 dipassr 30878 dipsubdi 30881 hlipcj 30943 hvadd32 31066 hvsub32 31077 his5 31118 hoadd32 31815 hosubsub 31849 unopf1o 31948 adj2 31966 adjvalval 31969 adjlnop 32118 leopmul2i 32167 cvntr 32324 mdsymlem5 32439 sumdmdii 32447 supxrnemnf 32775 odutos 32941 tlt2 32942 tosglblem 32947 archiabl 33178 unitdivcld 33847 bnj605 34883 bnj607 34892 fisshasheq 35082 swrdrevpfx 35084 cusgredgex 35089 acycgr1v 35117 gcd32 35711 cgrrflx 35951 cgrcom 35954 cgrcomr 35961 btwntriv1 35980 cgr3com 36017 colineartriv2 36032 segleantisym 36079 seglelin 36080 btwnoutside 36089 clsint2 36295 dissneqlem 37306 ftc1anclem5 37657 heibor1 37770 rngoidl 37984 ispridlc 38030 opltcon3b 39160 cmtcomlemN 39204 cmtcomN 39205 cmt3N 39207 cmtbr3N 39210 cvrval2 39230 cvrnbtwn4 39235 leatb 39248 atlrelat1 39277 hlatlej2 39332 hlateq 39356 hlrelat5N 39358 snatpsubN 39707 pmap11 39719 paddcom 39770 sspadd2 39773 paddss12 39776 cdleme51finvN 40513 cdleme51finvtrN 40515 cdlemeiota 40542 cdlemg2jlemOLDN 40550 cdlemg2klem 40552 cdlemg4b1 40566 cdlemg4b2 40567 trljco2 40698 tgrpabl 40708 tendoplcom 40739 cdleml6 40938 erngdvlem3-rN 40955 dia11N 41005 dib11N 41117 dih11 41222 uzindd 41933 lcmineqlem1 41986 nerabdioph 42765 monotoddzzfi 42899 fzneg 42939 jm2.19lem2 42947 ismnushort 44270 nzss 44286 sineq0ALT 44908 lincvalsng 48145 reccot 48850 |
Copyright terms: Public domain | W3C validator |