| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com23 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 9-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3comr 1125 | . 2 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3com12 1123 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3coml 1127 3anidm13 1422 eqreu 3697 f1ofveu 7363 curry2f 8064 dfsmo2 8293 nneob 8597 nadd32 8638 f1oeng 8919 domnsymfi 9141 sdomdomtrfi 9142 domsdomtrfi 9143 php 9148 php3 9150 fodomfir 9255 suppr 9399 infdif 10137 axdclem2 10449 gchen1 10554 grumap 10737 grudomon 10746 mul32 11316 add32 11369 subsub23 11402 subadd23 11409 addsub12 11410 subsub 11428 subsub3 11430 sub32 11432 suble 11632 lesub 11633 ltsub23 11634 ltsub13 11635 ltleadd 11637 div32 11833 div13 11834 div12 11835 divdiv32 11866 cju 12158 infssuzle 12866 ioo0 13307 ico0 13328 ioc0 13329 icc0 13330 fzen 13478 modcyc 13844 expgt0 14036 expge0 14039 expge1 14040 2cshwcom 14757 shftval2 15017 abs3dif 15274 divalgb 16350 submrc 17565 mrieqv2d 17576 pltnlt 18275 pltn2lp 18276 tosso 18354 latnle 18408 latabs1 18410 lubel 18449 ipopos 18471 grpinvcnv 18914 mulgaddcom 19006 mulgneg2 19016 oppgmnd 19262 oddvdsnn0 19450 oddvds 19453 odmulg 19462 odcl2 19471 lsmcomx 19762 srgcom4 20099 srgrmhm 20107 ringcom 20165 mulgass2 20194 opprrng 20230 irredrmul 20312 irredlmul 20313 isdrngrd 20651 isdrngrdOLD 20653 islmodd 20748 lmodcom 20790 rmodislmod 20812 zntoslem 21442 ipcl 21518 evls1fpws 22232 maducoevalmin1 22515 rintopn 22772 opnnei 22983 restin 23029 cnpnei 23127 cnprest 23152 ordthaus 23247 kgen2ss 23418 hausflim 23844 fclsfnflim 23890 cnpfcf 23904 opnsubg 23971 cuspcvg 24164 psmetsym 24174 xmetsym 24211 ngpdsr 24469 ngpds2r 24471 ngpds3r 24473 clmmulg 24977 cphipval2 25117 iscau2 25153 dgr1term 26141 cxpeq0 26563 cxpge0 26568 relogbzcl 26660 negsunif 27937 grpoidinvlem2 30407 grpoinvdiv 30439 nvpncan 30556 nvabs 30574 ipval2lem2 30606 dipcj 30616 diporthcom 30618 dipdi 30745 dipassr 30748 dipsubdi 30751 hlipcj 30813 hvadd32 30936 hvsub32 30947 his5 30988 hoadd32 31685 hosubsub 31719 unopf1o 31818 adj2 31836 adjvalval 31839 adjlnop 31988 leopmul2i 32037 cvntr 32194 mdsymlem5 32309 sumdmdii 32317 supxrnemnf 32664 odutos 32867 tlt2 32868 tosglblem 32873 archiabl 33125 unitdivcld 33864 bnj605 34870 bnj607 34879 fisshasheq 35075 swrdrevpfx 35077 cusgredgex 35082 acycgr1v 35109 gcd32 35709 cgrrflx 35948 cgrcom 35951 cgrcomr 35958 btwntriv1 35977 cgr3com 36014 colineartriv2 36029 segleantisym 36076 seglelin 36077 btwnoutside 36086 clsint2 36290 dissneqlem 37301 ftc1anclem5 37664 heibor1 37777 rngoidl 37991 ispridlc 38037 opltcon3b 39170 cmtcomlemN 39214 cmtcomN 39215 cmt3N 39217 cmtbr3N 39220 cvrval2 39240 cvrnbtwn4 39245 leatb 39258 atlrelat1 39287 hlatlej2 39342 hlateq 39366 hlrelat5N 39368 snatpsubN 39717 pmap11 39729 paddcom 39780 sspadd2 39783 paddss12 39786 cdleme51finvN 40523 cdleme51finvtrN 40525 cdlemeiota 40552 cdlemg2jlemOLDN 40560 cdlemg2klem 40562 cdlemg4b1 40576 cdlemg4b2 40577 trljco2 40708 tgrpabl 40718 tendoplcom 40749 cdleml6 40948 erngdvlem3-rN 40965 dia11N 41015 dib11N 41127 dih11 41232 uzindd 41938 lcmineqlem1 41990 nerabdioph 42770 monotoddzzfi 42904 fzneg 42944 jm2.19lem2 42952 ismnushort 44263 nzss 44279 sineq0ALT 44899 lincvalsng 48378 reccot 49720 |
| Copyright terms: Public domain | W3C validator |