Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3com23 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 9-Apr-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3comr 1124 | . 2 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
3 | 2 | 3com12 1122 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3coml 1126 3anidm13 1419 eqreu 3664 f1ofveu 7270 curry2f 7948 dfsmo2 8178 nneob 8486 f1oeng 8759 domnsymfi 8986 sdomdomtrfi 8987 domsdomtrfi 8988 php 8993 php3 8995 suppr 9230 infdif 9965 axdclem2 10276 gchen1 10381 grumap 10564 grudomon 10573 mul32 11141 add32 11193 subsub23 11226 subadd23 11233 addsub12 11234 subsub 11251 subsub3 11253 sub32 11255 suble 11453 lesub 11454 ltsub23 11455 ltsub13 11456 ltleadd 11458 div32 11653 div13 11654 div12 11655 divdiv32 11683 cju 11969 infssuzle 12671 ioo0 13104 ico0 13125 ioc0 13126 icc0 13127 fzen 13273 modcyc 13626 expgt0 13816 expge0 13819 expge1 13820 2cshwcom 14529 shftval2 14786 abs3dif 15043 divalgb 16113 submrc 17337 mrieqv2d 17348 pltnlt 18058 pltn2lp 18059 tosso 18137 latnle 18191 latabs1 18193 lubel 18232 ipopos 18254 grpinvcnv 18643 mulgaddcom 18727 mulgneg2 18737 oppgmnd 18961 oddvdsnn0 19152 oddvds 19155 odmulg 19163 odcl2 19172 lsmcomx 19457 srgrmhm 19772 ringcom 19818 mulgass2 19840 opprring 19873 irredrmul 19949 irredlmul 19950 isdrngrd 20017 islmodd 20129 lmodcom 20169 rmodislmod 20191 rmodislmodOLD 20192 opprdomn 20572 zntoslem 20764 ipcl 20838 maducoevalmin1 21801 rintopn 22058 opnnei 22271 restin 22317 cnpnei 22415 cnprest 22440 ordthaus 22535 kgen2ss 22706 hausflim 23132 fclsfnflim 23178 cnpfcf 23192 opnsubg 23259 cuspcvg 23453 psmetsym 23463 xmetsym 23500 ngpdsr 23761 ngpds2r 23763 ngpds3r 23765 clmmulg 24264 cphipval2 24405 iscau2 24441 dgr1term 25421 cxpeq0 25833 cxpge0 25838 relogbzcl 25924 grpoidinvlem2 28867 grpoinvdiv 28899 nvpncan 29016 nvabs 29034 ipval2lem2 29066 dipcj 29076 diporthcom 29078 dipdi 29205 dipassr 29208 dipsubdi 29211 hlipcj 29273 hvadd32 29396 hvsub32 29407 his5 29448 hoadd32 30145 hosubsub 30179 unopf1o 30278 adj2 30296 adjvalval 30299 adjlnop 30448 leopmul2i 30497 cvntr 30654 mdsymlem5 30769 sumdmdii 30777 supxrnemnf 31091 odutos 31246 tlt2 31247 tosglblem 31252 archiabl 31452 unitdivcld 31851 bnj605 32887 bnj607 32896 fisshasheq 33073 swrdrevpfx 33078 cusgredgex 33083 acycgr1v 33111 gcd32 33715 cgrrflx 34289 cgrcom 34292 cgrcomr 34299 btwntriv1 34318 cgr3com 34355 colineartriv2 34370 segleantisym 34417 seglelin 34418 btwnoutside 34427 clsint2 34518 dissneqlem 35511 ftc1anclem5 35854 heibor1 35968 rngoidl 36182 ispridlc 36228 opltcon3b 37218 cmtcomlemN 37262 cmtcomN 37263 cmt3N 37265 cmtbr3N 37268 cvrval2 37288 cvrnbtwn4 37293 leatb 37306 atlrelat1 37335 hlatlej2 37390 hlateq 37413 hlrelat5N 37415 snatpsubN 37764 pmap11 37776 paddcom 37827 sspadd2 37830 paddss12 37833 cdleme51finvN 38570 cdleme51finvtrN 38572 cdlemeiota 38599 cdlemg2jlemOLDN 38607 cdlemg2klem 38609 cdlemg4b1 38623 cdlemg4b2 38624 trljco2 38755 tgrpabl 38765 tendoplcom 38796 cdleml6 38995 erngdvlem3-rN 39012 dia11N 39062 dib11N 39174 dih11 39279 uzindd 39985 lcmineqlem1 40037 nerabdioph 40631 monotoddzzfi 40764 fzneg 40804 jm2.19lem2 40812 ismnushort 41919 nzss 41935 sineq0ALT 42557 lincvalsng 45757 reccot 46460 |
Copyright terms: Public domain | W3C validator |