| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com23 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 9-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3comr 1125 | . 2 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3com12 1123 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3coml 1127 3anidm13 1422 eqreu 3683 f1ofveu 7340 curry2f 8038 dfsmo2 8267 nneob 8571 nadd32 8612 f1oeng 8893 domnsymfi 9109 sdomdomtrfi 9110 domsdomtrfi 9111 php 9116 php3 9118 fodomfir 9212 suppr 9356 infdif 10099 axdclem2 10411 gchen1 10516 grumap 10699 grudomon 10708 mul32 11279 add32 11332 subsub23 11365 subadd23 11372 addsub12 11373 subsub 11391 subsub3 11393 sub32 11395 suble 11595 lesub 11596 ltsub23 11597 ltsub13 11598 ltleadd 11600 div32 11796 div13 11797 div12 11798 divdiv32 11829 cju 12121 infssuzle 12829 ioo0 13270 ico0 13291 ioc0 13292 icc0 13293 fzen 13441 modcyc 13810 expgt0 14002 expge0 14005 expge1 14006 2cshwcom 14723 shftval2 14982 abs3dif 15239 divalgb 16315 submrc 17534 mrieqv2d 17545 pltnlt 18244 pltn2lp 18245 tosso 18323 latnle 18379 latabs1 18381 lubel 18420 ipopos 18442 grpinvcnv 18919 mulgaddcom 19011 mulgneg2 19021 oppgmnd 19266 oddvdsnn0 19456 oddvds 19459 odmulg 19468 odcl2 19477 lsmcomx 19768 srgcom4 20132 srgrmhm 20140 ringcom 20198 mulgass2 20227 opprrng 20263 irredrmul 20345 irredlmul 20346 isdrngrd 20681 isdrngrdOLD 20683 islmodd 20799 lmodcom 20841 rmodislmod 20863 zntoslem 21493 ipcl 21570 evls1fpws 22284 maducoevalmin1 22567 rintopn 22824 opnnei 23035 restin 23081 cnpnei 23179 cnprest 23204 ordthaus 23299 kgen2ss 23470 hausflim 23896 fclsfnflim 23942 cnpfcf 23956 opnsubg 24023 cuspcvg 24215 psmetsym 24225 xmetsym 24262 ngpdsr 24520 ngpds2r 24522 ngpds3r 24524 clmmulg 25028 cphipval2 25168 iscau2 25204 dgr1term 26192 cxpeq0 26614 cxpge0 26619 relogbzcl 26711 negsunif 27997 grpoidinvlem2 30485 grpoinvdiv 30517 nvpncan 30634 nvabs 30652 ipval2lem2 30684 dipcj 30694 diporthcom 30696 dipdi 30823 dipassr 30826 dipsubdi 30829 hlipcj 30891 hvadd32 31014 hvsub32 31025 his5 31066 hoadd32 31763 hosubsub 31797 unopf1o 31896 adj2 31914 adjvalval 31917 adjlnop 32066 leopmul2i 32115 cvntr 32272 mdsymlem5 32387 sumdmdii 32395 supxrnemnf 32751 odutos 32949 tlt2 32950 tosglblem 32955 archiabl 33167 unitdivcld 33914 bnj605 34919 bnj607 34928 rankfilimb 35113 r1filim 35115 fisshasheq 35159 swrdrevpfx 35161 cusgredgex 35166 acycgr1v 35193 gcd32 35793 cgrrflx 36029 cgrcom 36032 cgrcomr 36039 btwntriv1 36058 cgr3com 36095 colineartriv2 36110 segleantisym 36157 seglelin 36158 btwnoutside 36167 clsint2 36371 dissneqlem 37382 ftc1anclem5 37745 heibor1 37858 rngoidl 38072 ispridlc 38118 opltcon3b 39251 cmtcomlemN 39295 cmtcomN 39296 cmt3N 39298 cmtbr3N 39301 cvrval2 39321 cvrnbtwn4 39326 leatb 39339 atlrelat1 39368 hlatlej2 39423 hlateq 39446 hlrelat5N 39448 snatpsubN 39797 pmap11 39809 paddcom 39860 sspadd2 39863 paddss12 39866 cdleme51finvN 40603 cdleme51finvtrN 40605 cdlemeiota 40632 cdlemg2jlemOLDN 40640 cdlemg2klem 40642 cdlemg4b1 40656 cdlemg4b2 40657 trljco2 40788 tgrpabl 40798 tendoplcom 40829 cdleml6 41028 erngdvlem3-rN 41045 dia11N 41095 dib11N 41207 dih11 41312 uzindd 42018 lcmineqlem1 42070 nerabdioph 42850 monotoddzzfi 42983 fzneg 43023 jm2.19lem2 43031 ismnushort 44342 nzss 44358 sineq0ALT 44977 lincvalsng 48456 reccot 49798 |
| Copyright terms: Public domain | W3C validator |