![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3com23 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 9-Apr-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3comr 1126 | . 2 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
3 | 2 | 3com12 1124 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: 3coml 1128 3anidm13 1421 eqreu 3726 f1ofveu 7403 curry2f 8094 dfsmo2 8347 nneob 8655 nadd32 8696 f1oeng 8967 domnsymfi 9203 sdomdomtrfi 9204 domsdomtrfi 9205 php 9210 php3 9212 suppr 9466 infdif 10204 axdclem2 10515 gchen1 10620 grumap 10803 grudomon 10812 mul32 11380 add32 11432 subsub23 11465 subadd23 11472 addsub12 11473 subsub 11490 subsub3 11492 sub32 11494 suble 11692 lesub 11693 ltsub23 11694 ltsub13 11695 ltleadd 11697 div32 11892 div13 11893 div12 11894 divdiv32 11922 cju 12208 infssuzle 12915 ioo0 13349 ico0 13370 ioc0 13371 icc0 13372 fzen 13518 modcyc 13871 expgt0 14061 expge0 14064 expge1 14065 2cshwcom 14766 shftval2 15022 abs3dif 15278 divalgb 16347 submrc 17572 mrieqv2d 17583 pltnlt 18293 pltn2lp 18294 tosso 18372 latnle 18426 latabs1 18428 lubel 18467 ipopos 18489 grpinvcnv 18891 mulgaddcom 18978 mulgneg2 18988 oppgmnd 19221 oddvdsnn0 19412 oddvds 19415 odmulg 19424 odcl2 19433 lsmcomx 19724 srgcom4 20037 srgrmhm 20045 ringcom 20097 mulgass2 20121 opprring 20161 irredrmul 20241 irredlmul 20242 isdrngrd 20391 isdrngrdOLD 20393 islmodd 20477 lmodcom 20518 rmodislmod 20540 rmodislmodOLD 20541 opprdomn 20919 zntoslem 21112 ipcl 21186 maducoevalmin1 22154 rintopn 22411 opnnei 22624 restin 22670 cnpnei 22768 cnprest 22793 ordthaus 22888 kgen2ss 23059 hausflim 23485 fclsfnflim 23531 cnpfcf 23545 opnsubg 23612 cuspcvg 23806 psmetsym 23816 xmetsym 23853 ngpdsr 24114 ngpds2r 24116 ngpds3r 24118 clmmulg 24617 cphipval2 24758 iscau2 24794 dgr1term 25774 cxpeq0 26186 cxpge0 26191 relogbzcl 26279 negsunif 27529 grpoidinvlem2 29758 grpoinvdiv 29790 nvpncan 29907 nvabs 29925 ipval2lem2 29957 dipcj 29967 diporthcom 29969 dipdi 30096 dipassr 30099 dipsubdi 30102 hlipcj 30164 hvadd32 30287 hvsub32 30298 his5 30339 hoadd32 31036 hosubsub 31070 unopf1o 31169 adj2 31187 adjvalval 31190 adjlnop 31339 leopmul2i 31388 cvntr 31545 mdsymlem5 31660 sumdmdii 31668 supxrnemnf 31981 odutos 32138 tlt2 32139 tosglblem 32144 archiabl 32344 evls1fpws 32646 unitdivcld 32881 bnj605 33918 bnj607 33927 fisshasheq 34104 swrdrevpfx 34107 cusgredgex 34112 acycgr1v 34140 gcd32 34719 cgrrflx 34959 cgrcom 34962 cgrcomr 34969 btwntriv1 34988 cgr3com 35025 colineartriv2 35040 segleantisym 35087 seglelin 35088 btwnoutside 35097 clsint2 35214 dissneqlem 36221 ftc1anclem5 36565 heibor1 36678 rngoidl 36892 ispridlc 36938 opltcon3b 38074 cmtcomlemN 38118 cmtcomN 38119 cmt3N 38121 cmtbr3N 38124 cvrval2 38144 cvrnbtwn4 38149 leatb 38162 atlrelat1 38191 hlatlej2 38246 hlateq 38270 hlrelat5N 38272 snatpsubN 38621 pmap11 38633 paddcom 38684 sspadd2 38687 paddss12 38690 cdleme51finvN 39427 cdleme51finvtrN 39429 cdlemeiota 39456 cdlemg2jlemOLDN 39464 cdlemg2klem 39466 cdlemg4b1 39480 cdlemg4b2 39481 trljco2 39612 tgrpabl 39622 tendoplcom 39653 cdleml6 39852 erngdvlem3-rN 39869 dia11N 39919 dib11N 40031 dih11 40136 uzindd 40842 lcmineqlem1 40894 nerabdioph 41547 monotoddzzfi 41681 fzneg 41721 jm2.19lem2 41729 ismnushort 43060 nzss 43076 sineq0ALT 43698 opprrng 46674 lincvalsng 47097 reccot 47803 |
Copyright terms: Public domain | W3C validator |