| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com23 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 9-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3comr 1125 | . 2 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3com12 1123 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3coml 1127 3anidm13 1422 eqreu 3712 f1ofveu 7399 curry2f 8107 dfsmo2 8361 nneob 8668 nadd32 8709 f1oeng 8985 domnsymfi 9214 sdomdomtrfi 9215 domsdomtrfi 9216 php 9221 php3 9223 fodomfir 9340 suppr 9484 infdif 10222 axdclem2 10534 gchen1 10639 grumap 10822 grudomon 10831 mul32 11401 add32 11454 subsub23 11487 subadd23 11494 addsub12 11495 subsub 11513 subsub3 11515 sub32 11517 suble 11715 lesub 11716 ltsub23 11717 ltsub13 11718 ltleadd 11720 div32 11916 div13 11917 div12 11918 divdiv32 11949 cju 12236 infssuzle 12947 ioo0 13387 ico0 13408 ioc0 13409 icc0 13410 fzen 13558 modcyc 13923 expgt0 14113 expge0 14116 expge1 14117 2cshwcom 14834 shftval2 15094 abs3dif 15350 divalgb 16423 submrc 17640 mrieqv2d 17651 pltnlt 18350 pltn2lp 18351 tosso 18429 latnle 18483 latabs1 18485 lubel 18524 ipopos 18546 grpinvcnv 18989 mulgaddcom 19081 mulgneg2 19091 oppgmnd 19337 oddvdsnn0 19525 oddvds 19528 odmulg 19537 odcl2 19546 lsmcomx 19837 srgcom4 20174 srgrmhm 20182 ringcom 20240 mulgass2 20269 opprrng 20305 irredrmul 20387 irredlmul 20388 isdrngrd 20726 isdrngrdOLD 20728 islmodd 20823 lmodcom 20865 rmodislmod 20887 zntoslem 21517 ipcl 21593 evls1fpws 22307 maducoevalmin1 22590 rintopn 22847 opnnei 23058 restin 23104 cnpnei 23202 cnprest 23227 ordthaus 23322 kgen2ss 23493 hausflim 23919 fclsfnflim 23965 cnpfcf 23979 opnsubg 24046 cuspcvg 24239 psmetsym 24249 xmetsym 24286 ngpdsr 24544 ngpds2r 24546 ngpds3r 24548 clmmulg 25052 cphipval2 25193 iscau2 25229 dgr1term 26217 cxpeq0 26639 cxpge0 26644 relogbzcl 26736 negsunif 28013 grpoidinvlem2 30486 grpoinvdiv 30518 nvpncan 30635 nvabs 30653 ipval2lem2 30685 dipcj 30695 diporthcom 30697 dipdi 30824 dipassr 30827 dipsubdi 30830 hlipcj 30892 hvadd32 31015 hvsub32 31026 his5 31067 hoadd32 31764 hosubsub 31798 unopf1o 31897 adj2 31915 adjvalval 31918 adjlnop 32067 leopmul2i 32116 cvntr 32273 mdsymlem5 32388 sumdmdii 32396 supxrnemnf 32745 odutos 32948 tlt2 32949 tosglblem 32954 archiabl 33196 unitdivcld 33932 bnj605 34938 bnj607 34947 fisshasheq 35137 swrdrevpfx 35139 cusgredgex 35144 acycgr1v 35171 gcd32 35766 cgrrflx 36005 cgrcom 36008 cgrcomr 36015 btwntriv1 36034 cgr3com 36071 colineartriv2 36086 segleantisym 36133 seglelin 36134 btwnoutside 36143 clsint2 36347 dissneqlem 37358 ftc1anclem5 37721 heibor1 37834 rngoidl 38048 ispridlc 38094 opltcon3b 39222 cmtcomlemN 39266 cmtcomN 39267 cmt3N 39269 cmtbr3N 39272 cvrval2 39292 cvrnbtwn4 39297 leatb 39310 atlrelat1 39339 hlatlej2 39394 hlateq 39418 hlrelat5N 39420 snatpsubN 39769 pmap11 39781 paddcom 39832 sspadd2 39835 paddss12 39838 cdleme51finvN 40575 cdleme51finvtrN 40577 cdlemeiota 40604 cdlemg2jlemOLDN 40612 cdlemg2klem 40614 cdlemg4b1 40628 cdlemg4b2 40629 trljco2 40760 tgrpabl 40770 tendoplcom 40801 cdleml6 41000 erngdvlem3-rN 41017 dia11N 41067 dib11N 41179 dih11 41284 uzindd 41990 lcmineqlem1 42042 nerabdioph 42832 monotoddzzfi 42966 fzneg 43006 jm2.19lem2 43014 ismnushort 44325 nzss 44341 sineq0ALT 44961 lincvalsng 48392 reccot 49622 |
| Copyright terms: Public domain | W3C validator |