| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com23 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 9-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3comr 1125 | . 2 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3com12 1123 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3coml 1127 3anidm13 1421 eqreu 3717 f1ofveu 7407 curry2f 8115 dfsmo2 8369 nneob 8676 nadd32 8717 f1oeng 8993 domnsymfi 9222 sdomdomtrfi 9223 domsdomtrfi 9224 php 9229 php3 9231 fodomfir 9350 suppr 9493 infdif 10230 axdclem2 10542 gchen1 10647 grumap 10830 grudomon 10839 mul32 11409 add32 11462 subsub23 11495 subadd23 11502 addsub12 11503 subsub 11521 subsub3 11523 sub32 11525 suble 11723 lesub 11724 ltsub23 11725 ltsub13 11726 ltleadd 11728 div32 11924 div13 11925 div12 11926 divdiv32 11957 cju 12244 infssuzle 12955 ioo0 13394 ico0 13415 ioc0 13416 icc0 13417 fzen 13563 modcyc 13928 expgt0 14118 expge0 14121 expge1 14122 2cshwcom 14836 shftval2 15096 abs3dif 15352 divalgb 16423 submrc 17642 mrieqv2d 17653 pltnlt 18354 pltn2lp 18355 tosso 18433 latnle 18487 latabs1 18489 lubel 18528 ipopos 18550 grpinvcnv 18993 mulgaddcom 19085 mulgneg2 19095 oppgmnd 19341 oddvdsnn0 19530 oddvds 19533 odmulg 19542 odcl2 19551 lsmcomx 19842 srgcom4 20179 srgrmhm 20187 ringcom 20245 mulgass2 20274 opprrng 20313 irredrmul 20395 irredlmul 20396 isdrngrd 20734 isdrngrdOLD 20736 islmodd 20832 lmodcom 20874 rmodislmod 20896 zntoslem 21529 ipcl 21605 evls1fpws 22321 maducoevalmin1 22606 rintopn 22863 opnnei 23074 restin 23120 cnpnei 23218 cnprest 23243 ordthaus 23338 kgen2ss 23509 hausflim 23935 fclsfnflim 23981 cnpfcf 23995 opnsubg 24062 cuspcvg 24255 psmetsym 24265 xmetsym 24302 ngpdsr 24562 ngpds2r 24564 ngpds3r 24566 clmmulg 25070 cphipval2 25211 iscau2 25247 dgr1term 26235 cxpeq0 26656 cxpge0 26661 relogbzcl 26753 negsunif 28023 grpoidinvlem2 30452 grpoinvdiv 30484 nvpncan 30601 nvabs 30619 ipval2lem2 30651 dipcj 30661 diporthcom 30663 dipdi 30790 dipassr 30793 dipsubdi 30796 hlipcj 30858 hvadd32 30981 hvsub32 30992 his5 31033 hoadd32 31730 hosubsub 31764 unopf1o 31863 adj2 31881 adjvalval 31884 adjlnop 32033 leopmul2i 32082 cvntr 32239 mdsymlem5 32354 sumdmdii 32362 supxrnemnf 32709 odutos 32897 tlt2 32898 tosglblem 32903 archiabl 33144 unitdivcld 33859 bnj605 34880 bnj607 34889 fisshasheq 35079 swrdrevpfx 35081 cusgredgex 35086 acycgr1v 35113 gcd32 35708 cgrrflx 35947 cgrcom 35950 cgrcomr 35957 btwntriv1 35976 cgr3com 36013 colineartriv2 36028 segleantisym 36075 seglelin 36076 btwnoutside 36085 clsint2 36289 dissneqlem 37300 ftc1anclem5 37663 heibor1 37776 rngoidl 37990 ispridlc 38036 opltcon3b 39164 cmtcomlemN 39208 cmtcomN 39209 cmt3N 39211 cmtbr3N 39214 cvrval2 39234 cvrnbtwn4 39239 leatb 39252 atlrelat1 39281 hlatlej2 39336 hlateq 39360 hlrelat5N 39362 snatpsubN 39711 pmap11 39723 paddcom 39774 sspadd2 39777 paddss12 39780 cdleme51finvN 40517 cdleme51finvtrN 40519 cdlemeiota 40546 cdlemg2jlemOLDN 40554 cdlemg2klem 40556 cdlemg4b1 40570 cdlemg4b2 40571 trljco2 40702 tgrpabl 40712 tendoplcom 40743 cdleml6 40942 erngdvlem3-rN 40959 dia11N 41009 dib11N 41121 dih11 41226 uzindd 41937 lcmineqlem1 41989 nerabdioph 42783 monotoddzzfi 42917 fzneg 42957 jm2.19lem2 42965 ismnushort 44277 nzss 44293 sineq0ALT 44914 lincvalsng 48291 reccot 49285 |
| Copyright terms: Public domain | W3C validator |