![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3com23 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 9-Apr-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3comr 1126 | . 2 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
3 | 2 | 3com12 1124 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: 3coml 1128 3anidm13 1421 eqreu 3726 f1ofveu 7403 curry2f 8094 dfsmo2 8347 nneob 8655 nadd32 8696 f1oeng 8967 domnsymfi 9203 sdomdomtrfi 9204 domsdomtrfi 9205 php 9210 php3 9212 suppr 9466 infdif 10204 axdclem2 10515 gchen1 10620 grumap 10803 grudomon 10812 mul32 11380 add32 11432 subsub23 11465 subadd23 11472 addsub12 11473 subsub 11490 subsub3 11492 sub32 11494 suble 11692 lesub 11693 ltsub23 11694 ltsub13 11695 ltleadd 11697 div32 11892 div13 11893 div12 11894 divdiv32 11922 cju 12208 infssuzle 12915 ioo0 13349 ico0 13370 ioc0 13371 icc0 13372 fzen 13518 modcyc 13871 expgt0 14061 expge0 14064 expge1 14065 2cshwcom 14766 shftval2 15022 abs3dif 15278 divalgb 16347 submrc 17572 mrieqv2d 17583 pltnlt 18293 pltn2lp 18294 tosso 18372 latnle 18426 latabs1 18428 lubel 18467 ipopos 18489 grpinvcnv 18891 mulgaddcom 18978 mulgneg2 18988 oppgmnd 19221 oddvdsnn0 19412 oddvds 19415 odmulg 19424 odcl2 19433 lsmcomx 19724 srgcom4 20037 srgrmhm 20045 ringcom 20097 mulgass2 20121 opprring 20161 irredrmul 20241 irredlmul 20242 isdrngrd 20391 isdrngrdOLD 20393 islmodd 20477 lmodcom 20518 rmodislmod 20540 rmodislmodOLD 20541 opprdomn 20919 zntoslem 21112 ipcl 21186 maducoevalmin1 22154 rintopn 22411 opnnei 22624 restin 22670 cnpnei 22768 cnprest 22793 ordthaus 22888 kgen2ss 23059 hausflim 23485 fclsfnflim 23531 cnpfcf 23545 opnsubg 23612 cuspcvg 23806 psmetsym 23816 xmetsym 23853 ngpdsr 24114 ngpds2r 24116 ngpds3r 24118 clmmulg 24617 cphipval2 24758 iscau2 24794 dgr1term 25774 cxpeq0 26186 cxpge0 26191 relogbzcl 26279 negsunif 27532 grpoidinvlem2 29789 grpoinvdiv 29821 nvpncan 29938 nvabs 29956 ipval2lem2 29988 dipcj 29998 diporthcom 30000 dipdi 30127 dipassr 30130 dipsubdi 30133 hlipcj 30195 hvadd32 30318 hvsub32 30329 his5 30370 hoadd32 31067 hosubsub 31101 unopf1o 31200 adj2 31218 adjvalval 31221 adjlnop 31370 leopmul2i 31419 cvntr 31576 mdsymlem5 31691 sumdmdii 31699 supxrnemnf 32012 odutos 32169 tlt2 32170 tosglblem 32175 archiabl 32375 evls1fpws 32677 unitdivcld 32912 bnj605 33949 bnj607 33958 fisshasheq 34135 swrdrevpfx 34138 cusgredgex 34143 acycgr1v 34171 gcd32 34750 cgrrflx 34990 cgrcom 34993 cgrcomr 35000 btwntriv1 35019 cgr3com 35056 colineartriv2 35071 segleantisym 35118 seglelin 35119 btwnoutside 35128 clsint2 35262 dissneqlem 36269 ftc1anclem5 36613 heibor1 36726 rngoidl 36940 ispridlc 36986 opltcon3b 38122 cmtcomlemN 38166 cmtcomN 38167 cmt3N 38169 cmtbr3N 38172 cvrval2 38192 cvrnbtwn4 38197 leatb 38210 atlrelat1 38239 hlatlej2 38294 hlateq 38318 hlrelat5N 38320 snatpsubN 38669 pmap11 38681 paddcom 38732 sspadd2 38735 paddss12 38738 cdleme51finvN 39475 cdleme51finvtrN 39477 cdlemeiota 39504 cdlemg2jlemOLDN 39512 cdlemg2klem 39514 cdlemg4b1 39528 cdlemg4b2 39529 trljco2 39660 tgrpabl 39670 tendoplcom 39701 cdleml6 39900 erngdvlem3-rN 39917 dia11N 39967 dib11N 40079 dih11 40184 uzindd 40890 lcmineqlem1 40942 nerabdioph 41595 monotoddzzfi 41729 fzneg 41769 jm2.19lem2 41777 ismnushort 43108 nzss 43124 sineq0ALT 43746 opprrng 46722 lincvalsng 47145 reccot 47851 |
Copyright terms: Public domain | W3C validator |