Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3com23 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 9-Apr-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3comr 1123 | . 2 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
3 | 2 | 3com12 1121 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3coml 1125 3anidm13 1418 eqreu 3659 f1ofveu 7250 curry2f 7919 dfsmo2 8149 nneob 8446 f1oeng 8714 domtrfi 8938 suppr 9160 infdif 9896 axdclem2 10207 gchen1 10312 grumap 10495 grudomon 10504 mul32 11071 add32 11123 subsub23 11156 subadd23 11163 addsub12 11164 subsub 11181 subsub3 11183 sub32 11185 suble 11383 lesub 11384 ltsub23 11385 ltsub13 11386 ltleadd 11388 div32 11583 div13 11584 div12 11585 divdiv32 11613 cju 11899 infssuzle 12600 ioo0 13033 ico0 13054 ioc0 13055 icc0 13056 fzen 13202 modcyc 13554 expgt0 13744 expge0 13747 expge1 13748 2cshwcom 14457 shftval2 14714 abs3dif 14971 divalgb 16041 submrc 17254 mrieqv2d 17265 pltnlt 17973 pltn2lp 17974 tosso 18052 latnle 18106 latabs1 18108 lubel 18147 ipopos 18169 grpinvcnv 18558 mulgaddcom 18642 mulgneg2 18652 oppgmnd 18876 oddvdsnn0 19067 oddvds 19070 odmulg 19078 odcl2 19087 lsmcomx 19372 srgrmhm 19687 ringcom 19733 mulgass2 19755 opprring 19788 irredrmul 19864 irredlmul 19865 isdrngrd 19932 islmodd 20044 lmodcom 20084 rmodislmod 20106 rmodislmodOLD 20107 opprdomn 20485 zntoslem 20676 ipcl 20750 maducoevalmin1 21709 rintopn 21966 opnnei 22179 restin 22225 cnpnei 22323 cnprest 22348 ordthaus 22443 kgen2ss 22614 hausflim 23040 fclsfnflim 23086 cnpfcf 23100 opnsubg 23167 cuspcvg 23361 psmetsym 23371 xmetsym 23408 ngpdsr 23667 ngpds2r 23669 ngpds3r 23671 clmmulg 24170 cphipval2 24310 iscau2 24346 dgr1term 25326 cxpeq0 25738 cxpge0 25743 relogbzcl 25829 grpoidinvlem2 28768 grpoinvdiv 28800 nvpncan 28917 nvabs 28935 ipval2lem2 28967 dipcj 28977 diporthcom 28979 dipdi 29106 dipassr 29109 dipsubdi 29112 hlipcj 29174 hvadd32 29297 hvsub32 29308 his5 29349 hoadd32 30046 hosubsub 30080 unopf1o 30179 adj2 30197 adjvalval 30200 adjlnop 30349 leopmul2i 30398 cvntr 30555 mdsymlem5 30670 sumdmdii 30678 supxrnemnf 30993 odutos 31148 tlt2 31149 tosglblem 31154 archiabl 31354 unitdivcld 31753 bnj605 32787 bnj607 32796 fisshasheq 32973 swrdrevpfx 32978 cusgredgex 32983 acycgr1v 33011 gcd32 33621 cgrrflx 34216 cgrcom 34219 cgrcomr 34226 btwntriv1 34245 cgr3com 34282 colineartriv2 34297 segleantisym 34344 seglelin 34345 btwnoutside 34354 clsint2 34445 dissneqlem 35438 ftc1anclem5 35781 heibor1 35895 rngoidl 36109 ispridlc 36155 opltcon3b 37145 cmtcomlemN 37189 cmtcomN 37190 cmt3N 37192 cmtbr3N 37195 cvrval2 37215 cvrnbtwn4 37220 leatb 37233 atlrelat1 37262 hlatlej2 37317 hlateq 37340 hlrelat5N 37342 snatpsubN 37691 pmap11 37703 paddcom 37754 sspadd2 37757 paddss12 37760 cdleme51finvN 38497 cdleme51finvtrN 38499 cdlemeiota 38526 cdlemg2jlemOLDN 38534 cdlemg2klem 38536 cdlemg4b1 38550 cdlemg4b2 38551 trljco2 38682 tgrpabl 38692 tendoplcom 38723 cdleml6 38922 erngdvlem3-rN 38939 dia11N 38989 dib11N 39101 dih11 39206 uzindd 39913 lcmineqlem1 39965 nerabdioph 40547 monotoddzzfi 40680 fzneg 40720 jm2.19lem2 40728 ismnushort 41808 nzss 41824 sineq0ALT 42446 lincvalsng 45645 reccot 46346 |
Copyright terms: Public domain | W3C validator |