| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com23 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 9-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3comr 1125 | . 2 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3com12 1123 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3coml 1127 3anidm13 1422 eqreu 3700 f1ofveu 7381 curry2f 8087 dfsmo2 8316 nneob 8620 nadd32 8661 f1oeng 8942 domnsymfi 9164 sdomdomtrfi 9165 domsdomtrfi 9166 php 9171 php3 9173 fodomfir 9279 suppr 9423 infdif 10161 axdclem2 10473 gchen1 10578 grumap 10761 grudomon 10770 mul32 11340 add32 11393 subsub23 11426 subadd23 11433 addsub12 11434 subsub 11452 subsub3 11454 sub32 11456 suble 11656 lesub 11657 ltsub23 11658 ltsub13 11659 ltleadd 11661 div32 11857 div13 11858 div12 11859 divdiv32 11890 cju 12182 infssuzle 12890 ioo0 13331 ico0 13352 ioc0 13353 icc0 13354 fzen 13502 modcyc 13868 expgt0 14060 expge0 14063 expge1 14064 2cshwcom 14781 shftval2 15041 abs3dif 15298 divalgb 16374 submrc 17589 mrieqv2d 17600 pltnlt 18299 pltn2lp 18300 tosso 18378 latnle 18432 latabs1 18434 lubel 18473 ipopos 18495 grpinvcnv 18938 mulgaddcom 19030 mulgneg2 19040 oppgmnd 19286 oddvdsnn0 19474 oddvds 19477 odmulg 19486 odcl2 19495 lsmcomx 19786 srgcom4 20123 srgrmhm 20131 ringcom 20189 mulgass2 20218 opprrng 20254 irredrmul 20336 irredlmul 20337 isdrngrd 20675 isdrngrdOLD 20677 islmodd 20772 lmodcom 20814 rmodislmod 20836 zntoslem 21466 ipcl 21542 evls1fpws 22256 maducoevalmin1 22539 rintopn 22796 opnnei 23007 restin 23053 cnpnei 23151 cnprest 23176 ordthaus 23271 kgen2ss 23442 hausflim 23868 fclsfnflim 23914 cnpfcf 23928 opnsubg 23995 cuspcvg 24188 psmetsym 24198 xmetsym 24235 ngpdsr 24493 ngpds2r 24495 ngpds3r 24497 clmmulg 25001 cphipval2 25141 iscau2 25177 dgr1term 26165 cxpeq0 26587 cxpge0 26592 relogbzcl 26684 negsunif 27961 grpoidinvlem2 30434 grpoinvdiv 30466 nvpncan 30583 nvabs 30601 ipval2lem2 30633 dipcj 30643 diporthcom 30645 dipdi 30772 dipassr 30775 dipsubdi 30778 hlipcj 30840 hvadd32 30963 hvsub32 30974 his5 31015 hoadd32 31712 hosubsub 31746 unopf1o 31845 adj2 31863 adjvalval 31866 adjlnop 32015 leopmul2i 32064 cvntr 32221 mdsymlem5 32336 sumdmdii 32344 supxrnemnf 32691 odutos 32894 tlt2 32895 tosglblem 32900 archiabl 33152 unitdivcld 33891 bnj605 34897 bnj607 34906 fisshasheq 35102 swrdrevpfx 35104 cusgredgex 35109 acycgr1v 35136 gcd32 35736 cgrrflx 35975 cgrcom 35978 cgrcomr 35985 btwntriv1 36004 cgr3com 36041 colineartriv2 36056 segleantisym 36103 seglelin 36104 btwnoutside 36113 clsint2 36317 dissneqlem 37328 ftc1anclem5 37691 heibor1 37804 rngoidl 38018 ispridlc 38064 opltcon3b 39197 cmtcomlemN 39241 cmtcomN 39242 cmt3N 39244 cmtbr3N 39247 cvrval2 39267 cvrnbtwn4 39272 leatb 39285 atlrelat1 39314 hlatlej2 39369 hlateq 39393 hlrelat5N 39395 snatpsubN 39744 pmap11 39756 paddcom 39807 sspadd2 39810 paddss12 39813 cdleme51finvN 40550 cdleme51finvtrN 40552 cdlemeiota 40579 cdlemg2jlemOLDN 40587 cdlemg2klem 40589 cdlemg4b1 40603 cdlemg4b2 40604 trljco2 40735 tgrpabl 40745 tendoplcom 40776 cdleml6 40975 erngdvlem3-rN 40992 dia11N 41042 dib11N 41154 dih11 41259 uzindd 41965 lcmineqlem1 42017 nerabdioph 42797 monotoddzzfi 42931 fzneg 42971 jm2.19lem2 42979 ismnushort 44290 nzss 44306 sineq0ALT 44926 lincvalsng 48405 reccot 49747 |
| Copyright terms: Public domain | W3C validator |