| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com23 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 9-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3comr 1125 | . 2 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3com12 1123 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3coml 1127 3anidm13 1422 eqreu 3703 f1ofveu 7384 curry2f 8090 dfsmo2 8319 nneob 8623 nadd32 8664 f1oeng 8945 domnsymfi 9170 sdomdomtrfi 9171 domsdomtrfi 9172 php 9177 php3 9179 fodomfir 9286 suppr 9430 infdif 10168 axdclem2 10480 gchen1 10585 grumap 10768 grudomon 10777 mul32 11347 add32 11400 subsub23 11433 subadd23 11440 addsub12 11441 subsub 11459 subsub3 11461 sub32 11463 suble 11663 lesub 11664 ltsub23 11665 ltsub13 11666 ltleadd 11668 div32 11864 div13 11865 div12 11866 divdiv32 11897 cju 12189 infssuzle 12897 ioo0 13338 ico0 13359 ioc0 13360 icc0 13361 fzen 13509 modcyc 13875 expgt0 14067 expge0 14070 expge1 14071 2cshwcom 14788 shftval2 15048 abs3dif 15305 divalgb 16381 submrc 17596 mrieqv2d 17607 pltnlt 18306 pltn2lp 18307 tosso 18385 latnle 18439 latabs1 18441 lubel 18480 ipopos 18502 grpinvcnv 18945 mulgaddcom 19037 mulgneg2 19047 oppgmnd 19293 oddvdsnn0 19481 oddvds 19484 odmulg 19493 odcl2 19502 lsmcomx 19793 srgcom4 20130 srgrmhm 20138 ringcom 20196 mulgass2 20225 opprrng 20261 irredrmul 20343 irredlmul 20344 isdrngrd 20682 isdrngrdOLD 20684 islmodd 20779 lmodcom 20821 rmodislmod 20843 zntoslem 21473 ipcl 21549 evls1fpws 22263 maducoevalmin1 22546 rintopn 22803 opnnei 23014 restin 23060 cnpnei 23158 cnprest 23183 ordthaus 23278 kgen2ss 23449 hausflim 23875 fclsfnflim 23921 cnpfcf 23935 opnsubg 24002 cuspcvg 24195 psmetsym 24205 xmetsym 24242 ngpdsr 24500 ngpds2r 24502 ngpds3r 24504 clmmulg 25008 cphipval2 25148 iscau2 25184 dgr1term 26172 cxpeq0 26594 cxpge0 26599 relogbzcl 26691 negsunif 27968 grpoidinvlem2 30441 grpoinvdiv 30473 nvpncan 30590 nvabs 30608 ipval2lem2 30640 dipcj 30650 diporthcom 30652 dipdi 30779 dipassr 30782 dipsubdi 30785 hlipcj 30847 hvadd32 30970 hvsub32 30981 his5 31022 hoadd32 31719 hosubsub 31753 unopf1o 31852 adj2 31870 adjvalval 31873 adjlnop 32022 leopmul2i 32071 cvntr 32228 mdsymlem5 32343 sumdmdii 32351 supxrnemnf 32698 odutos 32901 tlt2 32902 tosglblem 32907 archiabl 33159 unitdivcld 33898 bnj605 34904 bnj607 34913 fisshasheq 35109 swrdrevpfx 35111 cusgredgex 35116 acycgr1v 35143 gcd32 35743 cgrrflx 35982 cgrcom 35985 cgrcomr 35992 btwntriv1 36011 cgr3com 36048 colineartriv2 36063 segleantisym 36110 seglelin 36111 btwnoutside 36120 clsint2 36324 dissneqlem 37335 ftc1anclem5 37698 heibor1 37811 rngoidl 38025 ispridlc 38071 opltcon3b 39204 cmtcomlemN 39248 cmtcomN 39249 cmt3N 39251 cmtbr3N 39254 cvrval2 39274 cvrnbtwn4 39279 leatb 39292 atlrelat1 39321 hlatlej2 39376 hlateq 39400 hlrelat5N 39402 snatpsubN 39751 pmap11 39763 paddcom 39814 sspadd2 39817 paddss12 39820 cdleme51finvN 40557 cdleme51finvtrN 40559 cdlemeiota 40586 cdlemg2jlemOLDN 40594 cdlemg2klem 40596 cdlemg4b1 40610 cdlemg4b2 40611 trljco2 40742 tgrpabl 40752 tendoplcom 40783 cdleml6 40982 erngdvlem3-rN 40999 dia11N 41049 dib11N 41161 dih11 41266 uzindd 41972 lcmineqlem1 42024 nerabdioph 42804 monotoddzzfi 42938 fzneg 42978 jm2.19lem2 42986 ismnushort 44297 nzss 44313 sineq0ALT 44933 lincvalsng 48409 reccot 49751 |
| Copyright terms: Public domain | W3C validator |