| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com23 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 9-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3comr 1125 | . 2 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3com12 1123 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3coml 1127 3anidm13 1422 eqreu 3697 f1ofveu 7363 curry2f 8064 dfsmo2 8293 nneob 8597 nadd32 8638 f1oeng 8919 domnsymfi 9141 sdomdomtrfi 9142 domsdomtrfi 9143 php 9148 php3 9150 fodomfir 9255 suppr 9399 infdif 10137 axdclem2 10449 gchen1 10554 grumap 10737 grudomon 10746 mul32 11316 add32 11369 subsub23 11402 subadd23 11409 addsub12 11410 subsub 11428 subsub3 11430 sub32 11432 suble 11632 lesub 11633 ltsub23 11634 ltsub13 11635 ltleadd 11637 div32 11833 div13 11834 div12 11835 divdiv32 11866 cju 12158 infssuzle 12866 ioo0 13307 ico0 13328 ioc0 13329 icc0 13330 fzen 13478 modcyc 13844 expgt0 14036 expge0 14039 expge1 14040 2cshwcom 14757 shftval2 15017 abs3dif 15274 divalgb 16350 submrc 17569 mrieqv2d 17580 pltnlt 18279 pltn2lp 18280 tosso 18358 latnle 18414 latabs1 18416 lubel 18455 ipopos 18477 grpinvcnv 18920 mulgaddcom 19012 mulgneg2 19022 oppgmnd 19268 oddvdsnn0 19458 oddvds 19461 odmulg 19470 odcl2 19479 lsmcomx 19770 srgcom4 20134 srgrmhm 20142 ringcom 20200 mulgass2 20229 opprrng 20265 irredrmul 20347 irredlmul 20348 isdrngrd 20686 isdrngrdOLD 20688 islmodd 20804 lmodcom 20846 rmodislmod 20868 zntoslem 21498 ipcl 21575 evls1fpws 22289 maducoevalmin1 22572 rintopn 22829 opnnei 23040 restin 23086 cnpnei 23184 cnprest 23209 ordthaus 23304 kgen2ss 23475 hausflim 23901 fclsfnflim 23947 cnpfcf 23961 opnsubg 24028 cuspcvg 24221 psmetsym 24231 xmetsym 24268 ngpdsr 24526 ngpds2r 24528 ngpds3r 24530 clmmulg 25034 cphipval2 25174 iscau2 25210 dgr1term 26198 cxpeq0 26620 cxpge0 26625 relogbzcl 26717 negsunif 28001 grpoidinvlem2 30484 grpoinvdiv 30516 nvpncan 30633 nvabs 30651 ipval2lem2 30683 dipcj 30693 diporthcom 30695 dipdi 30822 dipassr 30825 dipsubdi 30828 hlipcj 30890 hvadd32 31013 hvsub32 31024 his5 31065 hoadd32 31762 hosubsub 31796 unopf1o 31895 adj2 31913 adjvalval 31916 adjlnop 32065 leopmul2i 32114 cvntr 32271 mdsymlem5 32386 sumdmdii 32394 supxrnemnf 32741 odutos 32940 tlt2 32941 tosglblem 32946 archiabl 33167 unitdivcld 33884 bnj605 34890 bnj607 34899 fisshasheq 35095 swrdrevpfx 35097 cusgredgex 35102 acycgr1v 35129 gcd32 35729 cgrrflx 35968 cgrcom 35971 cgrcomr 35978 btwntriv1 35997 cgr3com 36034 colineartriv2 36049 segleantisym 36096 seglelin 36097 btwnoutside 36106 clsint2 36310 dissneqlem 37321 ftc1anclem5 37684 heibor1 37797 rngoidl 38011 ispridlc 38057 opltcon3b 39190 cmtcomlemN 39234 cmtcomN 39235 cmt3N 39237 cmtbr3N 39240 cvrval2 39260 cvrnbtwn4 39265 leatb 39278 atlrelat1 39307 hlatlej2 39362 hlateq 39386 hlrelat5N 39388 snatpsubN 39737 pmap11 39749 paddcom 39800 sspadd2 39803 paddss12 39806 cdleme51finvN 40543 cdleme51finvtrN 40545 cdlemeiota 40572 cdlemg2jlemOLDN 40580 cdlemg2klem 40582 cdlemg4b1 40596 cdlemg4b2 40597 trljco2 40728 tgrpabl 40738 tendoplcom 40769 cdleml6 40968 erngdvlem3-rN 40985 dia11N 41035 dib11N 41147 dih11 41252 uzindd 41958 lcmineqlem1 42010 nerabdioph 42790 monotoddzzfi 42924 fzneg 42964 jm2.19lem2 42972 ismnushort 44283 nzss 44299 sineq0ALT 44919 lincvalsng 48398 reccot 49740 |
| Copyright terms: Public domain | W3C validator |