Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnproddivdvdsd Structured version   Visualization version   GIF version

Theorem nnproddivdvdsd 41988
Description: A product of natural numbers divides a natural number if and only if a factor divides the quotient, a deduction version. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
nnproddivdvdsd.1 (𝜑𝐾 ∈ ℕ)
nnproddivdvdsd.2 (𝜑𝑀 ∈ ℕ)
nnproddivdvdsd.3 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
nnproddivdvdsd (𝜑 → ((𝐾 · 𝑀) ∥ 𝑁𝐾 ∥ (𝑁 / 𝑀)))

Proof of Theorem nnproddivdvdsd
StepHypRef Expression
1 nnproddivdvdsd.3 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
21nncnd 12202 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
32adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝑁 ∈ ℂ)
4 nnproddivdvdsd.1 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ)
54nncnd 12202 . . . . . . . . 9 (𝜑𝐾 ∈ ℂ)
65adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝐾 ∈ ℂ)
7 nnproddivdvdsd.2 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
87nncnd 12202 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
98adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝑀 ∈ ℂ)
104adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝐾 ∈ ℕ)
11 nnne0 12220 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ≠ 0)
1210, 11syl 17 . . . . . . . 8 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝐾 ≠ 0)
137adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝑀 ∈ ℕ)
1413nnne0d 12236 . . . . . . . 8 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝑀 ≠ 0)
153, 6, 9, 12, 14divdiv1d 11989 . . . . . . 7 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → ((𝑁 / 𝐾) / 𝑀) = (𝑁 / (𝐾 · 𝑀)))
1615eqcomd 2735 . . . . . 6 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → (𝑁 / (𝐾 · 𝑀)) = ((𝑁 / 𝐾) / 𝑀))
173, 6, 9, 12, 14divdiv32d 11983 . . . . . 6 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → ((𝑁 / 𝐾) / 𝑀) = ((𝑁 / 𝑀) / 𝐾))
1816, 17eqtrd 2764 . . . . 5 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → (𝑁 / (𝐾 · 𝑀)) = ((𝑁 / 𝑀) / 𝐾))
194, 7nnmulcld 12239 . . . . . . . 8 (𝜑 → (𝐾 · 𝑀) ∈ ℕ)
2019, 1nndivdvdsd 41987 . . . . . . 7 (𝜑 → ((𝐾 · 𝑀) ∥ 𝑁 ↔ (𝑁 / (𝐾 · 𝑀)) ∈ ℕ))
2120biimpd 229 . . . . . 6 (𝜑 → ((𝐾 · 𝑀) ∥ 𝑁 → (𝑁 / (𝐾 · 𝑀)) ∈ ℕ))
2221imp 406 . . . . 5 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → (𝑁 / (𝐾 · 𝑀)) ∈ ℕ)
2318, 22eqeltrrd 2829 . . . 4 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → ((𝑁 / 𝑀) / 𝐾) ∈ ℕ)
244nnzd 12556 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
257nnzd 12556 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
261nnzd 12556 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
2724, 25, 263jca 1128 . . . . . . . 8 (𝜑 → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
28 muldvds2 16251 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁𝑀𝑁))
2927, 28syl 17 . . . . . . 7 (𝜑 → ((𝐾 · 𝑀) ∥ 𝑁𝑀𝑁))
3029imp 406 . . . . . 6 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝑀𝑁)
311adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝑁 ∈ ℕ)
3213, 31nndivdvdsd 41987 . . . . . 6 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℕ))
3330, 32mpbid 232 . . . . 5 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → (𝑁 / 𝑀) ∈ ℕ)
3410, 33nndivdvdsd 41987 . . . 4 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → (𝐾 ∥ (𝑁 / 𝑀) ↔ ((𝑁 / 𝑀) / 𝐾) ∈ ℕ))
3523, 34mpbird 257 . . 3 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝐾 ∥ (𝑁 / 𝑀))
3635ex 412 . 2 (𝜑 → ((𝐾 · 𝑀) ∥ 𝑁𝐾 ∥ (𝑁 / 𝑀)))
37 dvdszrcl 16227 . . . . . . 7 (𝐾 ∥ (𝑁 / 𝑀) → (𝐾 ∈ ℤ ∧ (𝑁 / 𝑀) ∈ ℤ))
3837simprd 495 . . . . . 6 (𝐾 ∥ (𝑁 / 𝑀) → (𝑁 / 𝑀) ∈ ℤ)
3938adantl 481 . . . . 5 ((𝜑𝐾 ∥ (𝑁 / 𝑀)) → (𝑁 / 𝑀) ∈ ℤ)
40 dvdsmulc 16253 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝑁 / 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 ∥ (𝑁 / 𝑀) → (𝐾 · 𝑀) ∥ ((𝑁 / 𝑀) · 𝑀)))
4124, 40syl3an1 1163 . . . . . . . 8 ((𝜑 ∧ (𝑁 / 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 ∥ (𝑁 / 𝑀) → (𝐾 · 𝑀) ∥ ((𝑁 / 𝑀) · 𝑀)))
4225, 41syl3an3 1165 . . . . . . 7 ((𝜑 ∧ (𝑁 / 𝑀) ∈ ℤ ∧ 𝜑) → (𝐾 ∥ (𝑁 / 𝑀) → (𝐾 · 𝑀) ∥ ((𝑁 / 𝑀) · 𝑀)))
43423anidm13 1422 . . . . . 6 ((𝜑 ∧ (𝑁 / 𝑀) ∈ ℤ) → (𝐾 ∥ (𝑁 / 𝑀) → (𝐾 · 𝑀) ∥ ((𝑁 / 𝑀) · 𝑀)))
4443impancom 451 . . . . 5 ((𝜑𝐾 ∥ (𝑁 / 𝑀)) → ((𝑁 / 𝑀) ∈ ℤ → (𝐾 · 𝑀) ∥ ((𝑁 / 𝑀) · 𝑀)))
4539, 44mpd 15 . . . 4 ((𝜑𝐾 ∥ (𝑁 / 𝑀)) → (𝐾 · 𝑀) ∥ ((𝑁 / 𝑀) · 𝑀))
467nnne0d 12236 . . . . . 6 (𝜑𝑀 ≠ 0)
472, 8, 46divcan1d 11959 . . . . 5 (𝜑 → ((𝑁 / 𝑀) · 𝑀) = 𝑁)
4847adantr 480 . . . 4 ((𝜑𝐾 ∥ (𝑁 / 𝑀)) → ((𝑁 / 𝑀) · 𝑀) = 𝑁)
4945, 48breqtrd 5133 . . 3 ((𝜑𝐾 ∥ (𝑁 / 𝑀)) → (𝐾 · 𝑀) ∥ 𝑁)
5049ex 412 . 2 (𝜑 → (𝐾 ∥ (𝑁 / 𝑀) → (𝐾 · 𝑀) ∥ 𝑁))
5136, 50impbid 212 1 (𝜑 → ((𝐾 · 𝑀) ∥ 𝑁𝐾 ∥ (𝑁 / 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  (class class class)co 7387  cc 11066  0cc0 11068   · cmul 11073   / cdiv 11835  cn 12186  cz 12529  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-dvds 16223
This theorem is referenced by:  lcmineqlem14  42030  aks4d1p8d1  42072
  Copyright terms: Public domain W3C validator