Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnproddivdvdsd Structured version   Visualization version   GIF version

Theorem nnproddivdvdsd 40009
Description: A product of natural numbers divides a natural number if and only if a factor divides the quotient, a deduction version. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
nnproddivdvdsd.1 (𝜑𝐾 ∈ ℕ)
nnproddivdvdsd.2 (𝜑𝑀 ∈ ℕ)
nnproddivdvdsd.3 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
nnproddivdvdsd (𝜑 → ((𝐾 · 𝑀) ∥ 𝑁𝐾 ∥ (𝑁 / 𝑀)))

Proof of Theorem nnproddivdvdsd
StepHypRef Expression
1 nnproddivdvdsd.3 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
21nncnd 11989 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
32adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝑁 ∈ ℂ)
4 nnproddivdvdsd.1 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ)
54nncnd 11989 . . . . . . . . 9 (𝜑𝐾 ∈ ℂ)
65adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝐾 ∈ ℂ)
7 nnproddivdvdsd.2 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
87nncnd 11989 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
98adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝑀 ∈ ℂ)
104adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝐾 ∈ ℕ)
11 nnne0 12007 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ≠ 0)
1210, 11syl 17 . . . . . . . 8 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝐾 ≠ 0)
137adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝑀 ∈ ℕ)
1413nnne0d 12023 . . . . . . . 8 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝑀 ≠ 0)
153, 6, 9, 12, 14divdiv1d 11782 . . . . . . 7 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → ((𝑁 / 𝐾) / 𝑀) = (𝑁 / (𝐾 · 𝑀)))
1615eqcomd 2744 . . . . . 6 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → (𝑁 / (𝐾 · 𝑀)) = ((𝑁 / 𝐾) / 𝑀))
173, 6, 9, 12, 14divdiv32d 11776 . . . . . 6 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → ((𝑁 / 𝐾) / 𝑀) = ((𝑁 / 𝑀) / 𝐾))
1816, 17eqtrd 2778 . . . . 5 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → (𝑁 / (𝐾 · 𝑀)) = ((𝑁 / 𝑀) / 𝐾))
194, 7nnmulcld 12026 . . . . . . . 8 (𝜑 → (𝐾 · 𝑀) ∈ ℕ)
2019, 1nndivdvdsd 40008 . . . . . . 7 (𝜑 → ((𝐾 · 𝑀) ∥ 𝑁 ↔ (𝑁 / (𝐾 · 𝑀)) ∈ ℕ))
2120biimpd 228 . . . . . 6 (𝜑 → ((𝐾 · 𝑀) ∥ 𝑁 → (𝑁 / (𝐾 · 𝑀)) ∈ ℕ))
2221imp 407 . . . . 5 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → (𝑁 / (𝐾 · 𝑀)) ∈ ℕ)
2318, 22eqeltrrd 2840 . . . 4 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → ((𝑁 / 𝑀) / 𝐾) ∈ ℕ)
244nnzd 12425 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
257nnzd 12425 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
261nnzd 12425 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
2724, 25, 263jca 1127 . . . . . . . 8 (𝜑 → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
28 muldvds2 15991 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁𝑀𝑁))
2927, 28syl 17 . . . . . . 7 (𝜑 → ((𝐾 · 𝑀) ∥ 𝑁𝑀𝑁))
3029imp 407 . . . . . 6 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝑀𝑁)
311adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝑁 ∈ ℕ)
3213, 31nndivdvdsd 40008 . . . . . 6 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℕ))
3330, 32mpbid 231 . . . . 5 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → (𝑁 / 𝑀) ∈ ℕ)
3410, 33nndivdvdsd 40008 . . . 4 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → (𝐾 ∥ (𝑁 / 𝑀) ↔ ((𝑁 / 𝑀) / 𝐾) ∈ ℕ))
3523, 34mpbird 256 . . 3 ((𝜑 ∧ (𝐾 · 𝑀) ∥ 𝑁) → 𝐾 ∥ (𝑁 / 𝑀))
3635ex 413 . 2 (𝜑 → ((𝐾 · 𝑀) ∥ 𝑁𝐾 ∥ (𝑁 / 𝑀)))
37 dvdszrcl 15968 . . . . . . 7 (𝐾 ∥ (𝑁 / 𝑀) → (𝐾 ∈ ℤ ∧ (𝑁 / 𝑀) ∈ ℤ))
3837simprd 496 . . . . . 6 (𝐾 ∥ (𝑁 / 𝑀) → (𝑁 / 𝑀) ∈ ℤ)
3938adantl 482 . . . . 5 ((𝜑𝐾 ∥ (𝑁 / 𝑀)) → (𝑁 / 𝑀) ∈ ℤ)
40 dvdsmulc 15993 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝑁 / 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 ∥ (𝑁 / 𝑀) → (𝐾 · 𝑀) ∥ ((𝑁 / 𝑀) · 𝑀)))
4124, 40syl3an1 1162 . . . . . . . 8 ((𝜑 ∧ (𝑁 / 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 ∥ (𝑁 / 𝑀) → (𝐾 · 𝑀) ∥ ((𝑁 / 𝑀) · 𝑀)))
4225, 41syl3an3 1164 . . . . . . 7 ((𝜑 ∧ (𝑁 / 𝑀) ∈ ℤ ∧ 𝜑) → (𝐾 ∥ (𝑁 / 𝑀) → (𝐾 · 𝑀) ∥ ((𝑁 / 𝑀) · 𝑀)))
43423anidm13 1419 . . . . . 6 ((𝜑 ∧ (𝑁 / 𝑀) ∈ ℤ) → (𝐾 ∥ (𝑁 / 𝑀) → (𝐾 · 𝑀) ∥ ((𝑁 / 𝑀) · 𝑀)))
4443impancom 452 . . . . 5 ((𝜑𝐾 ∥ (𝑁 / 𝑀)) → ((𝑁 / 𝑀) ∈ ℤ → (𝐾 · 𝑀) ∥ ((𝑁 / 𝑀) · 𝑀)))
4539, 44mpd 15 . . . 4 ((𝜑𝐾 ∥ (𝑁 / 𝑀)) → (𝐾 · 𝑀) ∥ ((𝑁 / 𝑀) · 𝑀))
467nnne0d 12023 . . . . . 6 (𝜑𝑀 ≠ 0)
472, 8, 46divcan1d 11752 . . . . 5 (𝜑 → ((𝑁 / 𝑀) · 𝑀) = 𝑁)
4847adantr 481 . . . 4 ((𝜑𝐾 ∥ (𝑁 / 𝑀)) → ((𝑁 / 𝑀) · 𝑀) = 𝑁)
4945, 48breqtrd 5100 . . 3 ((𝜑𝐾 ∥ (𝑁 / 𝑀)) → (𝐾 · 𝑀) ∥ 𝑁)
5049ex 413 . 2 (𝜑 → (𝐾 ∥ (𝑁 / 𝑀) → (𝐾 · 𝑀) ∥ 𝑁))
5136, 50impbid 211 1 (𝜑 → ((𝐾 · 𝑀) ∥ 𝑁𝐾 ∥ (𝑁 / 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  (class class class)co 7275  cc 10869  0cc0 10871   · cmul 10876   / cdiv 11632  cn 11973  cz 12319  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-dvds 15964
This theorem is referenced by:  lcmineqlem14  40050  aks4d1p8d1  40092
  Copyright terms: Public domain W3C validator