MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem14 Structured version   Visualization version   GIF version

Theorem pythagtriplem14 16157
Description: Lemma for pythagtrip 16163. Calculate the square of 𝑁. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypothesis
Ref Expression
pythagtriplem13.1 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
Assertion
Ref Expression
pythagtriplem14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑁↑2) = ((𝐶𝐴) / 2))

Proof of Theorem pythagtriplem14
StepHypRef Expression
1 pythagtriplem13.1 . . 3 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
21oveq1i 7158 . 2 (𝑁↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)
3 nncn 11638 . . . . . . . . 9 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
4 nncn 11638 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
5 addcl 10611 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 + 𝐵) ∈ ℂ)
63, 4, 5syl2anr 598 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℂ)
76sqrtcld 14789 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (√‘(𝐶 + 𝐵)) ∈ ℂ)
8 subcl 10877 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶𝐵) ∈ ℂ)
93, 4, 8syl2anr 598 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℂ)
109sqrtcld 14789 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (√‘(𝐶𝐵)) ∈ ℂ)
117, 10subcld 10989 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ)
12113adant1 1125 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ)
13123ad2ant1 1128 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ)
14 2cn 11704 . . . . 5 2 ∈ ℂ
15 2ne0 11733 . . . . 5 2 ≠ 0
16 sqdiv 13479 . . . . 5 ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2↑2)))
1714, 15, 16mp3an23 1447 . . . 4 (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2↑2)))
1813, 17syl 17 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2↑2)))
1914sqvali 13535 . . . . 5 (2↑2) = (2 · 2)
2019oveq2i 7159 . . . 4 ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2↑2)) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2 · 2))
2113sqcld 13500 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) ∈ ℂ)
22 2cnne0 11839 . . . . . . 7 (2 ∈ ℂ ∧ 2 ≠ 0)
23 divdiv1 11343 . . . . . . 7 (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2 · 2)))
2422, 22, 23mp3an23 1447 . . . . . 6 ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) ∈ ℂ → (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2 · 2)))
2521, 24syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2 · 2)))
26 simp12 1199 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ)
27 simp13 1200 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℕ)
2826, 27, 7syl2anc 586 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℂ)
2926, 27, 10syl2anc 586 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶𝐵)) ∈ ℂ)
30 binom2sub 13573 . . . . . . . . . 10 (((√‘(𝐶 + 𝐵)) ∈ ℂ ∧ (√‘(𝐶𝐵)) ∈ ℂ) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) = ((((√‘(𝐶 + 𝐵))↑2) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) + ((√‘(𝐶𝐵))↑2)))
3128, 29, 30syl2anc 586 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) = ((((√‘(𝐶 + 𝐵))↑2) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) + ((√‘(𝐶𝐵))↑2)))
32 nnre 11637 . . . . . . . . . . . . . . 15 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ)
33 nnre 11637 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
34 readdcl 10612 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ)
3532, 33, 34syl2anr 598 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ)
36353adant1 1125 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ)
37363ad2ant1 1128 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℝ)
3837recnd 10661 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℂ)
39 resubcl 10942 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶𝐵) ∈ ℝ)
4032, 33, 39syl2anr 598 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℝ)
41403adant1 1125 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℝ)
42413ad2ant1 1128 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶𝐵) ∈ ℝ)
4342recnd 10661 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶𝐵) ∈ ℂ)
4473adant1 1125 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (√‘(𝐶 + 𝐵)) ∈ ℂ)
45103adant1 1125 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (√‘(𝐶𝐵)) ∈ ℂ)
4644, 45mulcld 10653 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))) ∈ ℂ)
47 mulcl 10613 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))) ∈ ℂ) → (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵)))) ∈ ℂ)
4814, 46, 47sylancr 589 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵)))) ∈ ℂ)
49483ad2ant1 1128 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵)))) ∈ ℂ)
5038, 43, 49addsubd 11010 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) + (𝐶𝐵)) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) = (((𝐶 + 𝐵) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) + (𝐶𝐵)))
5127nncnd 11646 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℂ)
52 simp11 1198 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℕ)
5352nncnd 11646 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℂ)
54 subdi 11065 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · (𝐶𝐴)) = ((2 · 𝐶) − (2 · 𝐴)))
5514, 51, 53, 54mp3an2i 1460 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐶𝐴)) = ((2 · 𝐶) − (2 · 𝐴)))
56 ppncan 10920 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (𝐶 + 𝐶))
57563anidm13 1415 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (𝐶 + 𝐶))
58 2times 11765 . . . . . . . . . . . . . . . . 17 (𝐶 ∈ ℂ → (2 · 𝐶) = (𝐶 + 𝐶))
5958adantr 483 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐶) = (𝐶 + 𝐶))
6057, 59eqtr4d 2857 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (2 · 𝐶))
613, 4, 60syl2anr 598 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (2 · 𝐶))
62613adant1 1125 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (2 · 𝐶))
63623ad2ant1 1128 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (2 · 𝐶))
6426nncnd 11646 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℂ)
65 subsq 13564 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶𝐵)))
6651, 64, 65syl2anc 586 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶𝐵)))
67 oveq1 7155 . . . . . . . . . . . . . . . . . . 19 (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2)))
68673ad2ant2 1129 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2)))
69 nncn 11638 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
7069sqcld 13500 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℕ → (𝐴↑2) ∈ ℂ)
71703ad2ant1 1128 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴↑2) ∈ ℂ)
724sqcld 13500 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ ℕ → (𝐵↑2) ∈ ℂ)
73723ad2ant2 1129 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵↑2) ∈ ℂ)
7471, 73pncand 10990 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = (𝐴↑2))
75743ad2ant1 1128 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = (𝐴↑2))
7668, 75eqtr3d 2856 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶↑2) − (𝐵↑2)) = (𝐴↑2))
7766, 76eqtr3d 2856 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) · (𝐶𝐵)) = (𝐴↑2))
7877fveq2d 6667 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘((𝐶 + 𝐵) · (𝐶𝐵))) = (√‘(𝐴↑2)))
7932adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℝ)
8033adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℝ)
81 nngt0 11660 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 ∈ ℕ → 0 < 𝐶)
8281adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < 𝐶)
83 nngt0 11660 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ ℕ → 0 < 𝐵)
8483adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < 𝐵)
8579, 80, 82, 84addgt0d 11207 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < (𝐶 + 𝐵))
86 0re 10635 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℝ
87 ltle 10721 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ (𝐶 + 𝐵) ∈ ℝ) → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵)))
8886, 87mpan 688 . . . . . . . . . . . . . . . . . . 19 ((𝐶 + 𝐵) ∈ ℝ → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵)))
8935, 85, 88sylc 65 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤ (𝐶 + 𝐵))
90893adant1 1125 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤ (𝐶 + 𝐵))
91903ad2ant1 1128 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 + 𝐵))
92 pythagtriplem10 16149 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶𝐵))
93923adant3 1127 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (𝐶𝐵))
94 ltle 10721 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ (𝐶𝐵) ∈ ℝ) → (0 < (𝐶𝐵) → 0 ≤ (𝐶𝐵)))
9586, 94mpan 688 . . . . . . . . . . . . . . . . 17 ((𝐶𝐵) ∈ ℝ → (0 < (𝐶𝐵) → 0 ≤ (𝐶𝐵)))
9642, 93, 95sylc 65 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶𝐵))
9737, 91, 42, 96sqrtmuld 14776 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘((𝐶 + 𝐵) · (𝐶𝐵))) = ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))
9878, 97eqtr3d 2856 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐴↑2)) = ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))
99 nnre 11637 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
100993ad2ant1 1128 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℝ)
1011003ad2ant1 1128 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℝ)
102 nnnn0 11896 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
103102nn0ge0d 11950 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ → 0 ≤ 𝐴)
1041033ad2ant1 1128 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤ 𝐴)
1051043ad2ant1 1128 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ 𝐴)
106101, 105sqrtsqd 14771 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐴↑2)) = 𝐴)
10798, 106eqtr3d 2856 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))) = 𝐴)
108107oveq2d 7164 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵)))) = (2 · 𝐴))
10963, 108oveq12d 7166 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) + (𝐶𝐵)) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) = ((2 · 𝐶) − (2 · 𝐴)))
11055, 109eqtr4d 2857 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐶𝐴)) = (((𝐶 + 𝐵) + (𝐶𝐵)) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))))
111 resqrtth 14607 . . . . . . . . . . . . 13 (((𝐶 + 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 + 𝐵)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵))
11237, 91, 111syl2anc 586 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵))
113112oveq1d 7163 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵))↑2) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) = ((𝐶 + 𝐵) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))))
114 resqrtth 14607 . . . . . . . . . . . 12 (((𝐶𝐵) ∈ ℝ ∧ 0 ≤ (𝐶𝐵)) → ((√‘(𝐶𝐵))↑2) = (𝐶𝐵))
11542, 96, 114syl2anc 586 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶𝐵))↑2) = (𝐶𝐵))
116113, 115oveq12d 7166 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵))↑2) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) + ((√‘(𝐶𝐵))↑2)) = (((𝐶 + 𝐵) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) + (𝐶𝐵)))
11750, 110, 1163eqtr4rd 2865 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵))↑2) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) + ((√‘(𝐶𝐵))↑2)) = (2 · (𝐶𝐴)))
11831, 117eqtrd 2854 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) = (2 · (𝐶𝐴)))
119118oveq1d 7163 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / 2) = ((2 · (𝐶𝐴)) / 2))
120 subcl 10877 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐶𝐴) ∈ ℂ)
1213, 69, 120syl2anr 598 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐴) ∈ ℂ)
1221213adant2 1126 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐴) ∈ ℂ)
1231223ad2ant1 1128 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶𝐴) ∈ ℂ)
124 divcan3 11316 . . . . . . . . 9 (((𝐶𝐴) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · (𝐶𝐴)) / 2) = (𝐶𝐴))
12514, 15, 124mp3an23 1447 . . . . . . . 8 ((𝐶𝐴) ∈ ℂ → ((2 · (𝐶𝐴)) / 2) = (𝐶𝐴))
126123, 125syl 17 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · (𝐶𝐴)) / 2) = (𝐶𝐴))
127119, 126eqtrd 2854 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / 2) = (𝐶𝐴))
128127oveq1d 7163 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / 2) / 2) = ((𝐶𝐴) / 2))
12925, 128eqtr3d 2856 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2 · 2)) = ((𝐶𝐴) / 2))
13020, 129syl5eq 2866 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2↑2)) = ((𝐶𝐴) / 2))
13118, 130eqtrd 2854 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2) = ((𝐶𝐴) / 2))
1322, 131syl5eq 2866 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑁↑2) = ((𝐶𝐴) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  wne 3014   class class class wbr 5057  cfv 6348  (class class class)co 7148  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  cn 11630  2c2 11684  cexp 13421  csqrt 14584  cdvds 15599   gcd cgcd 15835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587
This theorem is referenced by:  pythagtriplem15  16158  pythagtriplem17  16160
  Copyright terms: Public domain W3C validator