Proof of Theorem pythagtriplem14
Step | Hyp | Ref
| Expression |
1 | | pythagtriplem13.1 |
. . 3
⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) |
2 | 1 | oveq1i 7265 |
. 2
⊢ (𝑁↑2) =
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵))) /
2)↑2) |
3 | | nncn 11911 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℂ) |
4 | | nncn 11911 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℂ) |
5 | | addcl 10884 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 + 𝐵) ∈ ℂ) |
6 | 3, 4, 5 | syl2anr 596 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℂ) |
7 | 6 | sqrtcld 15077 |
. . . . . . 7
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(√‘(𝐶 + 𝐵)) ∈
ℂ) |
8 | | subcl 11150 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 − 𝐵) ∈ ℂ) |
9 | 3, 4, 8 | syl2anr 596 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℂ) |
10 | 9 | sqrtcld 15077 |
. . . . . . 7
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(√‘(𝐶 −
𝐵)) ∈
ℂ) |
11 | 7, 10 | subcld 11262 |
. . . . . 6
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) |
12 | 11 | 3adant1 1128 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) |
13 | 12 | 3ad2ant1 1131 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) |
14 | | 2cn 11978 |
. . . . 5
⊢ 2 ∈
ℂ |
15 | | 2ne0 12007 |
. . . . 5
⊢ 2 ≠
0 |
16 | | sqdiv 13769 |
. . . . 5
⊢
((((√‘(𝐶
+ 𝐵)) −
(√‘(𝐶 −
𝐵))) ∈ ℂ ∧ 2
∈ ℂ ∧ 2 ≠ 0) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2)↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))↑2) / (2↑2))) |
17 | 14, 15, 16 | mp3an23 1451 |
. . . 4
⊢
(((√‘(𝐶
+ 𝐵)) −
(√‘(𝐶 −
𝐵))) ∈ ℂ →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵))) / 2)↑2) =
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) /
(2↑2))) |
18 | 13, 17 | syl 17 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵))) / 2)↑2) =
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) /
(2↑2))) |
19 | 14 | sqvali 13825 |
. . . . 5
⊢
(2↑2) = (2 · 2) |
20 | 19 | oveq2i 7266 |
. . . 4
⊢
((((√‘(𝐶
+ 𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2↑2))
= ((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2 ·
2)) |
21 | 13 | sqcld 13790 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))↑2) ∈ ℂ) |
22 | | 2cnne0 12113 |
. . . . . . 7
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
23 | | divdiv1 11616 |
. . . . . . 7
⊢
(((((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))↑2) ∈ ℂ ∧ (2 ∈
ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) →
(((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / 2) / 2) =
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2 ·
2))) |
24 | 22, 22, 23 | mp3an23 1451 |
. . . . . 6
⊢
((((√‘(𝐶
+ 𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) ∈ ℂ
→ (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))↑2) / 2) / 2) =
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2 ·
2))) |
25 | 21, 24 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / 2) / 2) =
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2 ·
2))) |
26 | | simp12 1202 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ) |
27 | | simp13 1203 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℕ) |
28 | 26, 27, 7 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℂ) |
29 | 26, 27, 10 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℂ) |
30 | | binom2sub 13863 |
. . . . . . . . . 10
⊢
(((√‘(𝐶
+ 𝐵)) ∈ ℂ ∧
(√‘(𝐶 −
𝐵)) ∈ ℂ) →
(((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))↑2) = ((((√‘(𝐶 + 𝐵))↑2) − (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) +
((√‘(𝐶 −
𝐵))↑2))) |
31 | 28, 29, 30 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))↑2) = ((((√‘(𝐶 + 𝐵))↑2) − (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) +
((√‘(𝐶 −
𝐵))↑2))) |
32 | | nnre 11910 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℝ) |
33 | | nnre 11910 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℝ) |
34 | | readdcl 10885 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ) |
35 | 32, 33, 34 | syl2anr 596 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ) |
36 | 35 | 3adant1 1128 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ) |
37 | 36 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℝ) |
38 | 37 | recnd 10934 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℂ) |
39 | | resubcl 11215 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
40 | 32, 33, 39 | syl2anr 596 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℝ) |
41 | 40 | 3adant1 1128 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℝ) |
42 | 41 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℝ) |
43 | 42 | recnd 10934 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℂ) |
44 | 7 | 3adant1 1128 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(√‘(𝐶 + 𝐵)) ∈
ℂ) |
45 | 10 | 3adant1 1128 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(√‘(𝐶 −
𝐵)) ∈
ℂ) |
46 | 44, 45 | mulcld 10926 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))) ∈
ℂ) |
47 | | mulcl 10886 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℂ ∧ ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))) ∈ ℂ) → (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵)))) ∈
ℂ) |
48 | 14, 46, 47 | sylancr 586 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (2
· ((√‘(𝐶
+ 𝐵)) ·
(√‘(𝐶 −
𝐵)))) ∈
ℂ) |
49 | 48 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵)))) ∈
ℂ) |
50 | 38, 43, 49 | addsubd 11283 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) + (𝐶 − 𝐵)) − (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) = (((𝐶 + 𝐵) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))))) + (𝐶 − 𝐵))) |
51 | 27 | nncnd 11919 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℂ) |
52 | | simp11 1201 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℕ) |
53 | 52 | nncnd 11919 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℂ) |
54 | | subdi 11338 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℂ ∧ 𝐶
∈ ℂ ∧ 𝐴
∈ ℂ) → (2 · (𝐶 − 𝐴)) = ((2 · 𝐶) − (2 · 𝐴))) |
55 | 14, 51, 53, 54 | mp3an2i 1464 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐶 − 𝐴)) = ((2 · 𝐶) − (2 · 𝐴))) |
56 | | ppncan 11193 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (𝐶 + 𝐶)) |
57 | 56 | 3anidm13 1418 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (𝐶 + 𝐶)) |
58 | | 2times 12039 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐶 ∈ ℂ → (2
· 𝐶) = (𝐶 + 𝐶)) |
59 | 58 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2
· 𝐶) = (𝐶 + 𝐶)) |
60 | 57, 59 | eqtr4d 2781 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (2 · 𝐶)) |
61 | 3, 4, 60 | syl2anr 596 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (2 · 𝐶)) |
62 | 61 | 3adant1 1128 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (2 · 𝐶)) |
63 | 62 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (2 · 𝐶)) |
64 | 26 | nncnd 11919 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℂ) |
65 | | subsq 13854 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶 − 𝐵))) |
66 | 51, 64, 65 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶 − 𝐵))) |
67 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2))) |
68 | 67 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2))) |
69 | | nncn 11911 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℂ) |
70 | 69 | sqcld 13790 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ ℕ → (𝐴↑2) ∈
ℂ) |
71 | 70 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴↑2) ∈
ℂ) |
72 | 4 | sqcld 13790 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐵 ∈ ℕ → (𝐵↑2) ∈
ℂ) |
73 | 72 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵↑2) ∈
ℂ) |
74 | 71, 73 | pncand 11263 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = (𝐴↑2)) |
75 | 74 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = (𝐴↑2)) |
76 | 68, 75 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶↑2) − (𝐵↑2)) = (𝐴↑2)) |
77 | 66, 76 | eqtr3d 2780 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) · (𝐶 − 𝐵)) = (𝐴↑2)) |
78 | 77 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘((𝐶 + 𝐵) · (𝐶 − 𝐵))) = (√‘(𝐴↑2))) |
79 | 32 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℝ) |
80 | 33 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈
ℝ) |
81 | | nngt0 11934 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐶 ∈ ℕ → 0 <
𝐶) |
82 | 81 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐶) |
83 | | nngt0 11934 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐵 ∈ ℕ → 0 <
𝐵) |
84 | 83 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐵) |
85 | 79, 80, 82, 84 | addgt0d 11480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
(𝐶 + 𝐵)) |
86 | | 0re 10908 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 ∈
ℝ |
87 | | ltle 10994 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0
∈ ℝ ∧ (𝐶 +
𝐵) ∈ ℝ) →
(0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵))) |
88 | 86, 87 | mpan 686 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 + 𝐵) ∈ ℝ → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵))) |
89 | 35, 85, 88 | sylc 65 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤
(𝐶 + 𝐵)) |
90 | 89 | 3adant1 1128 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤
(𝐶 + 𝐵)) |
91 | 90 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 + 𝐵)) |
92 | | pythagtriplem10 16449 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶 − 𝐵)) |
93 | 92 | 3adant3 1130 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (𝐶 − 𝐵)) |
94 | | ltle 10994 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℝ ∧ (𝐶
− 𝐵) ∈ ℝ)
→ (0 < (𝐶 −
𝐵) → 0 ≤ (𝐶 − 𝐵))) |
95 | 86, 94 | mpan 686 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 − 𝐵) ∈ ℝ → (0 < (𝐶 − 𝐵) → 0 ≤ (𝐶 − 𝐵))) |
96 | 42, 93, 95 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 − 𝐵)) |
97 | 37, 91, 42, 96 | sqrtmuld 15064 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘((𝐶 + 𝐵) · (𝐶 − 𝐵))) = ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵)))) |
98 | 78, 97 | eqtr3d 2780 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐴↑2)) =
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵)))) |
99 | | nnre 11910 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) |
100 | 99 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈
ℝ) |
101 | 100 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℝ) |
102 | | nnnn0 12170 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℕ0) |
103 | 102 | nn0ge0d 12226 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℕ → 0 ≤
𝐴) |
104 | 103 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤
𝐴) |
105 | 104 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ 𝐴) |
106 | 101, 105 | sqrtsqd 15059 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐴↑2)) = 𝐴) |
107 | 98, 106 | eqtr3d 2780 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))) = 𝐴) |
108 | 107 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵)))) = (2 · 𝐴)) |
109 | 63, 108 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) + (𝐶 − 𝐵)) − (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) = ((2 · 𝐶) − (2 · 𝐴))) |
110 | 55, 109 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐶 − 𝐴)) = (((𝐶 + 𝐵) + (𝐶 − 𝐵)) − (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵)))))) |
111 | | resqrtth 14895 |
. . . . . . . . . . . . 13
⊢ (((𝐶 + 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 + 𝐵)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵)) |
112 | 37, 91, 111 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵)) |
113 | 112 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵))↑2) − (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) = ((𝐶 + 𝐵) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵)))))) |
114 | | resqrtth 14895 |
. . . . . . . . . . . 12
⊢ (((𝐶 − 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 − 𝐵)) → ((√‘(𝐶 − 𝐵))↑2) = (𝐶 − 𝐵)) |
115 | 42, 96, 114 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 − 𝐵))↑2) = (𝐶 − 𝐵)) |
116 | 113, 115 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵))↑2) − (2
· ((√‘(𝐶
+ 𝐵)) ·
(√‘(𝐶 −
𝐵))))) +
((√‘(𝐶 −
𝐵))↑2)) = (((𝐶 + 𝐵) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))))) + (𝐶 − 𝐵))) |
117 | 50, 110, 116 | 3eqtr4rd 2789 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵))↑2) − (2
· ((√‘(𝐶
+ 𝐵)) ·
(√‘(𝐶 −
𝐵))))) +
((√‘(𝐶 −
𝐵))↑2)) = (2 ·
(𝐶 − 𝐴))) |
118 | 31, 117 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))↑2) = (2 · (𝐶 − 𝐴))) |
119 | 118 | oveq1d 7270 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / 2) = ((2
· (𝐶 − 𝐴)) / 2)) |
120 | | subcl 11150 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐶 − 𝐴) ∈ ℂ) |
121 | 3, 69, 120 | syl2anr 596 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐴) ∈ ℂ) |
122 | 121 | 3adant2 1129 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐴) ∈ ℂ) |
123 | 122 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐴) ∈ ℂ) |
124 | | divcan3 11589 |
. . . . . . . . 9
⊢ (((𝐶 − 𝐴) ∈ ℂ ∧ 2 ∈ ℂ
∧ 2 ≠ 0) → ((2 · (𝐶 − 𝐴)) / 2) = (𝐶 − 𝐴)) |
125 | 14, 15, 124 | mp3an23 1451 |
. . . . . . . 8
⊢ ((𝐶 − 𝐴) ∈ ℂ → ((2 · (𝐶 − 𝐴)) / 2) = (𝐶 − 𝐴)) |
126 | 123, 125 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · (𝐶 − 𝐴)) / 2) = (𝐶 − 𝐴)) |
127 | 119, 126 | eqtrd 2778 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / 2) = (𝐶 − 𝐴)) |
128 | 127 | oveq1d 7270 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / 2) / 2) =
((𝐶 − 𝐴) / 2)) |
129 | 25, 128 | eqtr3d 2780 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2 ·
2)) = ((𝐶 − 𝐴) / 2)) |
130 | 20, 129 | eqtrid 2790 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2↑2))
= ((𝐶 − 𝐴) / 2)) |
131 | 18, 130 | eqtrd 2778 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵))) / 2)↑2) = ((𝐶 − 𝐴) / 2)) |
132 | 2, 131 | eqtrid 2790 |
1
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑁↑2) = ((𝐶 − 𝐴) / 2)) |