MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem14 Structured version   Visualization version   GIF version

Theorem pythagtriplem14 16457
Description: Lemma for pythagtrip 16463. Calculate the square of 𝑁. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypothesis
Ref Expression
pythagtriplem13.1 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
Assertion
Ref Expression
pythagtriplem14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑁↑2) = ((𝐶𝐴) / 2))

Proof of Theorem pythagtriplem14
StepHypRef Expression
1 pythagtriplem13.1 . . 3 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
21oveq1i 7265 . 2 (𝑁↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)
3 nncn 11911 . . . . . . . . 9 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
4 nncn 11911 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
5 addcl 10884 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 + 𝐵) ∈ ℂ)
63, 4, 5syl2anr 596 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℂ)
76sqrtcld 15077 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (√‘(𝐶 + 𝐵)) ∈ ℂ)
8 subcl 11150 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶𝐵) ∈ ℂ)
93, 4, 8syl2anr 596 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℂ)
109sqrtcld 15077 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (√‘(𝐶𝐵)) ∈ ℂ)
117, 10subcld 11262 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ)
12113adant1 1128 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ)
13123ad2ant1 1131 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ)
14 2cn 11978 . . . . 5 2 ∈ ℂ
15 2ne0 12007 . . . . 5 2 ≠ 0
16 sqdiv 13769 . . . . 5 ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2↑2)))
1714, 15, 16mp3an23 1451 . . . 4 (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2↑2)))
1813, 17syl 17 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2↑2)))
1914sqvali 13825 . . . . 5 (2↑2) = (2 · 2)
2019oveq2i 7266 . . . 4 ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2↑2)) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2 · 2))
2113sqcld 13790 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) ∈ ℂ)
22 2cnne0 12113 . . . . . . 7 (2 ∈ ℂ ∧ 2 ≠ 0)
23 divdiv1 11616 . . . . . . 7 (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2 · 2)))
2422, 22, 23mp3an23 1451 . . . . . 6 ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) ∈ ℂ → (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2 · 2)))
2521, 24syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2 · 2)))
26 simp12 1202 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ)
27 simp13 1203 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℕ)
2826, 27, 7syl2anc 583 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℂ)
2926, 27, 10syl2anc 583 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶𝐵)) ∈ ℂ)
30 binom2sub 13863 . . . . . . . . . 10 (((√‘(𝐶 + 𝐵)) ∈ ℂ ∧ (√‘(𝐶𝐵)) ∈ ℂ) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) = ((((√‘(𝐶 + 𝐵))↑2) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) + ((√‘(𝐶𝐵))↑2)))
3128, 29, 30syl2anc 583 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) = ((((√‘(𝐶 + 𝐵))↑2) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) + ((√‘(𝐶𝐵))↑2)))
32 nnre 11910 . . . . . . . . . . . . . . 15 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ)
33 nnre 11910 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
34 readdcl 10885 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ)
3532, 33, 34syl2anr 596 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ)
36353adant1 1128 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ)
37363ad2ant1 1131 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℝ)
3837recnd 10934 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℂ)
39 resubcl 11215 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶𝐵) ∈ ℝ)
4032, 33, 39syl2anr 596 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℝ)
41403adant1 1128 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℝ)
42413ad2ant1 1131 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶𝐵) ∈ ℝ)
4342recnd 10934 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶𝐵) ∈ ℂ)
4473adant1 1128 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (√‘(𝐶 + 𝐵)) ∈ ℂ)
45103adant1 1128 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (√‘(𝐶𝐵)) ∈ ℂ)
4644, 45mulcld 10926 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))) ∈ ℂ)
47 mulcl 10886 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))) ∈ ℂ) → (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵)))) ∈ ℂ)
4814, 46, 47sylancr 586 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵)))) ∈ ℂ)
49483ad2ant1 1131 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵)))) ∈ ℂ)
5038, 43, 49addsubd 11283 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) + (𝐶𝐵)) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) = (((𝐶 + 𝐵) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) + (𝐶𝐵)))
5127nncnd 11919 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℂ)
52 simp11 1201 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℕ)
5352nncnd 11919 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℂ)
54 subdi 11338 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · (𝐶𝐴)) = ((2 · 𝐶) − (2 · 𝐴)))
5514, 51, 53, 54mp3an2i 1464 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐶𝐴)) = ((2 · 𝐶) − (2 · 𝐴)))
56 ppncan 11193 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (𝐶 + 𝐶))
57563anidm13 1418 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (𝐶 + 𝐶))
58 2times 12039 . . . . . . . . . . . . . . . . 17 (𝐶 ∈ ℂ → (2 · 𝐶) = (𝐶 + 𝐶))
5958adantr 480 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐶) = (𝐶 + 𝐶))
6057, 59eqtr4d 2781 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (2 · 𝐶))
613, 4, 60syl2anr 596 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (2 · 𝐶))
62613adant1 1128 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (2 · 𝐶))
63623ad2ant1 1131 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (2 · 𝐶))
6426nncnd 11919 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℂ)
65 subsq 13854 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶𝐵)))
6651, 64, 65syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶𝐵)))
67 oveq1 7262 . . . . . . . . . . . . . . . . . . 19 (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2)))
68673ad2ant2 1132 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2)))
69 nncn 11911 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
7069sqcld 13790 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℕ → (𝐴↑2) ∈ ℂ)
71703ad2ant1 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴↑2) ∈ ℂ)
724sqcld 13790 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ ℕ → (𝐵↑2) ∈ ℂ)
73723ad2ant2 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵↑2) ∈ ℂ)
7471, 73pncand 11263 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = (𝐴↑2))
75743ad2ant1 1131 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = (𝐴↑2))
7668, 75eqtr3d 2780 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶↑2) − (𝐵↑2)) = (𝐴↑2))
7766, 76eqtr3d 2780 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) · (𝐶𝐵)) = (𝐴↑2))
7877fveq2d 6760 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘((𝐶 + 𝐵) · (𝐶𝐵))) = (√‘(𝐴↑2)))
7932adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℝ)
8033adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℝ)
81 nngt0 11934 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 ∈ ℕ → 0 < 𝐶)
8281adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < 𝐶)
83 nngt0 11934 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ ℕ → 0 < 𝐵)
8483adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < 𝐵)
8579, 80, 82, 84addgt0d 11480 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < (𝐶 + 𝐵))
86 0re 10908 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℝ
87 ltle 10994 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ (𝐶 + 𝐵) ∈ ℝ) → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵)))
8886, 87mpan 686 . . . . . . . . . . . . . . . . . . 19 ((𝐶 + 𝐵) ∈ ℝ → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵)))
8935, 85, 88sylc 65 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤ (𝐶 + 𝐵))
90893adant1 1128 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤ (𝐶 + 𝐵))
91903ad2ant1 1131 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 + 𝐵))
92 pythagtriplem10 16449 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶𝐵))
93923adant3 1130 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (𝐶𝐵))
94 ltle 10994 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ (𝐶𝐵) ∈ ℝ) → (0 < (𝐶𝐵) → 0 ≤ (𝐶𝐵)))
9586, 94mpan 686 . . . . . . . . . . . . . . . . 17 ((𝐶𝐵) ∈ ℝ → (0 < (𝐶𝐵) → 0 ≤ (𝐶𝐵)))
9642, 93, 95sylc 65 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶𝐵))
9737, 91, 42, 96sqrtmuld 15064 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘((𝐶 + 𝐵) · (𝐶𝐵))) = ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))
9878, 97eqtr3d 2780 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐴↑2)) = ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))
99 nnre 11910 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
100993ad2ant1 1131 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℝ)
1011003ad2ant1 1131 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℝ)
102 nnnn0 12170 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
103102nn0ge0d 12226 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ → 0 ≤ 𝐴)
1041033ad2ant1 1131 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤ 𝐴)
1051043ad2ant1 1131 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ 𝐴)
106101, 105sqrtsqd 15059 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐴↑2)) = 𝐴)
10798, 106eqtr3d 2780 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))) = 𝐴)
108107oveq2d 7271 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵)))) = (2 · 𝐴))
10963, 108oveq12d 7273 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) + (𝐶𝐵)) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) = ((2 · 𝐶) − (2 · 𝐴)))
11055, 109eqtr4d 2781 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐶𝐴)) = (((𝐶 + 𝐵) + (𝐶𝐵)) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))))
111 resqrtth 14895 . . . . . . . . . . . . 13 (((𝐶 + 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 + 𝐵)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵))
11237, 91, 111syl2anc 583 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵))
113112oveq1d 7270 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵))↑2) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) = ((𝐶 + 𝐵) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))))
114 resqrtth 14895 . . . . . . . . . . . 12 (((𝐶𝐵) ∈ ℝ ∧ 0 ≤ (𝐶𝐵)) → ((√‘(𝐶𝐵))↑2) = (𝐶𝐵))
11542, 96, 114syl2anc 583 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶𝐵))↑2) = (𝐶𝐵))
116113, 115oveq12d 7273 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵))↑2) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) + ((√‘(𝐶𝐵))↑2)) = (((𝐶 + 𝐵) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) + (𝐶𝐵)))
11750, 110, 1163eqtr4rd 2789 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵))↑2) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) + ((√‘(𝐶𝐵))↑2)) = (2 · (𝐶𝐴)))
11831, 117eqtrd 2778 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) = (2 · (𝐶𝐴)))
119118oveq1d 7270 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / 2) = ((2 · (𝐶𝐴)) / 2))
120 subcl 11150 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐶𝐴) ∈ ℂ)
1213, 69, 120syl2anr 596 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐴) ∈ ℂ)
1221213adant2 1129 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐴) ∈ ℂ)
1231223ad2ant1 1131 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶𝐴) ∈ ℂ)
124 divcan3 11589 . . . . . . . . 9 (((𝐶𝐴) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · (𝐶𝐴)) / 2) = (𝐶𝐴))
12514, 15, 124mp3an23 1451 . . . . . . . 8 ((𝐶𝐴) ∈ ℂ → ((2 · (𝐶𝐴)) / 2) = (𝐶𝐴))
126123, 125syl 17 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · (𝐶𝐴)) / 2) = (𝐶𝐴))
127119, 126eqtrd 2778 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / 2) = (𝐶𝐴))
128127oveq1d 7270 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / 2) / 2) = ((𝐶𝐴) / 2))
12925, 128eqtr3d 2780 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2 · 2)) = ((𝐶𝐴) / 2))
13020, 129eqtrid 2790 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2↑2)) = ((𝐶𝐴) / 2))
13118, 130eqtrd 2778 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2) = ((𝐶𝐴) / 2))
1322, 131eqtrid 2790 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑁↑2) = ((𝐶𝐴) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  cexp 13710  csqrt 14872  cdvds 15891   gcd cgcd 16129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  pythagtriplem15  16458  pythagtriplem17  16460
  Copyright terms: Public domain W3C validator