Proof of Theorem pythagtriplem14
| Step | Hyp | Ref
| Expression |
| 1 | | pythagtriplem13.1 |
. . 3
⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) |
| 2 | 1 | oveq1i 7442 |
. 2
⊢ (𝑁↑2) =
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵))) /
2)↑2) |
| 3 | | nncn 12275 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℂ) |
| 4 | | nncn 12275 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℂ) |
| 5 | | addcl 11238 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 + 𝐵) ∈ ℂ) |
| 6 | 3, 4, 5 | syl2anr 597 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℂ) |
| 7 | 6 | sqrtcld 15477 |
. . . . . . 7
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(√‘(𝐶 + 𝐵)) ∈
ℂ) |
| 8 | | subcl 11508 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 − 𝐵) ∈ ℂ) |
| 9 | 3, 4, 8 | syl2anr 597 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℂ) |
| 10 | 9 | sqrtcld 15477 |
. . . . . . 7
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(√‘(𝐶 −
𝐵)) ∈
ℂ) |
| 11 | 7, 10 | subcld 11621 |
. . . . . 6
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) |
| 12 | 11 | 3adant1 1130 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) |
| 13 | 12 | 3ad2ant1 1133 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) |
| 14 | | 2cn 12342 |
. . . . 5
⊢ 2 ∈
ℂ |
| 15 | | 2ne0 12371 |
. . . . 5
⊢ 2 ≠
0 |
| 16 | | sqdiv 14162 |
. . . . 5
⊢
((((√‘(𝐶
+ 𝐵)) −
(√‘(𝐶 −
𝐵))) ∈ ℂ ∧ 2
∈ ℂ ∧ 2 ≠ 0) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2)↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))↑2) / (2↑2))) |
| 17 | 14, 15, 16 | mp3an23 1454 |
. . . 4
⊢
(((√‘(𝐶
+ 𝐵)) −
(√‘(𝐶 −
𝐵))) ∈ ℂ →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵))) / 2)↑2) =
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) /
(2↑2))) |
| 18 | 13, 17 | syl 17 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵))) / 2)↑2) =
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) /
(2↑2))) |
| 19 | 14 | sqvali 14220 |
. . . . 5
⊢
(2↑2) = (2 · 2) |
| 20 | 19 | oveq2i 7443 |
. . . 4
⊢
((((√‘(𝐶
+ 𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2↑2))
= ((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2 ·
2)) |
| 21 | 13 | sqcld 14185 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))↑2) ∈ ℂ) |
| 22 | | 2cnne0 12477 |
. . . . . . 7
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
| 23 | | divdiv1 11979 |
. . . . . . 7
⊢
(((((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))↑2) ∈ ℂ ∧ (2 ∈
ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) →
(((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / 2) / 2) =
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2 ·
2))) |
| 24 | 22, 22, 23 | mp3an23 1454 |
. . . . . 6
⊢
((((√‘(𝐶
+ 𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) ∈ ℂ
→ (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))↑2) / 2) / 2) =
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2 ·
2))) |
| 25 | 21, 24 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / 2) / 2) =
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2 ·
2))) |
| 26 | | simp12 1204 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ) |
| 27 | | simp13 1205 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℕ) |
| 28 | 26, 27, 7 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℂ) |
| 29 | 26, 27, 10 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℂ) |
| 30 | | binom2sub 14260 |
. . . . . . . . . 10
⊢
(((√‘(𝐶
+ 𝐵)) ∈ ℂ ∧
(√‘(𝐶 −
𝐵)) ∈ ℂ) →
(((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))↑2) = ((((√‘(𝐶 + 𝐵))↑2) − (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) +
((√‘(𝐶 −
𝐵))↑2))) |
| 31 | 28, 29, 30 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))↑2) = ((((√‘(𝐶 + 𝐵))↑2) − (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) +
((√‘(𝐶 −
𝐵))↑2))) |
| 32 | | nnre 12274 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℝ) |
| 33 | | nnre 12274 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℝ) |
| 34 | | readdcl 11239 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ) |
| 35 | 32, 33, 34 | syl2anr 597 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ) |
| 36 | 35 | 3adant1 1130 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ) |
| 37 | 36 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℝ) |
| 38 | 37 | recnd 11290 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℂ) |
| 39 | | resubcl 11574 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
| 40 | 32, 33, 39 | syl2anr 597 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℝ) |
| 41 | 40 | 3adant1 1130 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℝ) |
| 42 | 41 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℝ) |
| 43 | 42 | recnd 11290 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℂ) |
| 44 | 7 | 3adant1 1130 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(√‘(𝐶 + 𝐵)) ∈
ℂ) |
| 45 | 10 | 3adant1 1130 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(√‘(𝐶 −
𝐵)) ∈
ℂ) |
| 46 | 44, 45 | mulcld 11282 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))) ∈
ℂ) |
| 47 | | mulcl 11240 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℂ ∧ ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))) ∈ ℂ) → (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵)))) ∈
ℂ) |
| 48 | 14, 46, 47 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (2
· ((√‘(𝐶
+ 𝐵)) ·
(√‘(𝐶 −
𝐵)))) ∈
ℂ) |
| 49 | 48 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵)))) ∈
ℂ) |
| 50 | 38, 43, 49 | addsubd 11642 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) + (𝐶 − 𝐵)) − (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) = (((𝐶 + 𝐵) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))))) + (𝐶 − 𝐵))) |
| 51 | 27 | nncnd 12283 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℂ) |
| 52 | | simp11 1203 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℕ) |
| 53 | 52 | nncnd 12283 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℂ) |
| 54 | | subdi 11697 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℂ ∧ 𝐶
∈ ℂ ∧ 𝐴
∈ ℂ) → (2 · (𝐶 − 𝐴)) = ((2 · 𝐶) − (2 · 𝐴))) |
| 55 | 14, 51, 53, 54 | mp3an2i 1467 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐶 − 𝐴)) = ((2 · 𝐶) − (2 · 𝐴))) |
| 56 | | ppncan 11552 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (𝐶 + 𝐶)) |
| 57 | 56 | 3anidm13 1421 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (𝐶 + 𝐶)) |
| 58 | | 2times 12403 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐶 ∈ ℂ → (2
· 𝐶) = (𝐶 + 𝐶)) |
| 59 | 58 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2
· 𝐶) = (𝐶 + 𝐶)) |
| 60 | 57, 59 | eqtr4d 2779 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (2 · 𝐶)) |
| 61 | 3, 4, 60 | syl2anr 597 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (2 · 𝐶)) |
| 62 | 61 | 3adant1 1130 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (2 · 𝐶)) |
| 63 | 62 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (2 · 𝐶)) |
| 64 | 26 | nncnd 12283 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℂ) |
| 65 | | subsq 14250 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶 − 𝐵))) |
| 66 | 51, 64, 65 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶 − 𝐵))) |
| 67 | | oveq1 7439 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2))) |
| 68 | 67 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2))) |
| 69 | | nncn 12275 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℂ) |
| 70 | 69 | sqcld 14185 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ ℕ → (𝐴↑2) ∈
ℂ) |
| 71 | 70 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴↑2) ∈
ℂ) |
| 72 | 4 | sqcld 14185 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐵 ∈ ℕ → (𝐵↑2) ∈
ℂ) |
| 73 | 72 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵↑2) ∈
ℂ) |
| 74 | 71, 73 | pncand 11622 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = (𝐴↑2)) |
| 75 | 74 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = (𝐴↑2)) |
| 76 | 68, 75 | eqtr3d 2778 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶↑2) − (𝐵↑2)) = (𝐴↑2)) |
| 77 | 66, 76 | eqtr3d 2778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) · (𝐶 − 𝐵)) = (𝐴↑2)) |
| 78 | 77 | fveq2d 6909 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘((𝐶 + 𝐵) · (𝐶 − 𝐵))) = (√‘(𝐴↑2))) |
| 79 | 32 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℝ) |
| 80 | 33 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈
ℝ) |
| 81 | | nngt0 12298 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐶 ∈ ℕ → 0 <
𝐶) |
| 82 | 81 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐶) |
| 83 | | nngt0 12298 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐵 ∈ ℕ → 0 <
𝐵) |
| 84 | 83 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐵) |
| 85 | 79, 80, 82, 84 | addgt0d 11839 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
(𝐶 + 𝐵)) |
| 86 | | 0re 11264 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 ∈
ℝ |
| 87 | | ltle 11350 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0
∈ ℝ ∧ (𝐶 +
𝐵) ∈ ℝ) →
(0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵))) |
| 88 | 86, 87 | mpan 690 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 + 𝐵) ∈ ℝ → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵))) |
| 89 | 35, 85, 88 | sylc 65 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤
(𝐶 + 𝐵)) |
| 90 | 89 | 3adant1 1130 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤
(𝐶 + 𝐵)) |
| 91 | 90 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 + 𝐵)) |
| 92 | | pythagtriplem10 16859 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶 − 𝐵)) |
| 93 | 92 | 3adant3 1132 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (𝐶 − 𝐵)) |
| 94 | | ltle 11350 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℝ ∧ (𝐶
− 𝐵) ∈ ℝ)
→ (0 < (𝐶 −
𝐵) → 0 ≤ (𝐶 − 𝐵))) |
| 95 | 86, 94 | mpan 690 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 − 𝐵) ∈ ℝ → (0 < (𝐶 − 𝐵) → 0 ≤ (𝐶 − 𝐵))) |
| 96 | 42, 93, 95 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 − 𝐵)) |
| 97 | 37, 91, 42, 96 | sqrtmuld 15464 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘((𝐶 + 𝐵) · (𝐶 − 𝐵))) = ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵)))) |
| 98 | 78, 97 | eqtr3d 2778 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐴↑2)) =
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵)))) |
| 99 | | nnre 12274 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) |
| 100 | 99 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈
ℝ) |
| 101 | 100 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℝ) |
| 102 | | nnnn0 12535 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℕ0) |
| 103 | 102 | nn0ge0d 12592 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℕ → 0 ≤
𝐴) |
| 104 | 103 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤
𝐴) |
| 105 | 104 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ 𝐴) |
| 106 | 101, 105 | sqrtsqd 15459 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐴↑2)) = 𝐴) |
| 107 | 98, 106 | eqtr3d 2778 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))) = 𝐴) |
| 108 | 107 | oveq2d 7448 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵)))) = (2 · 𝐴)) |
| 109 | 63, 108 | oveq12d 7450 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) + (𝐶 − 𝐵)) − (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) = ((2 · 𝐶) − (2 · 𝐴))) |
| 110 | 55, 109 | eqtr4d 2779 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐶 − 𝐴)) = (((𝐶 + 𝐵) + (𝐶 − 𝐵)) − (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵)))))) |
| 111 | | resqrtth 15295 |
. . . . . . . . . . . . 13
⊢ (((𝐶 + 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 + 𝐵)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵)) |
| 112 | 37, 91, 111 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵)) |
| 113 | 112 | oveq1d 7447 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵))↑2) − (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) = ((𝐶 + 𝐵) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵)))))) |
| 114 | | resqrtth 15295 |
. . . . . . . . . . . 12
⊢ (((𝐶 − 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 − 𝐵)) → ((√‘(𝐶 − 𝐵))↑2) = (𝐶 − 𝐵)) |
| 115 | 42, 96, 114 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 − 𝐵))↑2) = (𝐶 − 𝐵)) |
| 116 | 113, 115 | oveq12d 7450 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵))↑2) − (2
· ((√‘(𝐶
+ 𝐵)) ·
(√‘(𝐶 −
𝐵))))) +
((√‘(𝐶 −
𝐵))↑2)) = (((𝐶 + 𝐵) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))))) + (𝐶 − 𝐵))) |
| 117 | 50, 110, 116 | 3eqtr4rd 2787 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵))↑2) − (2
· ((√‘(𝐶
+ 𝐵)) ·
(√‘(𝐶 −
𝐵))))) +
((√‘(𝐶 −
𝐵))↑2)) = (2 ·
(𝐶 − 𝐴))) |
| 118 | 31, 117 | eqtrd 2776 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))↑2) = (2 · (𝐶 − 𝐴))) |
| 119 | 118 | oveq1d 7447 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / 2) = ((2
· (𝐶 − 𝐴)) / 2)) |
| 120 | | subcl 11508 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐶 − 𝐴) ∈ ℂ) |
| 121 | 3, 69, 120 | syl2anr 597 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐴) ∈ ℂ) |
| 122 | 121 | 3adant2 1131 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐴) ∈ ℂ) |
| 123 | 122 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐴) ∈ ℂ) |
| 124 | | divcan3 11949 |
. . . . . . . . 9
⊢ (((𝐶 − 𝐴) ∈ ℂ ∧ 2 ∈ ℂ
∧ 2 ≠ 0) → ((2 · (𝐶 − 𝐴)) / 2) = (𝐶 − 𝐴)) |
| 125 | 14, 15, 124 | mp3an23 1454 |
. . . . . . . 8
⊢ ((𝐶 − 𝐴) ∈ ℂ → ((2 · (𝐶 − 𝐴)) / 2) = (𝐶 − 𝐴)) |
| 126 | 123, 125 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · (𝐶 − 𝐴)) / 2) = (𝐶 − 𝐴)) |
| 127 | 119, 126 | eqtrd 2776 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / 2) = (𝐶 − 𝐴)) |
| 128 | 127 | oveq1d 7447 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / 2) / 2) =
((𝐶 − 𝐴) / 2)) |
| 129 | 25, 128 | eqtr3d 2778 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2 ·
2)) = ((𝐶 − 𝐴) / 2)) |
| 130 | 20, 129 | eqtrid 2788 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2↑2))
= ((𝐶 − 𝐴) / 2)) |
| 131 | 18, 130 | eqtrd 2776 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵))) / 2)↑2) = ((𝐶 − 𝐴) / 2)) |
| 132 | 2, 131 | eqtrid 2788 |
1
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑁↑2) = ((𝐶 − 𝐴) / 2)) |