Proof of Theorem pythagtriplem4
| Step | Hyp | Ref
| Expression |
| 1 | | simp3r 1202 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥ 𝐴) |
| 2 | | nnz 12636 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℤ) |
| 3 | | nnz 12636 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) |
| 4 | | zsubcl 12661 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶 − 𝐵) ∈ ℤ) |
| 5 | 2, 3, 4 | syl2anr 597 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℤ) |
| 6 | 5 | 3adant1 1130 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℤ) |
| 7 | 6 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℤ) |
| 8 | | simp13 1205 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℕ) |
| 9 | | simp12 1204 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ) |
| 10 | 8, 9 | nnaddcld 12319 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℕ) |
| 11 | 10 | nnzd 12642 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℤ) |
| 12 | | gcddvds 16541 |
. . . . . . . . . 10
⊢ (((𝐶 − 𝐵) ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ) → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 − 𝐵) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵))) |
| 13 | 7, 11, 12 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 − 𝐵) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵))) |
| 14 | 13 | simprd 495 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵)) |
| 15 | | breq1 5145 |
. . . . . . . . 9
⊢ (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵) ↔ 2 ∥ (𝐶 + 𝐵))) |
| 16 | 15 | biimpd 229 |
. . . . . . . 8
⊢ (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵) → 2 ∥ (𝐶 + 𝐵))) |
| 17 | 14, 16 | mpan9 506 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ (𝐶 + 𝐵)) |
| 18 | | 2z 12651 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
| 19 | | simpl13 1250 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐶 ∈ ℕ) |
| 20 | 19 | nnzd 12642 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐶 ∈ ℤ) |
| 21 | | simpl12 1249 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐵 ∈ ℕ) |
| 22 | 21 | nnzd 12642 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐵 ∈ ℤ) |
| 23 | 20, 22 | zaddcld 12728 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐶 + 𝐵) ∈ ℤ) |
| 24 | 20, 22 | zsubcld 12729 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐶 − 𝐵) ∈ ℤ) |
| 25 | | dvdsmultr1 16334 |
. . . . . . . 8
⊢ ((2
∈ ℤ ∧ (𝐶 +
𝐵) ∈ ℤ ∧
(𝐶 − 𝐵) ∈ ℤ) → (2
∥ (𝐶 + 𝐵) → 2 ∥ ((𝐶 + 𝐵) · (𝐶 − 𝐵)))) |
| 26 | 18, 23, 24, 25 | mp3an2i 1467 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (2 ∥ (𝐶 + 𝐵) → 2 ∥ ((𝐶 + 𝐵) · (𝐶 − 𝐵)))) |
| 27 | 17, 26 | mpd 15 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ ((𝐶 + 𝐵) · (𝐶 − 𝐵))) |
| 28 | 19 | nncnd 12283 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐶 ∈ ℂ) |
| 29 | 21 | nncnd 12283 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐵 ∈ ℂ) |
| 30 | | subsq 14250 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶 − 𝐵))) |
| 31 | 28, 29, 30 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶 − 𝐵))) |
| 32 | 27, 31 | breqtrrd 5170 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ ((𝐶↑2) − (𝐵↑2))) |
| 33 | | simpl2 1192 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) |
| 34 | 33 | oveq1d 7447 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2))) |
| 35 | | simpl11 1248 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐴 ∈ ℕ) |
| 36 | 35 | nnsqcld 14284 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐴↑2) ∈ ℕ) |
| 37 | 36 | nncnd 12283 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐴↑2) ∈ ℂ) |
| 38 | 21 | nnsqcld 14284 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐵↑2) ∈ ℕ) |
| 39 | 38 | nncnd 12283 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐵↑2) ∈ ℂ) |
| 40 | 37, 39 | pncand 11622 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = (𝐴↑2)) |
| 41 | 34, 40 | eqtr3d 2778 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → ((𝐶↑2) − (𝐵↑2)) = (𝐴↑2)) |
| 42 | 32, 41 | breqtrd 5168 |
. . . 4
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ (𝐴↑2)) |
| 43 | | nnz 12636 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
| 44 | 43 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈
ℤ) |
| 45 | 44 | 3ad2ant1 1133 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℤ) |
| 46 | 45 | adantr 480 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐴 ∈ ℤ) |
| 47 | | 2prm 16730 |
. . . . . 6
⊢ 2 ∈
ℙ |
| 48 | | 2nn 12340 |
. . . . . 6
⊢ 2 ∈
ℕ |
| 49 | | prmdvdsexp 16753 |
. . . . . 6
⊢ ((2
∈ ℙ ∧ 𝐴
∈ ℤ ∧ 2 ∈ ℕ) → (2 ∥ (𝐴↑2) ↔ 2 ∥ 𝐴)) |
| 50 | 47, 48, 49 | mp3an13 1453 |
. . . . 5
⊢ (𝐴 ∈ ℤ → (2
∥ (𝐴↑2) ↔ 2
∥ 𝐴)) |
| 51 | 46, 50 | syl 17 |
. . . 4
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → (2 ∥ (𝐴↑2) ↔ 2 ∥ 𝐴)) |
| 52 | 42, 51 | mpbid 232 |
. . 3
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ 𝐴) |
| 53 | 1, 52 | mtand 815 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2) |
| 54 | | neg1z 12655 |
. . . . . . . 8
⊢ -1 ∈
ℤ |
| 55 | | gcdaddm 16563 |
. . . . . . . 8
⊢ ((-1
∈ ℤ ∧ (𝐶
− 𝐵) ∈ ℤ
∧ (𝐶 + 𝐵) ∈ ℤ) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵))))) |
| 56 | 54, 7, 11, 55 | mp3an2i 1467 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵))))) |
| 57 | 8 | nncnd 12283 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℂ) |
| 58 | 9 | nncnd 12283 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℂ) |
| 59 | | pnncan 11551 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (𝐵 + 𝐵)) |
| 60 | 59 | 3anidm23 1422 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (𝐵 + 𝐵)) |
| 61 | | subcl 11508 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 − 𝐵) ∈ ℂ) |
| 62 | 61 | mulm1d 11716 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1
· (𝐶 − 𝐵)) = -(𝐶 − 𝐵)) |
| 63 | 62 | oveq2d 7448 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵))) = ((𝐶 + 𝐵) + -(𝐶 − 𝐵))) |
| 64 | | addcl 11238 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 + 𝐵) ∈ ℂ) |
| 65 | 64, 61 | negsubd 11627 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + -(𝐶 − 𝐵)) = ((𝐶 + 𝐵) − (𝐶 − 𝐵))) |
| 66 | 63, 65 | eqtrd 2776 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵))) = ((𝐶 + 𝐵) − (𝐶 − 𝐵))) |
| 67 | | 2times 12403 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℂ → (2
· 𝐵) = (𝐵 + 𝐵)) |
| 68 | 67 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2
· 𝐵) = (𝐵 + 𝐵)) |
| 69 | 60, 66, 68 | 3eqtr4d 2786 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵))) = (2 · 𝐵)) |
| 70 | 69 | oveq2d 7448 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵)))) = ((𝐶 − 𝐵) gcd (2 · 𝐵))) |
| 71 | 57, 58, 70 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶 − 𝐵)))) = ((𝐶 − 𝐵) gcd (2 · 𝐵))) |
| 72 | 56, 71 | eqtrd 2776 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd (2 · 𝐵))) |
| 73 | 9 | nnzd 12642 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℤ) |
| 74 | | zmulcl 12668 |
. . . . . . . . 9
⊢ ((2
∈ ℤ ∧ 𝐵
∈ ℤ) → (2 · 𝐵) ∈ ℤ) |
| 75 | 18, 73, 74 | sylancr 587 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · 𝐵) ∈
ℤ) |
| 76 | | gcddvds 16541 |
. . . . . . . 8
⊢ (((𝐶 − 𝐵) ∈ ℤ ∧ (2 · 𝐵) ∈ ℤ) →
(((𝐶 − 𝐵) gcd (2 · 𝐵)) ∥ (𝐶 − 𝐵) ∧ ((𝐶 − 𝐵) gcd (2 · 𝐵)) ∥ (2 · 𝐵))) |
| 77 | 7, 75, 76 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 − 𝐵) gcd (2 · 𝐵)) ∥ (𝐶 − 𝐵) ∧ ((𝐶 − 𝐵) gcd (2 · 𝐵)) ∥ (2 · 𝐵))) |
| 78 | 77 | simprd 495 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (2 · 𝐵)) ∥ (2 · 𝐵)) |
| 79 | 72, 78 | eqbrtrd 5164 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐵)) |
| 80 | | 1z 12649 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
| 81 | | gcdaddm 16563 |
. . . . . . . 8
⊢ ((1
∈ ℤ ∧ (𝐶
− 𝐵) ∈ ℤ
∧ (𝐶 + 𝐵) ∈ ℤ) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵))))) |
| 82 | 80, 7, 11, 81 | mp3an2i 1467 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵))))) |
| 83 | | ppncan 11552 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (𝐶 + 𝐶)) |
| 84 | 83 | 3anidm13 1421 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (𝐶 + 𝐶)) |
| 85 | 61 | mullidd 11280 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1
· (𝐶 − 𝐵)) = (𝐶 − 𝐵)) |
| 86 | 85 | oveq2d 7448 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵))) = ((𝐶 + 𝐵) + (𝐶 − 𝐵))) |
| 87 | | 2times 12403 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ ℂ → (2
· 𝐶) = (𝐶 + 𝐶)) |
| 88 | 87 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2
· 𝐶) = (𝐶 + 𝐶)) |
| 89 | 84, 86, 88 | 3eqtr4d 2786 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵))) = (2 · 𝐶)) |
| 90 | 57, 58, 89 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵))) = (2 · 𝐶)) |
| 91 | 90 | oveq2d 7448 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd ((𝐶 + 𝐵) + (1 · (𝐶 − 𝐵)))) = ((𝐶 − 𝐵) gcd (2 · 𝐶))) |
| 92 | 82, 91 | eqtrd 2776 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = ((𝐶 − 𝐵) gcd (2 · 𝐶))) |
| 93 | 8 | nnzd 12642 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℤ) |
| 94 | | zmulcl 12668 |
. . . . . . . . 9
⊢ ((2
∈ ℤ ∧ 𝐶
∈ ℤ) → (2 · 𝐶) ∈ ℤ) |
| 95 | 18, 93, 94 | sylancr 587 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · 𝐶) ∈
ℤ) |
| 96 | | gcddvds 16541 |
. . . . . . . 8
⊢ (((𝐶 − 𝐵) ∈ ℤ ∧ (2 · 𝐶) ∈ ℤ) →
(((𝐶 − 𝐵) gcd (2 · 𝐶)) ∥ (𝐶 − 𝐵) ∧ ((𝐶 − 𝐵) gcd (2 · 𝐶)) ∥ (2 · 𝐶))) |
| 97 | 7, 95, 96 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 − 𝐵) gcd (2 · 𝐶)) ∥ (𝐶 − 𝐵) ∧ ((𝐶 − 𝐵) gcd (2 · 𝐶)) ∥ (2 · 𝐶))) |
| 98 | 97 | simprd 495 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (2 · 𝐶)) ∥ (2 · 𝐶)) |
| 99 | 92, 98 | eqbrtrd 5164 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐶)) |
| 100 | | nnaddcl 12290 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℕ) |
| 101 | 100 | nnne0d 12317 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐶 + 𝐵) ≠ 0) |
| 102 | 101 | ancoms 458 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ≠ 0) |
| 103 | 102 | 3adant1 1130 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ≠ 0) |
| 104 | 103 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ≠ 0) |
| 105 | 104 | neneqd 2944 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ (𝐶 + 𝐵) = 0) |
| 106 | 105 | intnand 488 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ ((𝐶 − 𝐵) = 0 ∧ (𝐶 + 𝐵) = 0)) |
| 107 | | gcdn0cl 16540 |
. . . . . . . 8
⊢ ((((𝐶 − 𝐵) ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ) ∧ ¬ ((𝐶 − 𝐵) = 0 ∧ (𝐶 + 𝐵) = 0)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∈ ℕ) |
| 108 | 7, 11, 106, 107 | syl21anc 837 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∈ ℕ) |
| 109 | 108 | nnzd 12642 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∈ ℤ) |
| 110 | | dvdsgcd 16582 |
. . . . . 6
⊢ ((((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∈ ℤ ∧ (2 · 𝐵) ∈ ℤ ∧ (2
· 𝐶) ∈ ℤ)
→ ((((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐵) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐶)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ ((2 · 𝐵) gcd (2 · 𝐶)))) |
| 111 | 109, 75, 95, 110 | syl3anc 1372 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐵) ∧ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐶)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ ((2 · 𝐵) gcd (2 · 𝐶)))) |
| 112 | 79, 99, 111 | mp2and 699 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ ((2 · 𝐵) gcd (2 · 𝐶))) |
| 113 | | 2nn0 12545 |
. . . . . 6
⊢ 2 ∈
ℕ0 |
| 114 | | mulgcd 16586 |
. . . . . 6
⊢ ((2
∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((2 · 𝐵) gcd (2 · 𝐶)) = (2 · (𝐵 gcd 𝐶))) |
| 115 | 113, 73, 93, 114 | mp3an2i 1467 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · 𝐵) gcd (2 · 𝐶)) = (2 · (𝐵 gcd 𝐶))) |
| 116 | | pythagtriplem3 16857 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) = 1) |
| 117 | 116 | oveq2d 7448 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐵 gcd 𝐶)) = (2 · 1)) |
| 118 | | 2t1e2 12430 |
. . . . . 6
⊢ (2
· 1) = 2 |
| 119 | 117, 118 | eqtrdi 2792 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐵 gcd 𝐶)) = 2) |
| 120 | 115, 119 | eqtrd 2776 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · 𝐵) gcd (2 · 𝐶)) = 2) |
| 121 | 112, 120 | breqtrd 5168 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ 2) |
| 122 | | dvdsprime 16725 |
. . . 4
⊢ ((2
∈ ℙ ∧ ((𝐶
− 𝐵) gcd (𝐶 + 𝐵)) ∈ ℕ) → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ 2 ↔ (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1))) |
| 123 | 47, 108, 122 | sylancr 587 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) ∥ 2 ↔ (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1))) |
| 124 | 121, 123 | mpbid 232 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1)) |
| 125 | | orel1 888 |
. 2
⊢ (¬
((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 → ((((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1)) |
| 126 | 53, 124, 125 | sylc 65 |
1
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1) |