MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem4 Structured version   Visualization version   GIF version

Theorem pythagtriplem4 16579
Description: Lemma for pythagtrip 16594. Show that 𝐶𝐵 and 𝐶 + 𝐵 are relatively prime. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 1)

Proof of Theorem pythagtriplem4
StepHypRef Expression
1 simp3r 1201 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥ 𝐴)
2 nnz 12402 . . . . . . . . . . . . 13 (𝐶 ∈ ℕ → 𝐶 ∈ ℤ)
3 nnz 12402 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
4 zsubcl 12422 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶𝐵) ∈ ℤ)
52, 3, 4syl2anr 597 . . . . . . . . . . . 12 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℤ)
653adant1 1129 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℤ)
763ad2ant1 1132 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶𝐵) ∈ ℤ)
8 simp13 1204 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℕ)
9 simp12 1203 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ)
108, 9nnaddcld 12085 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℕ)
1110nnzd 12485 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℤ)
12 gcddvds 16269 . . . . . . . . . 10 (((𝐶𝐵) ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ) → (((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶𝐵) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵)))
137, 11, 12syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶𝐵) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵)))
1413simprd 496 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵))
15 breq1 5083 . . . . . . . . 9 (((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2 → (((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵) ↔ 2 ∥ (𝐶 + 𝐵)))
1615biimpd 228 . . . . . . . 8 (((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2 → (((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵) → 2 ∥ (𝐶 + 𝐵)))
1714, 16mpan9 507 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ (𝐶 + 𝐵))
18 2z 12412 . . . . . . . 8 2 ∈ ℤ
19 simpl13 1249 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐶 ∈ ℕ)
2019nnzd 12485 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐶 ∈ ℤ)
21 simpl12 1248 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐵 ∈ ℕ)
2221nnzd 12485 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐵 ∈ ℤ)
2320, 22zaddcld 12490 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐶 + 𝐵) ∈ ℤ)
2420, 22zsubcld 12491 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐶𝐵) ∈ ℤ)
25 dvdsmultr1 16064 . . . . . . . 8 ((2 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ ∧ (𝐶𝐵) ∈ ℤ) → (2 ∥ (𝐶 + 𝐵) → 2 ∥ ((𝐶 + 𝐵) · (𝐶𝐵))))
2618, 23, 24, 25mp3an2i 1465 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (2 ∥ (𝐶 + 𝐵) → 2 ∥ ((𝐶 + 𝐵) · (𝐶𝐵))))
2717, 26mpd 15 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ ((𝐶 + 𝐵) · (𝐶𝐵)))
2819nncnd 12049 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐶 ∈ ℂ)
2921nncnd 12049 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐵 ∈ ℂ)
30 subsq 13986 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶𝐵)))
3128, 29, 30syl2anc 584 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶𝐵)))
3227, 31breqtrrd 5108 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ ((𝐶↑2) − (𝐵↑2)))
33 simpl2 1191 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
3433oveq1d 7323 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2)))
35 simpl11 1247 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐴 ∈ ℕ)
3635nnsqcld 14019 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐴↑2) ∈ ℕ)
3736nncnd 12049 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐴↑2) ∈ ℂ)
3821nnsqcld 14019 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐵↑2) ∈ ℕ)
3938nncnd 12049 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐵↑2) ∈ ℂ)
4037, 39pncand 11393 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = (𝐴↑2))
4134, 40eqtr3d 2777 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → ((𝐶↑2) − (𝐵↑2)) = (𝐴↑2))
4232, 41breqtrd 5106 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ (𝐴↑2))
43 nnz 12402 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
44433ad2ant1 1132 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ)
45443ad2ant1 1132 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℤ)
4645adantr 481 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐴 ∈ ℤ)
47 2prm 16456 . . . . . 6 2 ∈ ℙ
48 2nn 12106 . . . . . 6 2 ∈ ℕ
49 prmdvdsexp 16479 . . . . . 6 ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 2 ∈ ℕ) → (2 ∥ (𝐴↑2) ↔ 2 ∥ 𝐴))
5047, 48, 49mp3an13 1451 . . . . 5 (𝐴 ∈ ℤ → (2 ∥ (𝐴↑2) ↔ 2 ∥ 𝐴))
5146, 50syl 17 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (2 ∥ (𝐴↑2) ↔ 2 ∥ 𝐴))
5242, 51mpbid 231 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ 𝐴)
531, 52mtand 813 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2)
54 neg1z 12416 . . . . . . . 8 -1 ∈ ℤ
55 gcdaddm 16291 . . . . . . . 8 ((-1 ∈ ℤ ∧ (𝐶𝐵) ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = ((𝐶𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶𝐵)))))
5654, 7, 11, 55mp3an2i 1465 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = ((𝐶𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶𝐵)))))
578nncnd 12049 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℂ)
589nncnd 12049 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℂ)
59 pnncan 11322 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶𝐵)) = (𝐵 + 𝐵))
60593anidm23 1420 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶𝐵)) = (𝐵 + 𝐵))
61 subcl 11280 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶𝐵) ∈ ℂ)
6261mulm1d 11487 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1 · (𝐶𝐵)) = -(𝐶𝐵))
6362oveq2d 7324 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (-1 · (𝐶𝐵))) = ((𝐶 + 𝐵) + -(𝐶𝐵)))
64 addcl 11013 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 + 𝐵) ∈ ℂ)
6564, 61negsubd 11398 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + -(𝐶𝐵)) = ((𝐶 + 𝐵) − (𝐶𝐵)))
6663, 65eqtrd 2775 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (-1 · (𝐶𝐵))) = ((𝐶 + 𝐵) − (𝐶𝐵)))
67 2times 12169 . . . . . . . . . . 11 (𝐵 ∈ ℂ → (2 · 𝐵) = (𝐵 + 𝐵))
6867adantl 482 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) = (𝐵 + 𝐵))
6960, 66, 683eqtr4d 2785 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (-1 · (𝐶𝐵))) = (2 · 𝐵))
7069oveq2d 7324 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶𝐵)))) = ((𝐶𝐵) gcd (2 · 𝐵)))
7157, 58, 70syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶𝐵)))) = ((𝐶𝐵) gcd (2 · 𝐵)))
7256, 71eqtrd 2775 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = ((𝐶𝐵) gcd (2 · 𝐵)))
739nnzd 12485 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℤ)
74 zmulcl 12429 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐵) ∈ ℤ)
7518, 73, 74sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · 𝐵) ∈ ℤ)
76 gcddvds 16269 . . . . . . . 8 (((𝐶𝐵) ∈ ℤ ∧ (2 · 𝐵) ∈ ℤ) → (((𝐶𝐵) gcd (2 · 𝐵)) ∥ (𝐶𝐵) ∧ ((𝐶𝐵) gcd (2 · 𝐵)) ∥ (2 · 𝐵)))
777, 75, 76syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶𝐵) gcd (2 · 𝐵)) ∥ (𝐶𝐵) ∧ ((𝐶𝐵) gcd (2 · 𝐵)) ∥ (2 · 𝐵)))
7877simprd 496 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (2 · 𝐵)) ∥ (2 · 𝐵))
7972, 78eqbrtrd 5102 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐵))
80 1z 12410 . . . . . . . 8 1 ∈ ℤ
81 gcdaddm 16291 . . . . . . . 8 ((1 ∈ ℤ ∧ (𝐶𝐵) ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = ((𝐶𝐵) gcd ((𝐶 + 𝐵) + (1 · (𝐶𝐵)))))
8280, 7, 11, 81mp3an2i 1465 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = ((𝐶𝐵) gcd ((𝐶 + 𝐵) + (1 · (𝐶𝐵)))))
83 ppncan 11323 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (𝐶 + 𝐶))
84833anidm13 1419 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (𝐶 + 𝐶))
8561mulid2d 11053 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · (𝐶𝐵)) = (𝐶𝐵))
8685oveq2d 7324 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (1 · (𝐶𝐵))) = ((𝐶 + 𝐵) + (𝐶𝐵)))
87 2times 12169 . . . . . . . . . . 11 (𝐶 ∈ ℂ → (2 · 𝐶) = (𝐶 + 𝐶))
8887adantr 481 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐶) = (𝐶 + 𝐶))
8984, 86, 883eqtr4d 2785 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (1 · (𝐶𝐵))) = (2 · 𝐶))
9057, 58, 89syl2anc 584 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) + (1 · (𝐶𝐵))) = (2 · 𝐶))
9190oveq2d 7324 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd ((𝐶 + 𝐵) + (1 · (𝐶𝐵)))) = ((𝐶𝐵) gcd (2 · 𝐶)))
9282, 91eqtrd 2775 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = ((𝐶𝐵) gcd (2 · 𝐶)))
938nnzd 12485 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℤ)
94 zmulcl 12429 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (2 · 𝐶) ∈ ℤ)
9518, 93, 94sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · 𝐶) ∈ ℤ)
96 gcddvds 16269 . . . . . . . 8 (((𝐶𝐵) ∈ ℤ ∧ (2 · 𝐶) ∈ ℤ) → (((𝐶𝐵) gcd (2 · 𝐶)) ∥ (𝐶𝐵) ∧ ((𝐶𝐵) gcd (2 · 𝐶)) ∥ (2 · 𝐶)))
977, 95, 96syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶𝐵) gcd (2 · 𝐶)) ∥ (𝐶𝐵) ∧ ((𝐶𝐵) gcd (2 · 𝐶)) ∥ (2 · 𝐶)))
9897simprd 496 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (2 · 𝐶)) ∥ (2 · 𝐶))
9992, 98eqbrtrd 5102 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐶))
100 nnaddcl 12056 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℕ)
101100nnne0d 12083 . . . . . . . . . . . . 13 ((𝐶 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐶 + 𝐵) ≠ 0)
102101ancoms 459 . . . . . . . . . . . 12 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ≠ 0)
1031023adant1 1129 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ≠ 0)
1041033ad2ant1 1132 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ≠ 0)
105104neneqd 2944 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ (𝐶 + 𝐵) = 0)
106105intnand 489 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ ((𝐶𝐵) = 0 ∧ (𝐶 + 𝐵) = 0))
107 gcdn0cl 16268 . . . . . . . 8 ((((𝐶𝐵) ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ) ∧ ¬ ((𝐶𝐵) = 0 ∧ (𝐶 + 𝐵) = 0)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∈ ℕ)
1087, 11, 106, 107syl21anc 835 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∈ ℕ)
109108nnzd 12485 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∈ ℤ)
110 dvdsgcd 16311 . . . . . 6 ((((𝐶𝐵) gcd (𝐶 + 𝐵)) ∈ ℤ ∧ (2 · 𝐵) ∈ ℤ ∧ (2 · 𝐶) ∈ ℤ) → ((((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐵) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐶)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ ((2 · 𝐵) gcd (2 · 𝐶))))
111109, 75, 95, 110syl3anc 1370 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐵) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐶)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ ((2 · 𝐵) gcd (2 · 𝐶))))
11279, 99, 111mp2and 696 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ ((2 · 𝐵) gcd (2 · 𝐶)))
113 2nn0 12310 . . . . . 6 2 ∈ ℕ0
114 mulgcd 16315 . . . . . 6 ((2 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((2 · 𝐵) gcd (2 · 𝐶)) = (2 · (𝐵 gcd 𝐶)))
115113, 73, 93, 114mp3an2i 1465 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · 𝐵) gcd (2 · 𝐶)) = (2 · (𝐵 gcd 𝐶)))
116 pythagtriplem3 16578 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) = 1)
117116oveq2d 7324 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐵 gcd 𝐶)) = (2 · 1))
118 2t1e2 12196 . . . . . 6 (2 · 1) = 2
119117, 118eqtrdi 2791 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐵 gcd 𝐶)) = 2)
120115, 119eqtrd 2775 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · 𝐵) gcd (2 · 𝐶)) = 2)
121112, 120breqtrd 5106 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ 2)
122 dvdsprime 16451 . . . 4 ((2 ∈ ℙ ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∈ ℕ) → (((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ 2 ↔ (((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 1)))
12347, 108, 122sylancr 587 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ 2 ↔ (((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 1)))
124121, 123mpbid 231 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 1))
125 orel1 886 . 2 (¬ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2 → ((((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 1) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 1))
12653, 124, 125sylc 65 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1538  wcel 2103  wne 2939   class class class wbr 5080  (class class class)co 7308  cc 10929  0cc0 10931  1c1 10932   + caddc 10934   · cmul 10936  cmin 11265  -cneg 11266  cn 12033  2c2 12088  0cn0 12293  cz 12379  cexp 13842  cdvds 16022   gcd cgcd 16260  cprime 16435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1968  ax-7 2008  ax-8 2105  ax-9 2113  ax-10 2134  ax-11 2151  ax-12 2168  ax-ext 2706  ax-sep 5231  ax-nul 5238  ax-pow 5296  ax-pr 5360  ax-un 7621  ax-cnex 10987  ax-resscn 10988  ax-1cn 10989  ax-icn 10990  ax-addcl 10991  ax-addrcl 10992  ax-mulcl 10993  ax-mulrcl 10994  ax-mulcom 10995  ax-addass 10996  ax-mulass 10997  ax-distr 10998  ax-i2m1 10999  ax-1ne0 11000  ax-1rid 11001  ax-rnegex 11002  ax-rrecex 11003  ax-cnre 11004  ax-pre-lttri 11005  ax-pre-lttrn 11006  ax-pre-ltadd 11007  ax-pre-mulgt0 11008  ax-pre-sup 11009
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2727  df-clel 2813  df-nfc 2885  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3339  df-reu 3340  df-rab 3357  df-v 3438  df-sbc 3721  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4844  df-iun 4932  df-br 5081  df-opab 5143  df-mpt 5164  df-tr 5198  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7265  df-ov 7311  df-oprab 7312  df-mpo 7313  df-om 7749  df-1st 7867  df-2nd 7868  df-frecs 8132  df-wrecs 8163  df-recs 8237  df-rdg 8276  df-1o 8332  df-2o 8333  df-er 8534  df-en 8770  df-dom 8771  df-sdom 8772  df-fin 8773  df-sup 9259  df-inf 9260  df-pnf 11071  df-mnf 11072  df-xr 11073  df-ltxr 11074  df-le 11075  df-sub 11267  df-neg 11268  df-div 11693  df-nn 12034  df-2 12096  df-3 12097  df-n0 12294  df-z 12380  df-uz 12643  df-rp 12791  df-fz 13300  df-fl 13572  df-mod 13650  df-seq 13782  df-exp 13843  df-cj 14869  df-re 14870  df-im 14871  df-sqrt 15005  df-abs 15006  df-dvds 16023  df-gcd 16261  df-prm 16436
This theorem is referenced by:  pythagtriplem6  16581  pythagtriplem7  16582  flt4lem3  40693
  Copyright terms: Public domain W3C validator