MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  avglt1 Structured version   Visualization version   GIF version

Theorem avglt1 12446
Description: Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
Assertion
Ref Expression
avglt1 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (๐ด < ๐ต โ†” ๐ด < ((๐ด + ๐ต) / 2)))

Proof of Theorem avglt1
StepHypRef Expression
1 ltadd2 11314 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ด โˆˆ โ„) โ†’ (๐ด < ๐ต โ†” (๐ด + ๐ด) < (๐ด + ๐ต)))
213anidm13 1420 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (๐ด < ๐ต โ†” (๐ด + ๐ด) < (๐ด + ๐ต)))
3 simpl 483 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ ๐ด โˆˆ โ„)
43recnd 11238 . . . 4 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ ๐ด โˆˆ โ„‚)
5 times2 12345 . . . 4 (๐ด โˆˆ โ„‚ โ†’ (๐ด ยท 2) = (๐ด + ๐ด))
64, 5syl 17 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (๐ด ยท 2) = (๐ด + ๐ด))
76breq1d 5157 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ ((๐ด ยท 2) < (๐ด + ๐ต) โ†” (๐ด + ๐ด) < (๐ด + ๐ต)))
8 readdcl 11189 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (๐ด + ๐ต) โˆˆ โ„)
9 2re 12282 . . . . 5 2 โˆˆ โ„
10 2pos 12311 . . . . 5 0 < 2
119, 10pm3.2i 471 . . . 4 (2 โˆˆ โ„ โˆง 0 < 2)
1211a1i 11 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (2 โˆˆ โ„ โˆง 0 < 2))
13 ltmuldiv 12083 . . 3 ((๐ด โˆˆ โ„ โˆง (๐ด + ๐ต) โˆˆ โ„ โˆง (2 โˆˆ โ„ โˆง 0 < 2)) โ†’ ((๐ด ยท 2) < (๐ด + ๐ต) โ†” ๐ด < ((๐ด + ๐ต) / 2)))
143, 8, 12, 13syl3anc 1371 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ ((๐ด ยท 2) < (๐ด + ๐ต) โ†” ๐ด < ((๐ด + ๐ต) / 2)))
152, 7, 143bitr2d 306 1 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (๐ด < ๐ต โ†” ๐ด < ((๐ด + ๐ต) / 2)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 396   = wceq 1541   โˆˆ wcel 2106   class class class wbr 5147  (class class class)co 7405  โ„‚cc 11104  โ„cr 11105  0cc0 11106   + caddc 11109   ยท cmul 11111   < clt 11244   / cdiv 11867  2c2 12263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-2 12271
This theorem is referenced by:  avgle2  12449  geomulcvg  15818  ruclem2  16171  ruclem3  16172  dvferm1lem  25492  dvferm2lem  25494  radcnvle  25923  psercnlem1  25928  psercn  25929  pserdvlem1  25930  logtayl  26159  iooelexlt  36231  ioomidp  44213  dvbdfbdioolem2  44631  dvbdfbdioo  44632  fourierdlem10  44819
  Copyright terms: Public domain W3C validator