MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  avglt1 Structured version   Visualization version   GIF version

Theorem avglt1 12356
Description: Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
Assertion
Ref Expression
avglt1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))

Proof of Theorem avglt1
StepHypRef Expression
1 ltadd2 11214 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 + 𝐴) < (𝐴 + 𝐵)))
213anidm13 1422 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 + 𝐴) < (𝐴 + 𝐵)))
3 simpl 482 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
43recnd 11137 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
5 times2 12254 . . . 4 (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴))
64, 5syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 2) = (𝐴 + 𝐴))
76breq1d 5101 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 2) < (𝐴 + 𝐵) ↔ (𝐴 + 𝐴) < (𝐴 + 𝐵)))
8 readdcl 11086 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
9 2re 12196 . . . . 5 2 ∈ ℝ
10 2pos 12225 . . . . 5 0 < 2
119, 10pm3.2i 470 . . . 4 (2 ∈ ℝ ∧ 0 < 2)
1211a1i 11 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 ∈ ℝ ∧ 0 < 2))
13 ltmuldiv 11992 . . 3 ((𝐴 ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝐴 · 2) < (𝐴 + 𝐵) ↔ 𝐴 < ((𝐴 + 𝐵) / 2)))
143, 8, 12, 13syl3anc 1373 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 2) < (𝐴 + 𝐵) ↔ 𝐴 < ((𝐴 + 𝐵) / 2)))
152, 7, 143bitr2d 307 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5091  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003   + caddc 11006   · cmul 11008   < clt 11143   / cdiv 11771  2c2 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-2 12185
This theorem is referenced by:  avgle2  12359  geomulcvg  15780  ruclem2  16138  ruclem3  16139  dvferm1lem  25913  dvferm2lem  25915  radcnvle  26354  psercnlem1  26360  psercn  26361  pserdvlem1  26362  logtayl  26594  iooelexlt  37395  ioomidp  45553  dvbdfbdioolem2  45966  dvbdfbdioo  45967  fourierdlem10  46154
  Copyright terms: Public domain W3C validator