Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcm1n Structured version   Visualization version   GIF version

Theorem bcm1n 32772
Description: The proportion of one binomial coefficient to another with 𝑁 decreased by 1. (Contributed by Thierry Arnoux, 9-Nov-2016.)
Assertion
Ref Expression
bcm1n ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) / (𝑁C𝐾)) = ((𝑁𝐾) / 𝑁))

Proof of Theorem bcm1n
StepHypRef Expression
1 bcp1n 14220 . . . . . . 7 (𝐾 ∈ (0...(𝑁 − 1)) → (((𝑁 − 1) + 1)C𝐾) = (((𝑁 − 1)C𝐾) · (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾))))
2 nnz 12486 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32zcnd 12575 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
43adantl 481 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
5 1cnd 11104 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
64, 5npcand 11473 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) + 1) = 𝑁)
76oveq1d 7361 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) + 1)C𝐾) = (𝑁C𝐾))
86oveq1d 7361 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) + 1) − 𝐾) = (𝑁𝐾))
96, 8oveq12d 7364 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾)) = (𝑁 / (𝑁𝐾)))
109oveq2d 7362 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) · (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾))) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾))))
117, 10eqeq12d 2747 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((((𝑁 − 1) + 1)C𝐾) = (((𝑁 − 1)C𝐾) · (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾))) ↔ (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
121, 11imbitrid 244 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ (0...(𝑁 − 1)) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
13123impia 1117 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾))))
14133anidm13 1422 . . . 4 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾))))
15 elfznn0 13517 . . . . . . . . 9 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ∈ ℕ0)
1615adantr 480 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℕ0)
17 simpr 484 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
1817nnnn0d 12439 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
19 elfzelz 13421 . . . . . . . . . . 11 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ∈ ℤ)
2019adantr 480 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℤ)
2120zred 12574 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℝ)
222adantl 481 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
2322zred 12574 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
24 elfzle2 13425 . . . . . . . . . . 11 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ≤ (𝑁 − 1))
2524adantr 480 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ≤ (𝑁 − 1))
26 zltlem1 12522 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁𝐾 ≤ (𝑁 − 1)))
2719, 2, 26syl2an 596 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾 < 𝑁𝐾 ≤ (𝑁 − 1)))
2825, 27mpbird 257 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 < 𝑁)
2921, 23, 28ltled 11258 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾𝑁)
30 elfz2nn0 13515 . . . . . . . 8 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
3116, 18, 29, 30syl3anbrc 1344 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ (0...𝑁))
32 bcrpcl 14212 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+)
3331, 32syl 17 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ∈ ℝ+)
3433rpcnd 12933 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ∈ ℂ)
3519zcnd 12575 . . . . . . . 8 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ∈ ℂ)
3635adantr 480 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℂ)
374, 36subcld 11469 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁𝐾) ∈ ℂ)
3836, 4negsubdi2d 11485 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → -(𝐾𝑁) = (𝑁𝐾))
3921, 23resubcld 11542 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) ∈ ℝ)
4039recnd 11137 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) ∈ ℂ)
414addlidd 11311 . . . . . . . . . . 11 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (0 + 𝑁) = 𝑁)
4228, 41breqtrrd 5119 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 < (0 + 𝑁))
43 0red 11112 . . . . . . . . . . 11 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 0 ∈ ℝ)
4421, 23, 43ltsubaddd 11710 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝐾𝑁) < 0 ↔ 𝐾 < (0 + 𝑁)))
4542, 44mpbird 257 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) < 0)
4645lt0ne0d 11679 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) ≠ 0)
4740, 46negne0d 11467 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → -(𝐾𝑁) ≠ 0)
4838, 47eqnetrrd 2996 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁𝐾) ≠ 0)
494, 37, 48divcld 11894 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 / (𝑁𝐾)) ∈ ℂ)
50 bcrpcl 14212 . . . . . . 7 (𝐾 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1)C𝐾) ∈ ℝ+)
5150adantr 480 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1)C𝐾) ∈ ℝ+)
5251rpcnne0d 12940 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) ∈ ℂ ∧ ((𝑁 − 1)C𝐾) ≠ 0))
53 divmul2 11777 . . . . 5 (((𝑁C𝐾) ∈ ℂ ∧ (𝑁 / (𝑁𝐾)) ∈ ℂ ∧ (((𝑁 − 1)C𝐾) ∈ ℂ ∧ ((𝑁 − 1)C𝐾) ≠ 0)) → (((𝑁C𝐾) / ((𝑁 − 1)C𝐾)) = (𝑁 / (𝑁𝐾)) ↔ (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
5434, 49, 52, 53syl3anc 1373 . . . 4 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁C𝐾) / ((𝑁 − 1)C𝐾)) = (𝑁 / (𝑁𝐾)) ↔ (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
5514, 54mpbird 257 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁C𝐾) / ((𝑁 − 1)C𝐾)) = (𝑁 / (𝑁𝐾)))
5655oveq2d 7362 . 2 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (1 / ((𝑁C𝐾) / ((𝑁 − 1)C𝐾))) = (1 / (𝑁 / (𝑁𝐾))))
5751rpcnd 12933 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1)C𝐾) ∈ ℂ)
58 bccl2 14227 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℕ)
5931, 58syl 17 . . . 4 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ∈ ℕ)
6059nnne0d 12172 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ≠ 0)
61 bccl2 14227 . . . . 5 (𝐾 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1)C𝐾) ∈ ℕ)
6261nnne0d 12172 . . . 4 (𝐾 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1)C𝐾) ≠ 0)
6362adantr 480 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1)C𝐾) ≠ 0)
6434, 57, 60, 63recdivd 11911 . 2 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (1 / ((𝑁C𝐾) / ((𝑁 − 1)C𝐾))) = (((𝑁 − 1)C𝐾) / (𝑁C𝐾)))
6517nnne0d 12172 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
664, 37, 65, 48recdivd 11911 . 2 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (1 / (𝑁 / (𝑁𝐾))) = ((𝑁𝐾) / 𝑁))
6756, 64, 663eqtr3d 2774 1 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) / (𝑁C𝐾)) = ((𝑁𝐾) / 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  (class class class)co 7346  cc 11001  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008   < clt 11143  cle 11144  cmin 11341  -cneg 11342   / cdiv 11771  cn 12122  0cn0 12378  cz 12465  +crp 12887  ...cfz 13404  Ccbc 14206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-seq 13906  df-fac 14178  df-bc 14207
This theorem is referenced by:  ballotlem2  34497
  Copyright terms: Public domain W3C validator