Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcm1n Structured version   Visualization version   GIF version

Theorem bcm1n 30790
Description: The proportion of one binomial coefficient to another with 𝑁 decreased by 1. (Contributed by Thierry Arnoux, 9-Nov-2016.)
Assertion
Ref Expression
bcm1n ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) / (𝑁C𝐾)) = ((𝑁𝐾) / 𝑁))

Proof of Theorem bcm1n
StepHypRef Expression
1 bcp1n 13847 . . . . . . 7 (𝐾 ∈ (0...(𝑁 − 1)) → (((𝑁 − 1) + 1)C𝐾) = (((𝑁 − 1)C𝐾) · (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾))))
2 nnz 12164 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32zcnd 12248 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
43adantl 485 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
5 1cnd 10793 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
64, 5npcand 11158 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) + 1) = 𝑁)
76oveq1d 7206 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) + 1)C𝐾) = (𝑁C𝐾))
86oveq1d 7206 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) + 1) − 𝐾) = (𝑁𝐾))
96, 8oveq12d 7209 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾)) = (𝑁 / (𝑁𝐾)))
109oveq2d 7207 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) · (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾))) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾))))
117, 10eqeq12d 2752 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((((𝑁 − 1) + 1)C𝐾) = (((𝑁 − 1)C𝐾) · (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾))) ↔ (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
121, 11syl5ib 247 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ (0...(𝑁 − 1)) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
13123impia 1119 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾))))
14133anidm13 1422 . . . 4 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾))))
15 elfznn0 13170 . . . . . . . . 9 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ∈ ℕ0)
1615adantr 484 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℕ0)
17 simpr 488 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
1817nnnn0d 12115 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
19 elfzelz 13077 . . . . . . . . . . 11 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ∈ ℤ)
2019adantr 484 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℤ)
2120zred 12247 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℝ)
222adantl 485 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
2322zred 12247 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
24 elfzle2 13081 . . . . . . . . . . 11 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ≤ (𝑁 − 1))
2524adantr 484 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ≤ (𝑁 − 1))
26 zltlem1 12195 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁𝐾 ≤ (𝑁 − 1)))
2719, 2, 26syl2an 599 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾 < 𝑁𝐾 ≤ (𝑁 − 1)))
2825, 27mpbird 260 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 < 𝑁)
2921, 23, 28ltled 10945 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾𝑁)
30 elfz2nn0 13168 . . . . . . . 8 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
3116, 18, 29, 30syl3anbrc 1345 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ (0...𝑁))
32 bcrpcl 13839 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+)
3331, 32syl 17 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ∈ ℝ+)
3433rpcnd 12595 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ∈ ℂ)
3519zcnd 12248 . . . . . . . 8 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ∈ ℂ)
3635adantr 484 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℂ)
374, 36subcld 11154 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁𝐾) ∈ ℂ)
3836, 4negsubdi2d 11170 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → -(𝐾𝑁) = (𝑁𝐾))
3921, 23resubcld 11225 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) ∈ ℝ)
4039recnd 10826 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) ∈ ℂ)
414addid2d 10998 . . . . . . . . . . 11 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (0 + 𝑁) = 𝑁)
4228, 41breqtrrd 5067 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 < (0 + 𝑁))
43 0red 10801 . . . . . . . . . . 11 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 0 ∈ ℝ)
4421, 23, 43ltsubaddd 11393 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝐾𝑁) < 0 ↔ 𝐾 < (0 + 𝑁)))
4542, 44mpbird 260 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) < 0)
4645lt0ne0d 11362 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) ≠ 0)
4740, 46negne0d 11152 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → -(𝐾𝑁) ≠ 0)
4838, 47eqnetrrd 3000 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁𝐾) ≠ 0)
494, 37, 48divcld 11573 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 / (𝑁𝐾)) ∈ ℂ)
50 bcrpcl 13839 . . . . . . 7 (𝐾 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1)C𝐾) ∈ ℝ+)
5150adantr 484 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1)C𝐾) ∈ ℝ+)
5251rpcnne0d 12602 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) ∈ ℂ ∧ ((𝑁 − 1)C𝐾) ≠ 0))
53 divmul2 11459 . . . . 5 (((𝑁C𝐾) ∈ ℂ ∧ (𝑁 / (𝑁𝐾)) ∈ ℂ ∧ (((𝑁 − 1)C𝐾) ∈ ℂ ∧ ((𝑁 − 1)C𝐾) ≠ 0)) → (((𝑁C𝐾) / ((𝑁 − 1)C𝐾)) = (𝑁 / (𝑁𝐾)) ↔ (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
5434, 49, 52, 53syl3anc 1373 . . . 4 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁C𝐾) / ((𝑁 − 1)C𝐾)) = (𝑁 / (𝑁𝐾)) ↔ (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
5514, 54mpbird 260 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁C𝐾) / ((𝑁 − 1)C𝐾)) = (𝑁 / (𝑁𝐾)))
5655oveq2d 7207 . 2 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (1 / ((𝑁C𝐾) / ((𝑁 − 1)C𝐾))) = (1 / (𝑁 / (𝑁𝐾))))
5751rpcnd 12595 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1)C𝐾) ∈ ℂ)
58 bccl2 13854 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℕ)
5931, 58syl 17 . . . 4 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ∈ ℕ)
6059nnne0d 11845 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ≠ 0)
61 bccl2 13854 . . . . 5 (𝐾 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1)C𝐾) ∈ ℕ)
6261nnne0d 11845 . . . 4 (𝐾 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1)C𝐾) ≠ 0)
6362adantr 484 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1)C𝐾) ≠ 0)
6434, 57, 60, 63recdivd 11590 . 2 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (1 / ((𝑁C𝐾) / ((𝑁 − 1)C𝐾))) = (((𝑁 − 1)C𝐾) / (𝑁C𝐾)))
6517nnne0d 11845 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
664, 37, 65, 48recdivd 11590 . 2 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (1 / (𝑁 / (𝑁𝐾))) = ((𝑁𝐾) / 𝑁))
6756, 64, 663eqtr3d 2779 1 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) / (𝑁C𝐾)) = ((𝑁𝐾) / 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wne 2932   class class class wbr 5039  (class class class)co 7191  cc 10692  0cc0 10694  1c1 10695   + caddc 10697   · cmul 10699   < clt 10832  cle 10833  cmin 11027  -cneg 11028   / cdiv 11454  cn 11795  0cn0 12055  cz 12141  +crp 12551  ...cfz 13060  Ccbc 13833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-fz 13061  df-seq 13540  df-fac 13805  df-bc 13834
This theorem is referenced by:  ballotlem2  32121
  Copyright terms: Public domain W3C validator