![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4cycl2v2nb | Structured version Visualization version GIF version |
Description: In a (maybe degenerate) 4-cycle, two vertice have two (maybe not different) common neighbors. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
Ref | Expression |
---|---|
4cycl2v2nb | ⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssi 4622 | . 2 ⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → {{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸) | |
2 | prcom 4536 | . . . . 5 ⊢ {𝐷, 𝐴} = {𝐴, 𝐷} | |
3 | 2 | eleq1i 2850 | . . . 4 ⊢ ({𝐷, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐷} ∈ 𝐸) |
4 | 3 | biimpi 208 | . . 3 ⊢ ({𝐷, 𝐴} ∈ 𝐸 → {𝐴, 𝐷} ∈ 𝐸) |
5 | prcom 4536 | . . . . 5 ⊢ {𝐶, 𝐷} = {𝐷, 𝐶} | |
6 | 5 | eleq1i 2850 | . . . 4 ⊢ ({𝐶, 𝐷} ∈ 𝐸 ↔ {𝐷, 𝐶} ∈ 𝐸) |
7 | 6 | biimpi 208 | . . 3 ⊢ ({𝐶, 𝐷} ∈ 𝐸 → {𝐷, 𝐶} ∈ 𝐸) |
8 | prssi 4622 | . . 3 ⊢ (({𝐴, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐶} ∈ 𝐸) → {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) | |
9 | 4, 7, 8 | syl2anr 587 | . 2 ⊢ (({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸) → {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) |
10 | 1, 9 | anim12i 603 | 1 ⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∈ wcel 2048 ⊆ wss 3825 {cpr 4437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-v 3411 df-un 3830 df-in 3832 df-ss 3839 df-sn 4436 df-pr 4438 |
This theorem is referenced by: 4cycl2vnunb 27814 |
Copyright terms: Public domain | W3C validator |