Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4cycl2v2nb | Structured version Visualization version GIF version |
Description: In a (maybe degenerate) 4-cycle, two vertice have two (maybe not different) common neighbors. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
Ref | Expression |
---|---|
4cycl2v2nb | ⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssi 4751 | . 2 ⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → {{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸) | |
2 | prcom 4665 | . . . . 5 ⊢ {𝐷, 𝐴} = {𝐴, 𝐷} | |
3 | 2 | eleq1i 2829 | . . . 4 ⊢ ({𝐷, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐷} ∈ 𝐸) |
4 | 3 | biimpi 215 | . . 3 ⊢ ({𝐷, 𝐴} ∈ 𝐸 → {𝐴, 𝐷} ∈ 𝐸) |
5 | prcom 4665 | . . . . 5 ⊢ {𝐶, 𝐷} = {𝐷, 𝐶} | |
6 | 5 | eleq1i 2829 | . . . 4 ⊢ ({𝐶, 𝐷} ∈ 𝐸 ↔ {𝐷, 𝐶} ∈ 𝐸) |
7 | 6 | biimpi 215 | . . 3 ⊢ ({𝐶, 𝐷} ∈ 𝐸 → {𝐷, 𝐶} ∈ 𝐸) |
8 | prssi 4751 | . . 3 ⊢ (({𝐴, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐶} ∈ 𝐸) → {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) | |
9 | 4, 7, 8 | syl2anr 596 | . 2 ⊢ (({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸) → {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) |
10 | 1, 9 | anim12i 612 | 1 ⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-pr 4561 |
This theorem is referenced by: 4cycl2vnunb 28555 |
Copyright terms: Public domain | W3C validator |