MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4cycl2v2nb Structured version   Visualization version   GIF version

Theorem 4cycl2v2nb 28554
Description: In a (maybe degenerate) 4-cycle, two vertice have two (maybe not different) common neighbors. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.)
Assertion
Ref Expression
4cycl2v2nb ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸))

Proof of Theorem 4cycl2v2nb
StepHypRef Expression
1 prssi 4751 . 2 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → {{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸)
2 prcom 4665 . . . . 5 {𝐷, 𝐴} = {𝐴, 𝐷}
32eleq1i 2829 . . . 4 ({𝐷, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐷} ∈ 𝐸)
43biimpi 215 . . 3 ({𝐷, 𝐴} ∈ 𝐸 → {𝐴, 𝐷} ∈ 𝐸)
5 prcom 4665 . . . . 5 {𝐶, 𝐷} = {𝐷, 𝐶}
65eleq1i 2829 . . . 4 ({𝐶, 𝐷} ∈ 𝐸 ↔ {𝐷, 𝐶} ∈ 𝐸)
76biimpi 215 . . 3 ({𝐶, 𝐷} ∈ 𝐸 → {𝐷, 𝐶} ∈ 𝐸)
8 prssi 4751 . . 3 (({𝐴, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐶} ∈ 𝐸) → {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸)
94, 7, 8syl2anr 596 . 2 (({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸) → {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸)
101, 9anim12i 612 1 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wss 3883  {cpr 4560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-in 3890  df-ss 3900  df-sn 4559  df-pr 4561
This theorem is referenced by:  4cycl2vnunb  28555
  Copyright terms: Public domain W3C validator