Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prssi | Structured version Visualization version GIF version |
Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.) |
Ref | Expression |
---|---|
prssi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssg 4758 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
2 | 1 | ibi 267 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 ⊆ wss 3892 {cpr 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-un 3897 df-in 3899 df-ss 3909 df-sn 4566 df-pr 4568 |
This theorem is referenced by: prssd 4761 tpssi 4775 fr2nr 5578 fprb 7101 f1ofvswap 7210 ordunel 7706 rex2dom 9067 1sdomOLD 9070 dfac2b 9932 tskpr 10572 m1expcl2 13850 m1expcl 13851 wrdlen2i 14700 gcdcllem3 16253 lcmfpr 16377 mreincl 17353 acsfn2 17417 ipole 18297 pmtr3ncom 19128 subrgin 20092 lssincl 20272 lspvadd 20403 cnmsgnbas 20828 cnmsgngrp 20829 psgninv 20832 zrhpsgnmhm 20834 mdetunilem7 21812 unopn 22097 incld 22239 indiscld 22287 leordtval2 22408 ovolioo 24777 i1f1 24899 aannenlem2 25534 upgrbi 27508 umgrbi 27516 frgr3vlem2 28683 4cycl2v2nb 28698 sshjval3 29761 pr01ssre 31183 psgnid 31409 pmtrto1cl 31411 cnmsgn0g 31458 altgnsg 31461 mdetpmtr1 31818 mdetpmtr12 31820 esumsnf 32077 prsiga 32144 difelsiga 32146 measssd 32228 carsgsigalem 32327 carsgclctun 32333 pmeasmono 32336 eulerpartlemgs2 32392 eulerpartlemn 32393 probun 32431 signswch 32585 signsvfn 32606 signlem0 32611 breprexpnat 32659 kur14lem1 33213 ssoninhaus 34682 poimirlem15 35836 inidl 36232 pmapmeet 37829 diameetN 39112 dihmeetcN 39358 dihmeet 39399 dvh4dimlem 39499 dvhdimlem 39500 dvh4dimN 39503 dvh3dim3N 39505 lcfrlem23 39621 lcfrlem25 39623 lcfrlem35 39633 mapdindp2 39777 lspindp5 39826 brfvrcld 41337 corclrcl 41353 corcltrcl 41385 ibliooicc 43561 fourierdlem51 43747 fourierdlem64 43760 fourierdlem102 43798 fourierdlem114 43810 sge0sn 43967 ovnsubadd2lem 44233 sprvalpw 44990 prprvalpw 45025 perfectALTVlem2 45232 nnsum3primesgbe 45302 fprmappr 45739 zlmodzxzel 45749 zlmodzxzldeplem1 45899 2arymaptfo 46058 prelrrx2 46117 line2x 46158 line2y 46159 onsetreclem2 46469 |
Copyright terms: Public domain | W3C validator |