Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prssi | Structured version Visualization version GIF version |
Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.) |
Ref | Expression |
---|---|
prssi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssg 4757 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
2 | 1 | ibi 266 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3891 {cpr 4568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-un 3896 df-in 3898 df-ss 3908 df-sn 4567 df-pr 4569 |
This theorem is referenced by: prssd 4760 tpssi 4774 fr2nr 5566 fprb 7063 f1ofvswap 7171 ordunel 7662 1sdom 8987 dfac2b 9870 tskpr 10510 m1expcl2 13785 m1expcl 13786 wrdlen2i 14636 gcdcllem3 16189 lcmfpr 16313 mreincl 17289 acsfn2 17353 ipole 18233 pmtr3ncom 19064 subrgin 20028 lssincl 20208 lspvadd 20339 cnmsgnbas 20764 cnmsgngrp 20765 psgninv 20768 zrhpsgnmhm 20770 mdetunilem7 21748 unopn 22033 incld 22175 indiscld 22223 leordtval2 22344 ovolioo 24713 i1f1 24835 aannenlem2 25470 upgrbi 27444 umgrbi 27452 frgr3vlem2 28617 4cycl2v2nb 28632 sshjval3 29695 pr01ssre 31117 psgnid 31343 pmtrto1cl 31345 cnmsgn0g 31392 altgnsg 31395 mdetpmtr1 31752 mdetpmtr12 31754 esumsnf 32011 prsiga 32078 difelsiga 32080 measssd 32162 carsgsigalem 32261 carsgclctun 32267 pmeasmono 32270 eulerpartlemgs2 32326 eulerpartlemn 32327 probun 32365 signswch 32519 signsvfn 32540 signlem0 32545 breprexpnat 32593 kur14lem1 33147 ssoninhaus 34616 poimirlem15 35771 inidl 36167 pmapmeet 37766 diameetN 39049 dihmeetcN 39295 dihmeet 39336 dvh4dimlem 39436 dvhdimlem 39437 dvh4dimN 39440 dvh3dim3N 39442 lcfrlem23 39558 lcfrlem25 39560 lcfrlem35 39570 mapdindp2 39714 lspindp5 39763 brfvrcld 41252 corclrcl 41268 corcltrcl 41300 ibliooicc 43466 fourierdlem51 43652 fourierdlem64 43665 fourierdlem102 43703 fourierdlem114 43715 sge0sn 43871 ovnsubadd2lem 44137 sprvalpw 44884 prprvalpw 44919 perfectALTVlem2 45126 nnsum3primesgbe 45196 fprmappr 45633 zlmodzxzel 45643 zlmodzxzldeplem1 45793 2arymaptfo 45952 prelrrx2 46011 line2x 46052 line2y 46053 onsetreclem2 46363 |
Copyright terms: Public domain | W3C validator |