Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prssi | Structured version Visualization version GIF version |
Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.) |
Ref | Expression |
---|---|
prssi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssg 4753 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
2 | 1 | ibi 266 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3887 {cpr 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3432 df-un 3892 df-in 3894 df-ss 3904 df-sn 4563 df-pr 4565 |
This theorem is referenced by: prssd 4756 tpssi 4770 fr2nr 5563 fprb 7062 f1ofvswap 7171 ordunel 7665 1sdom 9013 dfac2b 9874 tskpr 10514 m1expcl2 13792 m1expcl 13793 wrdlen2i 14643 gcdcllem3 16196 lcmfpr 16320 mreincl 17296 acsfn2 17360 ipole 18240 pmtr3ncom 19071 subrgin 20035 lssincl 20215 lspvadd 20346 cnmsgnbas 20771 cnmsgngrp 20772 psgninv 20775 zrhpsgnmhm 20777 mdetunilem7 21755 unopn 22040 incld 22182 indiscld 22230 leordtval2 22351 ovolioo 24720 i1f1 24842 aannenlem2 25477 upgrbi 27451 umgrbi 27459 frgr3vlem2 28624 4cycl2v2nb 28639 sshjval3 29702 pr01ssre 31124 psgnid 31350 pmtrto1cl 31352 cnmsgn0g 31399 altgnsg 31402 mdetpmtr1 31759 mdetpmtr12 31761 esumsnf 32018 prsiga 32085 difelsiga 32087 measssd 32169 carsgsigalem 32268 carsgclctun 32274 pmeasmono 32277 eulerpartlemgs2 32333 eulerpartlemn 32334 probun 32372 signswch 32526 signsvfn 32547 signlem0 32552 breprexpnat 32600 kur14lem1 33154 ssoninhaus 34623 poimirlem15 35778 inidl 36174 pmapmeet 37773 diameetN 39056 dihmeetcN 39302 dihmeet 39343 dvh4dimlem 39443 dvhdimlem 39444 dvh4dimN 39447 dvh3dim3N 39449 lcfrlem23 39565 lcfrlem25 39567 lcfrlem35 39577 mapdindp2 39721 lspindp5 39770 brfvrcld 41258 corclrcl 41274 corcltrcl 41306 ibliooicc 43471 fourierdlem51 43657 fourierdlem64 43670 fourierdlem102 43708 fourierdlem114 43720 sge0sn 43876 ovnsubadd2lem 44142 sprvalpw 44888 prprvalpw 44923 perfectALTVlem2 45130 nnsum3primesgbe 45200 fprmappr 45637 zlmodzxzel 45647 zlmodzxzldeplem1 45797 2arymaptfo 45956 prelrrx2 46015 line2x 46056 line2y 46057 onsetreclem2 46367 |
Copyright terms: Public domain | W3C validator |