| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3cyclfrgr | Structured version Visualization version GIF version | ||
| Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
| Ref | Expression |
|---|---|
| 3cyclfrgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| 3cyclfrgr | ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣 ∈ 𝑉 ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cyclfrgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eqid 2737 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | 3cyclfrgrrn 30305 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) |
| 4 | frgrusgr 30280 | . . . . . . . 8 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) | |
| 5 | usgrumgr 29198 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph) | |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ UMGraph) |
| 7 | 6 | ad4antr 732 | . . . . . 6 ⊢ (((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → 𝐺 ∈ UMGraph) |
| 8 | simpr 484 | . . . . . . . . 9 ⊢ (((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
| 9 | 8 | anim1i 615 | . . . . . . . 8 ⊢ ((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑣 ∈ 𝑉 ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))) |
| 10 | 3anass 1095 | . . . . . . . 8 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ↔ (𝑣 ∈ 𝑉 ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))) | |
| 11 | 9, 10 | sylibr 234 | . . . . . . 7 ⊢ ((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑣 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ (((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → (𝑣 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) |
| 13 | simpr 484 | . . . . . 6 ⊢ (((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) | |
| 14 | 1, 2 | umgr3cyclex 30202 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ (𝑣 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)) |
| 15 | 7, 12, 13, 14 | syl3anc 1373 | . . . . 5 ⊢ (((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)) |
| 16 | 15 | ex 412 | . . . 4 ⊢ ((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))) |
| 17 | 16 | rexlimdvva 3213 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣 ∈ 𝑉) → (∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))) |
| 18 | 17 | ralimdva 3167 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → (∀𝑣 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺)) → ∀𝑣 ∈ 𝑉 ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))) |
| 19 | 3, 18 | mpd 15 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣 ∈ 𝑉 ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 {cpr 4628 class class class wbr 5143 ‘cfv 6561 0cc0 11155 1c1 11156 < clt 11295 3c3 12322 ♯chash 14369 Vtxcvtx 29013 Edgcedg 29064 UMGraphcumgr 29098 USGraphcusgr 29166 Cyclesccycls 29805 FriendGraph cfrgr 30277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-hash 14370 df-word 14553 df-concat 14609 df-s1 14634 df-s2 14887 df-s3 14888 df-s4 14889 df-edg 29065 df-uhgr 29075 df-upgr 29099 df-umgr 29100 df-usgr 29168 df-wlks 29617 df-trls 29710 df-pths 29734 df-cycls 29807 df-frgr 30278 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |