MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3cyclfrgr Structured version   Visualization version   GIF version

Theorem 3cyclfrgr 30250
Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.)
Hypothesis
Ref Expression
3cyclfrgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
3cyclfrgr ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))
Distinct variable groups:   𝑓,𝐺,𝑝,𝑣   𝑣,𝑉
Allowed substitution hints:   𝑉(𝑓,𝑝)

Proof of Theorem 3cyclfrgr
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3cyclfrgr.v . . 3 𝑉 = (Vtx‘𝐺)
2 eqid 2729 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 23cyclfrgrrn 30248 . 2 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣𝑉𝑏𝑉𝑐𝑉 ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺)))
4 frgrusgr 30223 . . . . . . . 8 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
5 usgrumgr 29144 . . . . . . . 8 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
64, 5syl 17 . . . . . . 7 (𝐺 ∈ FriendGraph → 𝐺 ∈ UMGraph)
76ad4antr 732 . . . . . 6 (((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → 𝐺 ∈ UMGraph)
8 simpr 484 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣𝑉) → 𝑣𝑉)
98anim1i 615 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑣𝑉 ∧ (𝑏𝑉𝑐𝑉)))
10 3anass 1094 . . . . . . . 8 ((𝑣𝑉𝑏𝑉𝑐𝑉) ↔ (𝑣𝑉 ∧ (𝑏𝑉𝑐𝑉)))
119, 10sylibr 234 . . . . . . 7 ((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑣𝑉𝑏𝑉𝑐𝑉))
1211adantr 480 . . . . . 6 (((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → (𝑣𝑉𝑏𝑉𝑐𝑉))
13 simpr 484 . . . . . 6 (((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺)))
141, 2umgr3cyclex 30145 . . . . . 6 ((𝐺 ∈ UMGraph ∧ (𝑣𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))
157, 12, 13, 14syl3anc 1373 . . . . 5 (((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))
1615ex 412 . . . 4 ((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)))
1716rexlimdvva 3186 . . 3 (((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣𝑉) → (∃𝑏𝑉𝑐𝑉 ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)))
1817ralimdva 3141 . 2 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → (∀𝑣𝑉𝑏𝑉𝑐𝑉 ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺)) → ∀𝑣𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)))
193, 18mpd 15 1 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  {cpr 4581   class class class wbr 5095  cfv 6486  0cc0 11028  1c1 11029   < clt 11168  3c3 12202  chash 14255  Vtxcvtx 28959  Edgcedg 29010  UMGraphcumgr 29044  USGraphcusgr 29112  Cyclesccycls 29748   FriendGraph cfrgr 30220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-concat 14496  df-s1 14521  df-s2 14773  df-s3 14774  df-s4 14775  df-edg 29011  df-uhgr 29021  df-upgr 29045  df-umgr 29046  df-usgr 29114  df-wlks 29563  df-trls 29654  df-pths 29677  df-cycls 29750  df-frgr 30221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator