![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3cyclfrgr | Structured version Visualization version GIF version |
Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
Ref | Expression |
---|---|
3cyclfrgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
3cyclfrgr | ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣 ∈ 𝑉 ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cyclfrgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eqid 2731 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | 3cyclfrgrrn 29972 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) |
4 | frgrusgr 29947 | . . . . . . . 8 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) | |
5 | usgrumgr 28872 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ UMGraph) |
7 | 6 | ad4antr 729 | . . . . . 6 ⊢ (((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → 𝐺 ∈ UMGraph) |
8 | simpr 484 | . . . . . . . . 9 ⊢ (((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
9 | 8 | anim1i 614 | . . . . . . . 8 ⊢ ((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑣 ∈ 𝑉 ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))) |
10 | 3anass 1094 | . . . . . . . 8 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ↔ (𝑣 ∈ 𝑉 ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))) | |
11 | 9, 10 | sylibr 233 | . . . . . . 7 ⊢ ((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑣 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) |
12 | 11 | adantr 480 | . . . . . 6 ⊢ (((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → (𝑣 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) |
13 | simpr 484 | . . . . . 6 ⊢ (((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) | |
14 | 1, 2 | umgr3cyclex 29869 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ (𝑣 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)) |
15 | 7, 12, 13, 14 | syl3anc 1370 | . . . . 5 ⊢ (((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)) |
16 | 15 | ex 412 | . . . 4 ⊢ ((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))) |
17 | 16 | rexlimdvva 3210 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣 ∈ 𝑉) → (∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))) |
18 | 17 | ralimdva 3166 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → (∀𝑣 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺)) → ∀𝑣 ∈ 𝑉 ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))) |
19 | 3, 18 | mpd 15 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣 ∈ 𝑉 ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 {cpr 4630 class class class wbr 5148 ‘cfv 6543 0cc0 11116 1c1 11117 < clt 11255 3c3 12275 ♯chash 14297 Vtxcvtx 28689 Edgcedg 28740 UMGraphcumgr 28774 USGraphcusgr 28842 Cyclesccycls 29475 FriendGraph cfrgr 29944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-oadd 8476 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-dju 9902 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-n0 12480 df-xnn0 12552 df-z 12566 df-uz 12830 df-fz 13492 df-fzo 13635 df-hash 14298 df-word 14472 df-concat 14528 df-s1 14553 df-s2 14806 df-s3 14807 df-s4 14808 df-edg 28741 df-uhgr 28751 df-upgr 28775 df-umgr 28776 df-usgr 28844 df-wlks 29289 df-trls 29382 df-pths 29406 df-cycls 29477 df-frgr 29945 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |