Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3cyclfrgr Structured version   Visualization version   GIF version

Theorem 3cyclfrgr 28117
 Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.)
Hypothesis
Ref Expression
3cyclfrgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
3cyclfrgr ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))
Distinct variable groups:   𝑓,𝐺,𝑝,𝑣   𝑣,𝑉
Allowed substitution hints:   𝑉(𝑓,𝑝)

Proof of Theorem 3cyclfrgr
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3cyclfrgr.v . . 3 𝑉 = (Vtx‘𝐺)
2 eqid 2798 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 23cyclfrgrrn 28115 . 2 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣𝑉𝑏𝑉𝑐𝑉 ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺)))
4 frgrusgr 28090 . . . . . . . 8 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
5 usgrumgr 27016 . . . . . . . 8 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
64, 5syl 17 . . . . . . 7 (𝐺 ∈ FriendGraph → 𝐺 ∈ UMGraph)
76ad4antr 731 . . . . . 6 (((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → 𝐺 ∈ UMGraph)
8 simpr 488 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣𝑉) → 𝑣𝑉)
98anim1i 617 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑣𝑉 ∧ (𝑏𝑉𝑐𝑉)))
10 3anass 1092 . . . . . . . 8 ((𝑣𝑉𝑏𝑉𝑐𝑉) ↔ (𝑣𝑉 ∧ (𝑏𝑉𝑐𝑉)))
119, 10sylibr 237 . . . . . . 7 ((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑣𝑉𝑏𝑉𝑐𝑉))
1211adantr 484 . . . . . 6 (((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → (𝑣𝑉𝑏𝑉𝑐𝑉))
13 simpr 488 . . . . . 6 (((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺)))
141, 2umgr3cyclex 28012 . . . . . 6 ((𝐺 ∈ UMGraph ∧ (𝑣𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))
157, 12, 13, 14syl3anc 1368 . . . . 5 (((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))
1615ex 416 . . . 4 ((((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)))
1716rexlimdvva 3254 . . 3 (((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) ∧ 𝑣𝑉) → (∃𝑏𝑉𝑐𝑉 ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)))
1817ralimdva 3144 . 2 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → (∀𝑣𝑉𝑏𝑉𝑐𝑉 ({𝑣, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑣} ∈ (Edg‘𝐺)) → ∀𝑣𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)))
193, 18mpd 15 1 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ∃wex 1781   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  {cpr 4530   class class class wbr 5034  ‘cfv 6332  0cc0 10544  1c1 10545   < clt 10682  3c3 11699  ♯chash 13706  Vtxcvtx 26833  Edgcedg 26884  UMGraphcumgr 26918  USGraphcusgr 26986  Cyclesccycls 27618   FriendGraph cfrgr 28087 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-map 8409  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-dju 9332  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-n0 11904  df-xnn0 11976  df-z 11990  df-uz 12252  df-fz 12906  df-fzo 13049  df-hash 13707  df-word 13878  df-concat 13934  df-s1 13961  df-s2 14221  df-s3 14222  df-s4 14223  df-edg 26885  df-uhgr 26895  df-upgr 26919  df-umgr 26920  df-usgr 26988  df-wlks 27433  df-trls 27526  df-pths 27549  df-cycls 27620  df-frgr 28088 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator