| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 4cycl2v2nb 30308 | . 2
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸)) | 
| 2 |  | preq2 4734 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐵 → {𝐴, 𝑥} = {𝐴, 𝐵}) | 
| 3 |  | preq1 4733 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐵 → {𝑥, 𝐶} = {𝐵, 𝐶}) | 
| 4 | 2, 3 | preq12d 4741 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐵 → {{𝐴, 𝑥}, {𝑥, 𝐶}} = {{𝐴, 𝐵}, {𝐵, 𝐶}}) | 
| 5 | 4 | sseq1d 4015 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐵 → ({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ {{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸)) | 
| 6 | 5 | anbi1d 631 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝐵 → (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ↔ ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸))) | 
| 7 |  | neeq1 3003 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝐵 → (𝑥 ≠ 𝑦 ↔ 𝐵 ≠ 𝑦)) | 
| 8 | 6, 7 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝐵 → ((({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦) ↔ (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝐵 ≠ 𝑦))) | 
| 9 |  | preq2 4734 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐷 → {𝐴, 𝑦} = {𝐴, 𝐷}) | 
| 10 |  | preq1 4733 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐷 → {𝑦, 𝐶} = {𝐷, 𝐶}) | 
| 11 | 9, 10 | preq12d 4741 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐷 → {{𝐴, 𝑦}, {𝑦, 𝐶}} = {{𝐴, 𝐷}, {𝐷, 𝐶}}) | 
| 12 | 11 | sseq1d 4015 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐷 → ({{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸 ↔ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸)) | 
| 13 | 12 | anbi2d 630 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝐷 → (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ↔ ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸))) | 
| 14 |  | neeq2 3004 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝐷 → (𝐵 ≠ 𝑦 ↔ 𝐵 ≠ 𝐷)) | 
| 15 | 13, 14 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝐷 → ((({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝐵 ≠ 𝑦) ↔ (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ 𝐵 ≠ 𝐷))) | 
| 16 | 8, 15 | rspc2ev 3635 | . . . . . . . . . . 11
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ 𝐵 ≠ 𝐷)) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)) | 
| 17 | 16 | 3expa 1119 | . . . . . . . . . 10
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) ∧ (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ 𝐵 ≠ 𝐷)) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)) | 
| 18 | 17 | expcom 413 | . . . . . . . . 9
⊢
((({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ 𝐵 ≠ 𝐷) → ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦))) | 
| 19 | 18 | ex 412 | . . . . . . . 8
⊢ (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) → (𝐵 ≠ 𝐷 → ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)))) | 
| 20 | 19 | com13 88 | . . . . . . 7
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐵 ≠ 𝐷 → (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)))) | 
| 21 | 20 | 3impia 1118 | . . . . . 6
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦))) | 
| 22 | 21 | impcom 407 | . . . . 5
⊢
((({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ (𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷)) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)) | 
| 23 |  | rexnal 3100 | . . . . . 6
⊢
(∃𝑥 ∈
𝑉 ¬ ∀𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦)) | 
| 24 |  | rexnal 3100 | . . . . . . . 8
⊢
(∃𝑦 ∈
𝑉 ¬ (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ ¬ ∀𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦)) | 
| 25 |  | annim 403 | . . . . . . . . . 10
⊢
((({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦)) | 
| 26 |  | df-ne 2941 | . . . . . . . . . . . 12
⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | 
| 27 | 26 | bicomi 224 | . . . . . . . . . . 11
⊢ (¬
𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦) | 
| 28 | 27 | anbi2i 623 | . . . . . . . . . 10
⊢
((({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ ¬ 𝑥 = 𝑦) ↔ (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)) | 
| 29 | 25, 28 | bitr3i 277 | . . . . . . . . 9
⊢ (¬
(({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)) | 
| 30 | 29 | rexbii 3094 | . . . . . . . 8
⊢
(∃𝑦 ∈
𝑉 ¬ (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)) | 
| 31 | 24, 30 | bitr3i 277 | . . . . . . 7
⊢ (¬
∀𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)) | 
| 32 | 31 | rexbii 3094 | . . . . . 6
⊢
(∃𝑥 ∈
𝑉 ¬ ∀𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)) | 
| 33 | 23, 32 | bitr3i 277 | . . . . 5
⊢ (¬
∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)) | 
| 34 | 22, 33 | sylibr 234 | . . . 4
⊢
((({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ (𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷)) → ¬ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦)) | 
| 35 | 34 | intnand 488 | . . 3
⊢
((({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ (𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷)) → ¬ (∃𝑥 ∈ 𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦))) | 
| 36 |  | preq2 4734 | . . . . . 6
⊢ (𝑥 = 𝑦 → {𝐴, 𝑥} = {𝐴, 𝑦}) | 
| 37 |  | preq1 4733 | . . . . . 6
⊢ (𝑥 = 𝑦 → {𝑥, 𝐶} = {𝑦, 𝐶}) | 
| 38 | 36, 37 | preq12d 4741 | . . . . 5
⊢ (𝑥 = 𝑦 → {{𝐴, 𝑥}, {𝑥, 𝐶}} = {{𝐴, 𝑦}, {𝑦, 𝐶}}) | 
| 39 | 38 | sseq1d 4015 | . . . 4
⊢ (𝑥 = 𝑦 → ({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸)) | 
| 40 | 39 | reu4 3737 | . . 3
⊢
(∃!𝑥 ∈
𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ (∃𝑥 ∈ 𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦))) | 
| 41 | 35, 40 | sylnibr 329 | . 2
⊢
((({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ (𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷)) → ¬ ∃!𝑥 ∈ 𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸) | 
| 42 | 1, 41 | stoic3 1776 | 1
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸) ∧ (𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷)) → ¬ ∃!𝑥 ∈ 𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸) |