Step | Hyp | Ref
| Expression |
1 | | 4cycl2v2nb 28653 |
. 2
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸)) |
2 | | preq2 4670 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐵 → {𝐴, 𝑥} = {𝐴, 𝐵}) |
3 | | preq1 4669 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐵 → {𝑥, 𝐶} = {𝐵, 𝐶}) |
4 | 2, 3 | preq12d 4677 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐵 → {{𝐴, 𝑥}, {𝑥, 𝐶}} = {{𝐴, 𝐵}, {𝐵, 𝐶}}) |
5 | 4 | sseq1d 3952 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐵 → ({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ {{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸)) |
6 | 5 | anbi1d 630 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐵 → (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ↔ ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸))) |
7 | | neeq1 3006 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐵 → (𝑥 ≠ 𝑦 ↔ 𝐵 ≠ 𝑦)) |
8 | 6, 7 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐵 → ((({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦) ↔ (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝐵 ≠ 𝑦))) |
9 | | preq2 4670 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐷 → {𝐴, 𝑦} = {𝐴, 𝐷}) |
10 | | preq1 4669 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐷 → {𝑦, 𝐶} = {𝐷, 𝐶}) |
11 | 9, 10 | preq12d 4677 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐷 → {{𝐴, 𝑦}, {𝑦, 𝐶}} = {{𝐴, 𝐷}, {𝐷, 𝐶}}) |
12 | 11 | sseq1d 3952 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐷 → ({{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸 ↔ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸)) |
13 | 12 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐷 → (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ↔ ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸))) |
14 | | neeq2 3007 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐷 → (𝐵 ≠ 𝑦 ↔ 𝐵 ≠ 𝐷)) |
15 | 13, 14 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐷 → ((({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝐵 ≠ 𝑦) ↔ (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ 𝐵 ≠ 𝐷))) |
16 | 8, 15 | rspc2ev 3572 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ 𝐵 ≠ 𝐷)) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)) |
17 | 16 | 3expa 1117 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) ∧ (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ 𝐵 ≠ 𝐷)) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)) |
18 | 17 | expcom 414 |
. . . . . . . . 9
⊢
((({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ 𝐵 ≠ 𝐷) → ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦))) |
19 | 18 | ex 413 |
. . . . . . . 8
⊢ (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) → (𝐵 ≠ 𝐷 → ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)))) |
20 | 19 | com13 88 |
. . . . . . 7
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐵 ≠ 𝐷 → (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)))) |
21 | 20 | 3impia 1116 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦))) |
22 | 21 | impcom 408 |
. . . . 5
⊢
((({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ (𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷)) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)) |
23 | | rexnal 3169 |
. . . . . 6
⊢
(∃𝑥 ∈
𝑉 ¬ ∀𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦)) |
24 | | rexnal 3169 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝑉 ¬ (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ ¬ ∀𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦)) |
25 | | annim 404 |
. . . . . . . . . 10
⊢
((({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦)) |
26 | | df-ne 2944 |
. . . . . . . . . . . 12
⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) |
27 | 26 | bicomi 223 |
. . . . . . . . . . 11
⊢ (¬
𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦) |
28 | 27 | anbi2i 623 |
. . . . . . . . . 10
⊢
((({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ ¬ 𝑥 = 𝑦) ↔ (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)) |
29 | 25, 28 | bitr3i 276 |
. . . . . . . . 9
⊢ (¬
(({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)) |
30 | 29 | rexbii 3181 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝑉 ¬ (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)) |
31 | 24, 30 | bitr3i 276 |
. . . . . . 7
⊢ (¬
∀𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)) |
32 | 31 | rexbii 3181 |
. . . . . 6
⊢
(∃𝑥 ∈
𝑉 ¬ ∀𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)) |
33 | 23, 32 | bitr3i 276 |
. . . . 5
⊢ (¬
∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥 ≠ 𝑦)) |
34 | 22, 33 | sylibr 233 |
. . . 4
⊢
((({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ (𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷)) → ¬ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦)) |
35 | 34 | intnand 489 |
. . 3
⊢
((({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ (𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷)) → ¬ (∃𝑥 ∈ 𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦))) |
36 | | preq2 4670 |
. . . . . 6
⊢ (𝑥 = 𝑦 → {𝐴, 𝑥} = {𝐴, 𝑦}) |
37 | | preq1 4669 |
. . . . . 6
⊢ (𝑥 = 𝑦 → {𝑥, 𝐶} = {𝑦, 𝐶}) |
38 | 36, 37 | preq12d 4677 |
. . . . 5
⊢ (𝑥 = 𝑦 → {{𝐴, 𝑥}, {𝑥, 𝐶}} = {{𝐴, 𝑦}, {𝑦, 𝐶}}) |
39 | 38 | sseq1d 3952 |
. . . 4
⊢ (𝑥 = 𝑦 → ({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸)) |
40 | 39 | reu4 3666 |
. . 3
⊢
(∃!𝑥 ∈
𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ (∃𝑥 ∈ 𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦))) |
41 | 35, 40 | sylnibr 329 |
. 2
⊢
((({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ (𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷)) → ¬ ∃!𝑥 ∈ 𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸) |
42 | 1, 41 | stoic3 1779 |
1
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸) ∧ (𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷)) → ¬ ∃!𝑥 ∈ 𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸) |