MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4cycl2vnunb Structured version   Visualization version   GIF version

Theorem 4cycl2vnunb 28555
Description: In a 4-cycle, two distinct vertices have not a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.)
Assertion
Ref Expression
4cycl2vnunb ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → ¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐸   𝑥,𝑉
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem 4cycl2vnunb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 4cycl2v2nb 28554 . 2 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸))
2 preq2 4667 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐵 → {𝐴, 𝑥} = {𝐴, 𝐵})
3 preq1 4666 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐵 → {𝑥, 𝐶} = {𝐵, 𝐶})
42, 3preq12d 4674 . . . . . . . . . . . . . . 15 (𝑥 = 𝐵 → {{𝐴, 𝑥}, {𝑥, 𝐶}} = {{𝐴, 𝐵}, {𝐵, 𝐶}})
54sseq1d 3948 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → ({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ {{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸))
65anbi1d 629 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ↔ ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸)))
7 neeq1 3005 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → (𝑥𝑦𝐵𝑦))
86, 7anbi12d 630 . . . . . . . . . . . 12 (𝑥 = 𝐵 → ((({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥𝑦) ↔ (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝐵𝑦)))
9 preq2 4667 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐷 → {𝐴, 𝑦} = {𝐴, 𝐷})
10 preq1 4666 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐷 → {𝑦, 𝐶} = {𝐷, 𝐶})
119, 10preq12d 4674 . . . . . . . . . . . . . . 15 (𝑦 = 𝐷 → {{𝐴, 𝑦}, {𝑦, 𝐶}} = {{𝐴, 𝐷}, {𝐷, 𝐶}})
1211sseq1d 3948 . . . . . . . . . . . . . 14 (𝑦 = 𝐷 → ({{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸 ↔ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸))
1312anbi2d 628 . . . . . . . . . . . . 13 (𝑦 = 𝐷 → (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ↔ ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸)))
14 neeq2 3006 . . . . . . . . . . . . 13 (𝑦 = 𝐷 → (𝐵𝑦𝐵𝐷))
1513, 14anbi12d 630 . . . . . . . . . . . 12 (𝑦 = 𝐷 → ((({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝐵𝑦) ↔ (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ 𝐵𝐷)))
168, 15rspc2ev 3564 . . . . . . . . . . 11 ((𝐵𝑉𝐷𝑉 ∧ (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ 𝐵𝐷)) → ∃𝑥𝑉𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥𝑦))
17163expa 1116 . . . . . . . . . 10 (((𝐵𝑉𝐷𝑉) ∧ (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ 𝐵𝐷)) → ∃𝑥𝑉𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥𝑦))
1817expcom 413 . . . . . . . . 9 ((({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ 𝐵𝐷) → ((𝐵𝑉𝐷𝑉) → ∃𝑥𝑉𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥𝑦)))
1918ex 412 . . . . . . . 8 (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) → (𝐵𝐷 → ((𝐵𝑉𝐷𝑉) → ∃𝑥𝑉𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥𝑦))))
2019com13 88 . . . . . . 7 ((𝐵𝑉𝐷𝑉) → (𝐵𝐷 → (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) → ∃𝑥𝑉𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥𝑦))))
21203impia 1115 . . . . . 6 ((𝐵𝑉𝐷𝑉𝐵𝐷) → (({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) → ∃𝑥𝑉𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥𝑦)))
2221impcom 407 . . . . 5 ((({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → ∃𝑥𝑉𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥𝑦))
23 rexnal 3165 . . . . . 6 (∃𝑥𝑉 ¬ ∀𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥𝑉𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦))
24 rexnal 3165 . . . . . . . 8 (∃𝑦𝑉 ¬ (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ ¬ ∀𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦))
25 annim 403 . . . . . . . . . 10 ((({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦))
26 df-ne 2943 . . . . . . . . . . . 12 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
2726bicomi 223 . . . . . . . . . . 11 𝑥 = 𝑦𝑥𝑦)
2827anbi2i 622 . . . . . . . . . 10 ((({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ ¬ 𝑥 = 𝑦) ↔ (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥𝑦))
2925, 28bitr3i 276 . . . . . . . . 9 (¬ (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥𝑦))
3029rexbii 3177 . . . . . . . 8 (∃𝑦𝑉 ¬ (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ ∃𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥𝑦))
3124, 30bitr3i 276 . . . . . . 7 (¬ ∀𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ ∃𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥𝑦))
3231rexbii 3177 . . . . . 6 (∃𝑥𝑉 ¬ ∀𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ ∃𝑥𝑉𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥𝑦))
3323, 32bitr3i 276 . . . . 5 (¬ ∀𝑥𝑉𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦) ↔ ∃𝑥𝑉𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) ∧ 𝑥𝑦))
3422, 33sylibr 233 . . . 4 ((({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → ¬ ∀𝑥𝑉𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦))
3534intnand 488 . . 3 ((({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → ¬ (∃𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ ∀𝑥𝑉𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦)))
36 preq2 4667 . . . . . 6 (𝑥 = 𝑦 → {𝐴, 𝑥} = {𝐴, 𝑦})
37 preq1 4666 . . . . . 6 (𝑥 = 𝑦 → {𝑥, 𝐶} = {𝑦, 𝐶})
3836, 37preq12d 4674 . . . . 5 (𝑥 = 𝑦 → {{𝐴, 𝑥}, {𝑥, 𝐶}} = {{𝐴, 𝑦}, {𝑦, 𝐶}})
3938sseq1d 3948 . . . 4 (𝑥 = 𝑦 → ({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸))
4039reu4 3661 . . 3 (∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ (∃𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ ∀𝑥𝑉𝑦𝑉 (({{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝑦}, {𝑦, 𝐶}} ⊆ 𝐸) → 𝑥 = 𝑦)))
4135, 40sylnibr 328 . 2 ((({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → ¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸)
421, 41stoic3 1780 1 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → ¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  ∃!wreu 3065  wss 3883  {cpr 4560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-v 3424  df-un 3888  df-in 3890  df-ss 3900  df-sn 4559  df-pr 4561
This theorem is referenced by:  n4cyclfrgr  28556  4cyclusnfrgr  28557
  Copyright terms: Public domain W3C validator