| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2anr | Structured version Visualization version GIF version | ||
| Description: A double syllogism inference. For an implication-only version, see syl2imc 41. (Contributed by NM, 17-Sep-2013.) |
| Ref | Expression |
|---|---|
| syl2an.1 | ⊢ (𝜑 → 𝜓) |
| syl2an.2 | ⊢ (𝜏 → 𝜒) |
| syl2an.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anr | ⊢ ((𝜏 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an.2 | . . 3 ⊢ (𝜏 → 𝜒) | |
| 3 | syl2an.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| 5 | 4 | ancoms 458 | 1 ⊢ ((𝜏 ∧ 𝜑) → 𝜃) |
| Copyright terms: Public domain | W3C validator |