Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2anr | Structured version Visualization version GIF version |
Description: A double syllogism inference. For an implication-only version, see syl2imc 41. (Contributed by NM, 17-Sep-2013.) |
Ref | Expression |
---|---|
syl2an.1 | ⊢ (𝜑 → 𝜓) |
syl2an.2 | ⊢ (𝜏 → 𝜒) |
syl2an.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anr | ⊢ ((𝜏 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an.2 | . . 3 ⊢ (𝜏 → 𝜒) | |
3 | syl2an.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 1, 2, 3 | syl2an 599 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
5 | 4 | ancoms 462 | 1 ⊢ ((𝜏 ∧ 𝜑) → 𝜃) |
Copyright terms: Public domain | W3C validator |