MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resqrex Structured version   Visualization version   GIF version

Theorem resqrex 15175
Description: Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
resqrex ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem resqrex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 11136 . . . . 5 0 ∈ ℝ
2 leloe 11220 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
31, 2mpan 690 . . . 4 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
4 elrp 12913 . . . . . . 7 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
5 01sqrex 15174 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴))
6 rprege0 12927 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
76anim1i 615 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑥↑2) = 𝐴) → ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑥↑2) = 𝐴))
8 anass 468 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑥↑2) = 𝐴) ↔ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
97, 8sylib 218 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑥↑2) = 𝐴) → (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
109adantrl 716 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴)) → (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
1110reximi2 3062 . . . . . . . 8 (∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
125, 11syl 17 . . . . . . 7 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
134, 12sylanbr 582 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝐴 ≤ 1) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
1413exp31 419 . . . . 5 (𝐴 ∈ ℝ → (0 < 𝐴 → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))))
15 sq0 14117 . . . . . . . . 9 (0↑2) = 0
16 id 22 . . . . . . . . 9 (0 = 𝐴 → 0 = 𝐴)
1715, 16eqtrid 2776 . . . . . . . 8 (0 = 𝐴 → (0↑2) = 𝐴)
18 0le0 12247 . . . . . . . 8 0 ≤ 0
1917, 18jctil 519 . . . . . . 7 (0 = 𝐴 → (0 ≤ 0 ∧ (0↑2) = 𝐴))
20 breq2 5099 . . . . . . . . 9 (𝑥 = 0 → (0 ≤ 𝑥 ↔ 0 ≤ 0))
21 oveq1 7360 . . . . . . . . . 10 (𝑥 = 0 → (𝑥↑2) = (0↑2))
2221eqeq1d 2731 . . . . . . . . 9 (𝑥 = 0 → ((𝑥↑2) = 𝐴 ↔ (0↑2) = 𝐴))
2320, 22anbi12d 632 . . . . . . . 8 (𝑥 = 0 → ((0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴) ↔ (0 ≤ 0 ∧ (0↑2) = 𝐴)))
2423rspcev 3579 . . . . . . 7 ((0 ∈ ℝ ∧ (0 ≤ 0 ∧ (0↑2) = 𝐴)) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
251, 19, 24sylancr 587 . . . . . 6 (0 = 𝐴 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
2625a1i13 27 . . . . 5 (𝐴 ∈ ℝ → (0 = 𝐴 → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))))
2714, 26jaod 859 . . . 4 (𝐴 ∈ ℝ → ((0 < 𝐴 ∨ 0 = 𝐴) → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))))
283, 27sylbid 240 . . 3 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))))
2928imp 406 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
30 0lt1 11660 . . . . . . . . . 10 0 < 1
31 1re 11134 . . . . . . . . . . 11 1 ∈ ℝ
32 ltletr 11226 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴))
331, 31, 32mp3an12 1453 . . . . . . . . . 10 (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴))
3430, 33mpani 696 . . . . . . . . 9 (𝐴 ∈ ℝ → (1 ≤ 𝐴 → 0 < 𝐴))
3534imp 406 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 < 𝐴)
364biimpri 228 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ+)
3735, 36syldan 591 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
3837rpreccld 12965 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 / 𝐴) ∈ ℝ+)
39 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
40 lerec 12026 . . . . . . . . . 10 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / 1)))
4131, 30, 40mpanl12 702 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / 1)))
4235, 41syldan 591 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / 1)))
4339, 42mpbid 232 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 / 𝐴) ≤ (1 / 1))
44 1div1e1 11833 . . . . . . 7 (1 / 1) = 1
4543, 44breqtrdi 5136 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 / 𝐴) ≤ 1)
46 01sqrex 15174 . . . . . 6 (((1 / 𝐴) ∈ ℝ+ ∧ (1 / 𝐴) ≤ 1) → ∃𝑦 ∈ ℝ+ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴)))
4738, 45, 46syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑦 ∈ ℝ+ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴)))
48 rpre 12920 . . . . . . . . 9 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
49483ad2ant2 1134 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → 𝑦 ∈ ℝ)
50 rpgt0 12924 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 < 𝑦)
51503ad2ant2 1134 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → 0 < 𝑦)
52 gt0ne0 11603 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → 𝑦 ≠ 0)
53 rereccl 11860 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈ ℝ)
5452, 53syldan 591 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → (1 / 𝑦) ∈ ℝ)
5549, 51, 54syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → (1 / 𝑦) ∈ ℝ)
56 recgt0 11988 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → 0 < (1 / 𝑦))
57 ltle 11222 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (1 / 𝑦) ∈ ℝ) → (0 < (1 / 𝑦) → 0 ≤ (1 / 𝑦)))
581, 57mpan 690 . . . . . . . . 9 ((1 / 𝑦) ∈ ℝ → (0 < (1 / 𝑦) → 0 ≤ (1 / 𝑦)))
5954, 56, 58sylc 65 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → 0 ≤ (1 / 𝑦))
6049, 51, 59syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → 0 ≤ (1 / 𝑦))
61 recn 11118 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
6261adantr 480 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → 𝑦 ∈ ℂ)
6362, 52sqrecd 14075 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → ((1 / 𝑦)↑2) = (1 / (𝑦↑2)))
6449, 51, 63syl2anc 584 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → ((1 / 𝑦)↑2) = (1 / (𝑦↑2)))
65 simp3r 1203 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → (𝑦↑2) = (1 / 𝐴))
6665oveq2d 7369 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → (1 / (𝑦↑2)) = (1 / (1 / 𝐴)))
67 recn 11118 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
68 gt0ne0 11603 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
6935, 68syldan 591 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ≠ 0)
70 recrec 11839 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = 𝐴)
7167, 69, 70syl2an2r 685 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 / (1 / 𝐴)) = 𝐴)
72713ad2ant1 1133 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → (1 / (1 / 𝐴)) = 𝐴)
7364, 66, 723eqtrd 2768 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → ((1 / 𝑦)↑2) = 𝐴)
74 breq2 5099 . . . . . . . . 9 (𝑥 = (1 / 𝑦) → (0 ≤ 𝑥 ↔ 0 ≤ (1 / 𝑦)))
75 oveq1 7360 . . . . . . . . . 10 (𝑥 = (1 / 𝑦) → (𝑥↑2) = ((1 / 𝑦)↑2))
7675eqeq1d 2731 . . . . . . . . 9 (𝑥 = (1 / 𝑦) → ((𝑥↑2) = 𝐴 ↔ ((1 / 𝑦)↑2) = 𝐴))
7774, 76anbi12d 632 . . . . . . . 8 (𝑥 = (1 / 𝑦) → ((0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴) ↔ (0 ≤ (1 / 𝑦) ∧ ((1 / 𝑦)↑2) = 𝐴)))
7877rspcev 3579 . . . . . . 7 (((1 / 𝑦) ∈ ℝ ∧ (0 ≤ (1 / 𝑦) ∧ ((1 / 𝑦)↑2) = 𝐴)) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
7955, 60, 73, 78syl12anc 836 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
8079rexlimdv3a 3134 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (∃𝑦 ∈ ℝ+ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴)) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
8147, 80mpd 15 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
8281ex 412 . . 3 (𝐴 ∈ ℝ → (1 ≤ 𝐴 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
8382adantr 480 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 ≤ 𝐴 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
84 simpl 482 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
85 letric 11234 . . 3 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴))
8684, 31, 85sylancl 586 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴))
8729, 83, 86mpjaod 860 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5095  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   < clt 11168  cle 11169   / cdiv 11795  2c2 12201  +crp 12911  cexp 13986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987
This theorem is referenced by:  resqreu  15177  resqrtcl  15178
  Copyright terms: Public domain W3C validator