MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resqrex Structured version   Visualization version   GIF version

Theorem resqrex 14890
Description: Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
resqrex ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem resqrex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 10908 . . . . 5 0 ∈ ℝ
2 leloe 10992 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
31, 2mpan 686 . . . 4 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
4 elrp 12661 . . . . . . 7 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
5 01sqrex 14889 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴))
6 rprege0 12674 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
76anim1i 614 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑥↑2) = 𝐴) → ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑥↑2) = 𝐴))
8 anass 468 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑥↑2) = 𝐴) ↔ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
97, 8sylib 217 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑥↑2) = 𝐴) → (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
109adantrl 712 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴)) → (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
1110reximi2 3171 . . . . . . . 8 (∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
125, 11syl 17 . . . . . . 7 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
134, 12sylanbr 581 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝐴 ≤ 1) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
1413exp31 419 . . . . 5 (𝐴 ∈ ℝ → (0 < 𝐴 → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))))
15 sq0 13837 . . . . . . . . 9 (0↑2) = 0
16 id 22 . . . . . . . . 9 (0 = 𝐴 → 0 = 𝐴)
1715, 16eqtrid 2790 . . . . . . . 8 (0 = 𝐴 → (0↑2) = 𝐴)
18 0le0 12004 . . . . . . . 8 0 ≤ 0
1917, 18jctil 519 . . . . . . 7 (0 = 𝐴 → (0 ≤ 0 ∧ (0↑2) = 𝐴))
20 breq2 5074 . . . . . . . . 9 (𝑥 = 0 → (0 ≤ 𝑥 ↔ 0 ≤ 0))
21 oveq1 7262 . . . . . . . . . 10 (𝑥 = 0 → (𝑥↑2) = (0↑2))
2221eqeq1d 2740 . . . . . . . . 9 (𝑥 = 0 → ((𝑥↑2) = 𝐴 ↔ (0↑2) = 𝐴))
2320, 22anbi12d 630 . . . . . . . 8 (𝑥 = 0 → ((0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴) ↔ (0 ≤ 0 ∧ (0↑2) = 𝐴)))
2423rspcev 3552 . . . . . . 7 ((0 ∈ ℝ ∧ (0 ≤ 0 ∧ (0↑2) = 𝐴)) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
251, 19, 24sylancr 586 . . . . . 6 (0 = 𝐴 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
2625a1i13 27 . . . . 5 (𝐴 ∈ ℝ → (0 = 𝐴 → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))))
2714, 26jaod 855 . . . 4 (𝐴 ∈ ℝ → ((0 < 𝐴 ∨ 0 = 𝐴) → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))))
283, 27sylbid 239 . . 3 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))))
2928imp 406 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
30 0lt1 11427 . . . . . . . . . 10 0 < 1
31 1re 10906 . . . . . . . . . . 11 1 ∈ ℝ
32 ltletr 10997 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴))
331, 31, 32mp3an12 1449 . . . . . . . . . 10 (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴))
3430, 33mpani 692 . . . . . . . . 9 (𝐴 ∈ ℝ → (1 ≤ 𝐴 → 0 < 𝐴))
3534imp 406 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 < 𝐴)
364biimpri 227 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ+)
3735, 36syldan 590 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
3837rpreccld 12711 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 / 𝐴) ∈ ℝ+)
39 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
40 lerec 11788 . . . . . . . . . 10 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / 1)))
4131, 30, 40mpanl12 698 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / 1)))
4235, 41syldan 590 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / 1)))
4339, 42mpbid 231 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 / 𝐴) ≤ (1 / 1))
44 1div1e1 11595 . . . . . . 7 (1 / 1) = 1
4543, 44breqtrdi 5111 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 / 𝐴) ≤ 1)
46 01sqrex 14889 . . . . . 6 (((1 / 𝐴) ∈ ℝ+ ∧ (1 / 𝐴) ≤ 1) → ∃𝑦 ∈ ℝ+ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴)))
4738, 45, 46syl2anc 583 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑦 ∈ ℝ+ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴)))
48 rpre 12667 . . . . . . . . 9 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
49483ad2ant2 1132 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → 𝑦 ∈ ℝ)
50 rpgt0 12671 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 < 𝑦)
51503ad2ant2 1132 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → 0 < 𝑦)
52 gt0ne0 11370 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → 𝑦 ≠ 0)
53 rereccl 11623 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈ ℝ)
5452, 53syldan 590 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → (1 / 𝑦) ∈ ℝ)
5549, 51, 54syl2anc 583 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → (1 / 𝑦) ∈ ℝ)
56 recgt0 11751 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → 0 < (1 / 𝑦))
57 ltle 10994 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (1 / 𝑦) ∈ ℝ) → (0 < (1 / 𝑦) → 0 ≤ (1 / 𝑦)))
581, 57mpan 686 . . . . . . . . 9 ((1 / 𝑦) ∈ ℝ → (0 < (1 / 𝑦) → 0 ≤ (1 / 𝑦)))
5954, 56, 58sylc 65 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → 0 ≤ (1 / 𝑦))
6049, 51, 59syl2anc 583 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → 0 ≤ (1 / 𝑦))
61 recn 10892 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
6261adantr 480 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → 𝑦 ∈ ℂ)
6362, 52sqrecd 13796 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → ((1 / 𝑦)↑2) = (1 / (𝑦↑2)))
6449, 51, 63syl2anc 583 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → ((1 / 𝑦)↑2) = (1 / (𝑦↑2)))
65 simp3r 1200 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → (𝑦↑2) = (1 / 𝐴))
6665oveq2d 7271 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → (1 / (𝑦↑2)) = (1 / (1 / 𝐴)))
67 recn 10892 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
68 gt0ne0 11370 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
6935, 68syldan 590 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ≠ 0)
70 recrec 11602 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = 𝐴)
7167, 69, 70syl2an2r 681 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 / (1 / 𝐴)) = 𝐴)
72713ad2ant1 1131 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → (1 / (1 / 𝐴)) = 𝐴)
7364, 66, 723eqtrd 2782 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → ((1 / 𝑦)↑2) = 𝐴)
74 breq2 5074 . . . . . . . . 9 (𝑥 = (1 / 𝑦) → (0 ≤ 𝑥 ↔ 0 ≤ (1 / 𝑦)))
75 oveq1 7262 . . . . . . . . . 10 (𝑥 = (1 / 𝑦) → (𝑥↑2) = ((1 / 𝑦)↑2))
7675eqeq1d 2740 . . . . . . . . 9 (𝑥 = (1 / 𝑦) → ((𝑥↑2) = 𝐴 ↔ ((1 / 𝑦)↑2) = 𝐴))
7774, 76anbi12d 630 . . . . . . . 8 (𝑥 = (1 / 𝑦) → ((0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴) ↔ (0 ≤ (1 / 𝑦) ∧ ((1 / 𝑦)↑2) = 𝐴)))
7877rspcev 3552 . . . . . . 7 (((1 / 𝑦) ∈ ℝ ∧ (0 ≤ (1 / 𝑦) ∧ ((1 / 𝑦)↑2) = 𝐴)) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
7955, 60, 73, 78syl12anc 833 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
8079rexlimdv3a 3214 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (∃𝑦 ∈ ℝ+ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴)) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
8147, 80mpd 15 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
8281ex 412 . . 3 (𝐴 ∈ ℝ → (1 ≤ 𝐴 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
8382adantr 480 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 ≤ 𝐴 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
84 simpl 482 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
85 letric 11005 . . 3 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴))
8684, 31, 85sylancl 585 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴))
8729, 83, 86mpjaod 856 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064   class class class wbr 5070  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   < clt 10940  cle 10941   / cdiv 11562  2c2 11958  +crp 12659  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711
This theorem is referenced by:  resqreu  14892  resqrtcl  14893
  Copyright terms: Public domain W3C validator