MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resqrex Structured version   Visualization version   GIF version

Theorem resqrex 15144
Description: Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
resqrex ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem resqrex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 11165 . . . . 5 0 ∈ ℝ
2 leloe 11249 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
31, 2mpan 689 . . . 4 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
4 elrp 12925 . . . . . . 7 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
5 01sqrex 15143 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴))
6 rprege0 12938 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
76anim1i 616 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑥↑2) = 𝐴) → ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑥↑2) = 𝐴))
8 anass 470 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑥↑2) = 𝐴) ↔ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
97, 8sylib 217 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑥↑2) = 𝐴) → (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
109adantrl 715 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴)) → (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
1110reximi2 3079 . . . . . . . 8 (∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
125, 11syl 17 . . . . . . 7 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
134, 12sylanbr 583 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝐴 ≤ 1) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
1413exp31 421 . . . . 5 (𝐴 ∈ ℝ → (0 < 𝐴 → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))))
15 sq0 14105 . . . . . . . . 9 (0↑2) = 0
16 id 22 . . . . . . . . 9 (0 = 𝐴 → 0 = 𝐴)
1715, 16eqtrid 2785 . . . . . . . 8 (0 = 𝐴 → (0↑2) = 𝐴)
18 0le0 12262 . . . . . . . 8 0 ≤ 0
1917, 18jctil 521 . . . . . . 7 (0 = 𝐴 → (0 ≤ 0 ∧ (0↑2) = 𝐴))
20 breq2 5113 . . . . . . . . 9 (𝑥 = 0 → (0 ≤ 𝑥 ↔ 0 ≤ 0))
21 oveq1 7368 . . . . . . . . . 10 (𝑥 = 0 → (𝑥↑2) = (0↑2))
2221eqeq1d 2735 . . . . . . . . 9 (𝑥 = 0 → ((𝑥↑2) = 𝐴 ↔ (0↑2) = 𝐴))
2320, 22anbi12d 632 . . . . . . . 8 (𝑥 = 0 → ((0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴) ↔ (0 ≤ 0 ∧ (0↑2) = 𝐴)))
2423rspcev 3583 . . . . . . 7 ((0 ∈ ℝ ∧ (0 ≤ 0 ∧ (0↑2) = 𝐴)) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
251, 19, 24sylancr 588 . . . . . 6 (0 = 𝐴 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
2625a1i13 27 . . . . 5 (𝐴 ∈ ℝ → (0 = 𝐴 → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))))
2714, 26jaod 858 . . . 4 (𝐴 ∈ ℝ → ((0 < 𝐴 ∨ 0 = 𝐴) → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))))
283, 27sylbid 239 . . 3 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))))
2928imp 408 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
30 0lt1 11685 . . . . . . . . . 10 0 < 1
31 1re 11163 . . . . . . . . . . 11 1 ∈ ℝ
32 ltletr 11255 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴))
331, 31, 32mp3an12 1452 . . . . . . . . . 10 (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴))
3430, 33mpani 695 . . . . . . . . 9 (𝐴 ∈ ℝ → (1 ≤ 𝐴 → 0 < 𝐴))
3534imp 408 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 < 𝐴)
364biimpri 227 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ+)
3735, 36syldan 592 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
3837rpreccld 12975 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 / 𝐴) ∈ ℝ+)
39 simpr 486 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
40 lerec 12046 . . . . . . . . . 10 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / 1)))
4131, 30, 40mpanl12 701 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / 1)))
4235, 41syldan 592 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / 1)))
4339, 42mpbid 231 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 / 𝐴) ≤ (1 / 1))
44 1div1e1 11853 . . . . . . 7 (1 / 1) = 1
4543, 44breqtrdi 5150 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 / 𝐴) ≤ 1)
46 01sqrex 15143 . . . . . 6 (((1 / 𝐴) ∈ ℝ+ ∧ (1 / 𝐴) ≤ 1) → ∃𝑦 ∈ ℝ+ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴)))
4738, 45, 46syl2anc 585 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑦 ∈ ℝ+ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴)))
48 rpre 12931 . . . . . . . . 9 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
49483ad2ant2 1135 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → 𝑦 ∈ ℝ)
50 rpgt0 12935 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 < 𝑦)
51503ad2ant2 1135 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → 0 < 𝑦)
52 gt0ne0 11628 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → 𝑦 ≠ 0)
53 rereccl 11881 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈ ℝ)
5452, 53syldan 592 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → (1 / 𝑦) ∈ ℝ)
5549, 51, 54syl2anc 585 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → (1 / 𝑦) ∈ ℝ)
56 recgt0 12009 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → 0 < (1 / 𝑦))
57 ltle 11251 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (1 / 𝑦) ∈ ℝ) → (0 < (1 / 𝑦) → 0 ≤ (1 / 𝑦)))
581, 57mpan 689 . . . . . . . . 9 ((1 / 𝑦) ∈ ℝ → (0 < (1 / 𝑦) → 0 ≤ (1 / 𝑦)))
5954, 56, 58sylc 65 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → 0 ≤ (1 / 𝑦))
6049, 51, 59syl2anc 585 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → 0 ≤ (1 / 𝑦))
61 recn 11149 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
6261adantr 482 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → 𝑦 ∈ ℂ)
6362, 52sqrecd 14064 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → ((1 / 𝑦)↑2) = (1 / (𝑦↑2)))
6449, 51, 63syl2anc 585 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → ((1 / 𝑦)↑2) = (1 / (𝑦↑2)))
65 simp3r 1203 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → (𝑦↑2) = (1 / 𝐴))
6665oveq2d 7377 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → (1 / (𝑦↑2)) = (1 / (1 / 𝐴)))
67 recn 11149 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
68 gt0ne0 11628 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
6935, 68syldan 592 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ≠ 0)
70 recrec 11860 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = 𝐴)
7167, 69, 70syl2an2r 684 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 / (1 / 𝐴)) = 𝐴)
72713ad2ant1 1134 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → (1 / (1 / 𝐴)) = 𝐴)
7364, 66, 723eqtrd 2777 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → ((1 / 𝑦)↑2) = 𝐴)
74 breq2 5113 . . . . . . . . 9 (𝑥 = (1 / 𝑦) → (0 ≤ 𝑥 ↔ 0 ≤ (1 / 𝑦)))
75 oveq1 7368 . . . . . . . . . 10 (𝑥 = (1 / 𝑦) → (𝑥↑2) = ((1 / 𝑦)↑2))
7675eqeq1d 2735 . . . . . . . . 9 (𝑥 = (1 / 𝑦) → ((𝑥↑2) = 𝐴 ↔ ((1 / 𝑦)↑2) = 𝐴))
7774, 76anbi12d 632 . . . . . . . 8 (𝑥 = (1 / 𝑦) → ((0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴) ↔ (0 ≤ (1 / 𝑦) ∧ ((1 / 𝑦)↑2) = 𝐴)))
7877rspcev 3583 . . . . . . 7 (((1 / 𝑦) ∈ ℝ ∧ (0 ≤ (1 / 𝑦) ∧ ((1 / 𝑦)↑2) = 𝐴)) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
7955, 60, 73, 78syl12anc 836 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
8079rexlimdv3a 3153 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (∃𝑦 ∈ ℝ+ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴)) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
8147, 80mpd 15 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
8281ex 414 . . 3 (𝐴 ∈ ℝ → (1 ≤ 𝐴 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
8382adantr 482 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 ≤ 𝐴 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
84 simpl 484 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
85 letric 11263 . . 3 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴))
8684, 31, 85sylancl 587 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴))
8729, 83, 86mpjaod 859 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wne 2940  wrex 3070   class class class wbr 5109  (class class class)co 7361  cc 11057  cr 11058  0cc0 11059  1c1 11060   < clt 11197  cle 11198   / cdiv 11820  2c2 12216  +crp 12923  cexp 13976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-sup 9386  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-3 12225  df-n0 12422  df-z 12508  df-uz 12772  df-rp 12924  df-seq 13916  df-exp 13977
This theorem is referenced by:  resqreu  15146  resqrtcl  15147
  Copyright terms: Public domain W3C validator