MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mulprm Structured version   Visualization version   GIF version

Theorem 2mulprm 16670
Description: A multiple of two is prime iff the multiplier is one. (Contributed by AV, 8-Jun-2023.)
Assertion
Ref Expression
2mulprm (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ ↔ 𝐴 = 1))

Proof of Theorem 2mulprm
StepHypRef Expression
1 zre 12540 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2 0red 11184 . . . . . 6 (𝐴 ∈ ℤ → 0 ∈ ℝ)
31, 2leloed 11324 . . . . 5 (𝐴 ∈ ℤ → (𝐴 ≤ 0 ↔ (𝐴 < 0 ∨ 𝐴 = 0)))
4 prmnn 16651 . . . . . . . . . 10 ((2 · 𝐴) ∈ ℙ → (2 · 𝐴) ∈ ℕ)
5 nnnn0 12456 . . . . . . . . . 10 ((2 · 𝐴) ∈ ℕ → (2 · 𝐴) ∈ ℕ0)
6 nn0ge0 12474 . . . . . . . . . 10 ((2 · 𝐴) ∈ ℕ0 → 0 ≤ (2 · 𝐴))
7 2pos 12296 . . . . . . . . . . . . . . . . . 18 0 < 2
87a1i 11 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → 0 < 2)
98anim1i 615 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → (0 < 2 ∧ 𝐴 < 0))
109olcd 874 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ((2 < 0 ∧ 0 < 𝐴) ∨ (0 < 2 ∧ 𝐴 < 0)))
11 2re 12267 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
1211a1i 11 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → 2 ∈ ℝ)
131adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
1412, 13mul2lt0bi 13066 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ((2 · 𝐴) < 0 ↔ ((2 < 0 ∧ 0 < 𝐴) ∨ (0 < 2 ∧ 𝐴 < 0))))
1510, 14mpbird 257 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → (2 · 𝐴) < 0)
1612, 13remulcld 11211 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → (2 · 𝐴) ∈ ℝ)
17 0red 11184 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → 0 ∈ ℝ)
1816, 17ltnled 11328 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ((2 · 𝐴) < 0 ↔ ¬ 0 ≤ (2 · 𝐴)))
1915, 18mpbid 232 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ¬ 0 ≤ (2 · 𝐴))
2019ex 412 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (𝐴 < 0 → ¬ 0 ≤ (2 · 𝐴)))
2120con2d 134 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (0 ≤ (2 · 𝐴) → ¬ 𝐴 < 0))
2221com12 32 . . . . . . . . . 10 (0 ≤ (2 · 𝐴) → (𝐴 ∈ ℤ → ¬ 𝐴 < 0))
234, 5, 6, 224syl 19 . . . . . . . . 9 ((2 · 𝐴) ∈ ℙ → (𝐴 ∈ ℤ → ¬ 𝐴 < 0))
2423com12 32 . . . . . . . 8 (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ → ¬ 𝐴 < 0))
2524con2d 134 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴 < 0 → ¬ (2 · 𝐴) ∈ ℙ))
2625a1dd 50 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 < 0 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
27 oveq2 7398 . . . . . . . . 9 (𝐴 = 0 → (2 · 𝐴) = (2 · 0))
28 2t0e0 12357 . . . . . . . . 9 (2 · 0) = 0
2927, 28eqtrdi 2781 . . . . . . . 8 (𝐴 = 0 → (2 · 𝐴) = 0)
30 0nprm 16655 . . . . . . . . 9 ¬ 0 ∈ ℙ
3130a1i 11 . . . . . . . 8 (𝐴 = 0 → ¬ 0 ∈ ℙ)
3229, 31eqneltrd 2849 . . . . . . 7 (𝐴 = 0 → ¬ (2 · 𝐴) ∈ ℙ)
3332a1i13 27 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 = 0 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
3426, 33jaod 859 . . . . 5 (𝐴 ∈ ℤ → ((𝐴 < 0 ∨ 𝐴 = 0) → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
353, 34sylbid 240 . . . 4 (𝐴 ∈ ℤ → (𝐴 ≤ 0 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
36 2z 12572 . . . . . . 7 2 ∈ ℤ
37 uzid 12815 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
3836, 37ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
3936a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 2 ∈ ℤ)
40 simp1 1136 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 𝐴 ∈ ℤ)
41 df-ne 2927 . . . . . . . . 9 (𝐴 ≠ 1 ↔ ¬ 𝐴 = 1)
42 1red 11182 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 1 ∈ ℝ)
4342, 1ltlend 11326 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (1 < 𝐴 ↔ (1 ≤ 𝐴𝐴 ≠ 1)))
44 1zzd 12571 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 1 ∈ ℤ)
45 zltp1le 12590 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
4644, 45mpancom 688 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
4746biimpd 229 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (1 < 𝐴 → (1 + 1) ≤ 𝐴))
48 df-2 12256 . . . . . . . . . . . . 13 2 = (1 + 1)
4948breq1i 5117 . . . . . . . . . . . 12 (2 ≤ 𝐴 ↔ (1 + 1) ≤ 𝐴)
5047, 49imbitrrdi 252 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (1 < 𝐴 → 2 ≤ 𝐴))
5143, 50sylbird 260 . . . . . . . . . 10 (𝐴 ∈ ℤ → ((1 ≤ 𝐴𝐴 ≠ 1) → 2 ≤ 𝐴))
5251expdimp 452 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴) → (𝐴 ≠ 1 → 2 ≤ 𝐴))
5341, 52biimtrrid 243 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴) → (¬ 𝐴 = 1 → 2 ≤ 𝐴))
54533impia 1117 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 2 ≤ 𝐴)
55 eluz2 12806 . . . . . . 7 (𝐴 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
5639, 40, 54, 55syl3anbrc 1344 . . . . . 6 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 𝐴 ∈ (ℤ‘2))
57 nprm 16665 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2)) → ¬ (2 · 𝐴) ∈ ℙ)
5838, 56, 57sylancr 587 . . . . 5 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → ¬ (2 · 𝐴) ∈ ℙ)
59583exp 1119 . . . 4 (𝐴 ∈ ℤ → (1 ≤ 𝐴 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
60 zle0orge1 12553 . . . 4 (𝐴 ∈ ℤ → (𝐴 ≤ 0 ∨ 1 ≤ 𝐴))
6135, 59, 60mpjaod 860 . . 3 (𝐴 ∈ ℤ → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ))
6261con4d 115 . 2 (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ → 𝐴 = 1))
63 oveq2 7398 . . . 4 (𝐴 = 1 → (2 · 𝐴) = (2 · 1))
64 2t1e2 12351 . . . 4 (2 · 1) = 2
6563, 64eqtrdi 2781 . . 3 (𝐴 = 1 → (2 · 𝐴) = 2)
66 2prm 16669 . . 3 2 ∈ ℙ
6765, 66eqeltrdi 2837 . 2 (𝐴 = 1 → (2 · 𝐴) ∈ ℙ)
6862, 67impbid1 225 1 (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ ↔ 𝐴 = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800  cprime 16648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-prm 16649
This theorem is referenced by:  2sqreultlem  27365  2sqreunnltlem  27368
  Copyright terms: Public domain W3C validator