MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mulprm Structured version   Visualization version   GIF version

Theorem 2mulprm 16408
Description: A multiple of two is prime iff the multiplier is one. (Contributed by AV, 8-Jun-2023.)
Assertion
Ref Expression
2mulprm (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ ↔ 𝐴 = 1))

Proof of Theorem 2mulprm
StepHypRef Expression
1 zre 12333 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2 0red 10988 . . . . . 6 (𝐴 ∈ ℤ → 0 ∈ ℝ)
31, 2leloed 11128 . . . . 5 (𝐴 ∈ ℤ → (𝐴 ≤ 0 ↔ (𝐴 < 0 ∨ 𝐴 = 0)))
4 prmnn 16389 . . . . . . . . . 10 ((2 · 𝐴) ∈ ℙ → (2 · 𝐴) ∈ ℕ)
5 nnnn0 12250 . . . . . . . . . 10 ((2 · 𝐴) ∈ ℕ → (2 · 𝐴) ∈ ℕ0)
6 nn0ge0 12268 . . . . . . . . . . 11 ((2 · 𝐴) ∈ ℕ0 → 0 ≤ (2 · 𝐴))
7 2pos 12086 . . . . . . . . . . . . . . . . . . 19 0 < 2
87a1i 11 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 0 < 2)
98anim1i 615 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → (0 < 2 ∧ 𝐴 < 0))
109olcd 871 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ((2 < 0 ∧ 0 < 𝐴) ∨ (0 < 2 ∧ 𝐴 < 0)))
11 2re 12057 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
1211a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → 2 ∈ ℝ)
131adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
1412, 13mul2lt0bi 12846 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ((2 · 𝐴) < 0 ↔ ((2 < 0 ∧ 0 < 𝐴) ∨ (0 < 2 ∧ 𝐴 < 0))))
1510, 14mpbird 256 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → (2 · 𝐴) < 0)
1612, 13remulcld 11015 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → (2 · 𝐴) ∈ ℝ)
17 0red 10988 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → 0 ∈ ℝ)
1816, 17ltnled 11132 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ((2 · 𝐴) < 0 ↔ ¬ 0 ≤ (2 · 𝐴)))
1915, 18mpbid 231 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ¬ 0 ≤ (2 · 𝐴))
2019ex 413 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝐴 < 0 → ¬ 0 ≤ (2 · 𝐴)))
2120con2d 134 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (0 ≤ (2 · 𝐴) → ¬ 𝐴 < 0))
2221com12 32 . . . . . . . . . . 11 (0 ≤ (2 · 𝐴) → (𝐴 ∈ ℤ → ¬ 𝐴 < 0))
236, 22syl 17 . . . . . . . . . 10 ((2 · 𝐴) ∈ ℕ0 → (𝐴 ∈ ℤ → ¬ 𝐴 < 0))
244, 5, 233syl 18 . . . . . . . . 9 ((2 · 𝐴) ∈ ℙ → (𝐴 ∈ ℤ → ¬ 𝐴 < 0))
2524com12 32 . . . . . . . 8 (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ → ¬ 𝐴 < 0))
2625con2d 134 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴 < 0 → ¬ (2 · 𝐴) ∈ ℙ))
2726a1dd 50 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 < 0 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
28 oveq2 7275 . . . . . . . . 9 (𝐴 = 0 → (2 · 𝐴) = (2 · 0))
29 2t0e0 12152 . . . . . . . . 9 (2 · 0) = 0
3028, 29eqtrdi 2794 . . . . . . . 8 (𝐴 = 0 → (2 · 𝐴) = 0)
31 0nprm 16393 . . . . . . . . 9 ¬ 0 ∈ ℙ
3231a1i 11 . . . . . . . 8 (𝐴 = 0 → ¬ 0 ∈ ℙ)
3330, 32eqneltrd 2858 . . . . . . 7 (𝐴 = 0 → ¬ (2 · 𝐴) ∈ ℙ)
3433a1i13 27 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 = 0 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
3527, 34jaod 856 . . . . 5 (𝐴 ∈ ℤ → ((𝐴 < 0 ∨ 𝐴 = 0) → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
363, 35sylbid 239 . . . 4 (𝐴 ∈ ℤ → (𝐴 ≤ 0 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
37 2z 12362 . . . . . . 7 2 ∈ ℤ
38 uzid 12607 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
3937, 38ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
4037a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 2 ∈ ℤ)
41 simp1 1135 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 𝐴 ∈ ℤ)
42 df-ne 2944 . . . . . . . . 9 (𝐴 ≠ 1 ↔ ¬ 𝐴 = 1)
43 1red 10986 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 1 ∈ ℝ)
4443, 1ltlend 11130 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (1 < 𝐴 ↔ (1 ≤ 𝐴𝐴 ≠ 1)))
45 1zzd 12361 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 1 ∈ ℤ)
46 zltp1le 12380 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
4745, 46mpancom 685 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
4847biimpd 228 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (1 < 𝐴 → (1 + 1) ≤ 𝐴))
49 df-2 12046 . . . . . . . . . . . . 13 2 = (1 + 1)
5049breq1i 5080 . . . . . . . . . . . 12 (2 ≤ 𝐴 ↔ (1 + 1) ≤ 𝐴)
5148, 50syl6ibr 251 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (1 < 𝐴 → 2 ≤ 𝐴))
5244, 51sylbird 259 . . . . . . . . . 10 (𝐴 ∈ ℤ → ((1 ≤ 𝐴𝐴 ≠ 1) → 2 ≤ 𝐴))
5352expdimp 453 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴) → (𝐴 ≠ 1 → 2 ≤ 𝐴))
5442, 53syl5bir 242 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴) → (¬ 𝐴 = 1 → 2 ≤ 𝐴))
55543impia 1116 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 2 ≤ 𝐴)
56 eluz2 12598 . . . . . . 7 (𝐴 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
5740, 41, 55, 56syl3anbrc 1342 . . . . . 6 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 𝐴 ∈ (ℤ‘2))
58 nprm 16403 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2)) → ¬ (2 · 𝐴) ∈ ℙ)
5939, 57, 58sylancr 587 . . . . 5 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → ¬ (2 · 𝐴) ∈ ℙ)
60593exp 1118 . . . 4 (𝐴 ∈ ℤ → (1 ≤ 𝐴 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
61 zle0orge1 12346 . . . 4 (𝐴 ∈ ℤ → (𝐴 ≤ 0 ∨ 1 ≤ 𝐴))
6236, 60, 61mpjaod 857 . . 3 (𝐴 ∈ ℤ → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ))
6362con4d 115 . 2 (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ → 𝐴 = 1))
64 oveq2 7275 . . . 4 (𝐴 = 1 → (2 · 𝐴) = (2 · 1))
65 2t1e2 12146 . . . 4 (2 · 1) = 2
6664, 65eqtrdi 2794 . . 3 (𝐴 = 1 → (2 · 𝐴) = 2)
67 2prm 16407 . . 3 2 ∈ ℙ
6866, 67eqeltrdi 2847 . 2 (𝐴 = 1 → (2 · 𝐴) ∈ ℙ)
6963, 68impbid1 224 1 (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ ↔ 𝐴 = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5073  cfv 6426  (class class class)co 7267  cr 10880  0cc0 10881  1c1 10882   + caddc 10884   · cmul 10886   < clt 11019  cle 11020  cn 11983  2c2 12038  0cn0 12243  cz 12329  cuz 12592  cprime 16386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-2o 8285  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-sup 9188  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-2 12046  df-3 12047  df-n0 12244  df-z 12330  df-uz 12593  df-rp 12741  df-fz 13250  df-seq 13732  df-exp 13793  df-cj 14820  df-re 14821  df-im 14822  df-sqrt 14956  df-abs 14957  df-dvds 15974  df-prm 16387
This theorem is referenced by:  2sqreultlem  26605  2sqreunnltlem  26608
  Copyright terms: Public domain W3C validator