MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mulprm Structured version   Visualization version   GIF version

Theorem 2mulprm 16696
Description: A multiple of two is prime iff the multiplier is one. (Contributed by AV, 8-Jun-2023.)
Assertion
Ref Expression
2mulprm (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ ↔ 𝐴 = 1))

Proof of Theorem 2mulprm
StepHypRef Expression
1 zre 12616 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2 0red 11269 . . . . . 6 (𝐴 ∈ ℤ → 0 ∈ ℝ)
31, 2leloed 11409 . . . . 5 (𝐴 ∈ ℤ → (𝐴 ≤ 0 ↔ (𝐴 < 0 ∨ 𝐴 = 0)))
4 prmnn 16677 . . . . . . . . . 10 ((2 · 𝐴) ∈ ℙ → (2 · 𝐴) ∈ ℕ)
5 nnnn0 12533 . . . . . . . . . 10 ((2 · 𝐴) ∈ ℕ → (2 · 𝐴) ∈ ℕ0)
6 nn0ge0 12551 . . . . . . . . . 10 ((2 · 𝐴) ∈ ℕ0 → 0 ≤ (2 · 𝐴))
7 2pos 12369 . . . . . . . . . . . . . . . . . 18 0 < 2
87a1i 11 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → 0 < 2)
98anim1i 613 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → (0 < 2 ∧ 𝐴 < 0))
109olcd 872 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ((2 < 0 ∧ 0 < 𝐴) ∨ (0 < 2 ∧ 𝐴 < 0)))
11 2re 12340 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
1211a1i 11 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → 2 ∈ ℝ)
131adantr 479 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
1412, 13mul2lt0bi 13136 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ((2 · 𝐴) < 0 ↔ ((2 < 0 ∧ 0 < 𝐴) ∨ (0 < 2 ∧ 𝐴 < 0))))
1510, 14mpbird 256 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → (2 · 𝐴) < 0)
1612, 13remulcld 11296 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → (2 · 𝐴) ∈ ℝ)
17 0red 11269 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → 0 ∈ ℝ)
1816, 17ltnled 11413 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ((2 · 𝐴) < 0 ↔ ¬ 0 ≤ (2 · 𝐴)))
1915, 18mpbid 231 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ¬ 0 ≤ (2 · 𝐴))
2019ex 411 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (𝐴 < 0 → ¬ 0 ≤ (2 · 𝐴)))
2120con2d 134 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (0 ≤ (2 · 𝐴) → ¬ 𝐴 < 0))
2221com12 32 . . . . . . . . . 10 (0 ≤ (2 · 𝐴) → (𝐴 ∈ ℤ → ¬ 𝐴 < 0))
234, 5, 6, 224syl 19 . . . . . . . . 9 ((2 · 𝐴) ∈ ℙ → (𝐴 ∈ ℤ → ¬ 𝐴 < 0))
2423com12 32 . . . . . . . 8 (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ → ¬ 𝐴 < 0))
2524con2d 134 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴 < 0 → ¬ (2 · 𝐴) ∈ ℙ))
2625a1dd 50 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 < 0 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
27 oveq2 7434 . . . . . . . . 9 (𝐴 = 0 → (2 · 𝐴) = (2 · 0))
28 2t0e0 12435 . . . . . . . . 9 (2 · 0) = 0
2927, 28eqtrdi 2782 . . . . . . . 8 (𝐴 = 0 → (2 · 𝐴) = 0)
30 0nprm 16681 . . . . . . . . 9 ¬ 0 ∈ ℙ
3130a1i 11 . . . . . . . 8 (𝐴 = 0 → ¬ 0 ∈ ℙ)
3229, 31eqneltrd 2846 . . . . . . 7 (𝐴 = 0 → ¬ (2 · 𝐴) ∈ ℙ)
3332a1i13 27 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 = 0 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
3426, 33jaod 857 . . . . 5 (𝐴 ∈ ℤ → ((𝐴 < 0 ∨ 𝐴 = 0) → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
353, 34sylbid 239 . . . 4 (𝐴 ∈ ℤ → (𝐴 ≤ 0 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
36 2z 12648 . . . . . . 7 2 ∈ ℤ
37 uzid 12891 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
3836, 37ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
3936a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 2 ∈ ℤ)
40 simp1 1133 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 𝐴 ∈ ℤ)
41 df-ne 2931 . . . . . . . . 9 (𝐴 ≠ 1 ↔ ¬ 𝐴 = 1)
42 1red 11267 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 1 ∈ ℝ)
4342, 1ltlend 11411 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (1 < 𝐴 ↔ (1 ≤ 𝐴𝐴 ≠ 1)))
44 1zzd 12647 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 1 ∈ ℤ)
45 zltp1le 12666 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
4644, 45mpancom 686 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
4746biimpd 228 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (1 < 𝐴 → (1 + 1) ≤ 𝐴))
48 df-2 12329 . . . . . . . . . . . . 13 2 = (1 + 1)
4948breq1i 5162 . . . . . . . . . . . 12 (2 ≤ 𝐴 ↔ (1 + 1) ≤ 𝐴)
5047, 49imbitrrdi 251 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (1 < 𝐴 → 2 ≤ 𝐴))
5143, 50sylbird 259 . . . . . . . . . 10 (𝐴 ∈ ℤ → ((1 ≤ 𝐴𝐴 ≠ 1) → 2 ≤ 𝐴))
5251expdimp 451 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴) → (𝐴 ≠ 1 → 2 ≤ 𝐴))
5341, 52biimtrrid 242 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴) → (¬ 𝐴 = 1 → 2 ≤ 𝐴))
54533impia 1114 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 2 ≤ 𝐴)
55 eluz2 12882 . . . . . . 7 (𝐴 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
5639, 40, 54, 55syl3anbrc 1340 . . . . . 6 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 𝐴 ∈ (ℤ‘2))
57 nprm 16691 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2)) → ¬ (2 · 𝐴) ∈ ℙ)
5838, 56, 57sylancr 585 . . . . 5 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → ¬ (2 · 𝐴) ∈ ℙ)
59583exp 1116 . . . 4 (𝐴 ∈ ℤ → (1 ≤ 𝐴 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
60 zle0orge1 12629 . . . 4 (𝐴 ∈ ℤ → (𝐴 ≤ 0 ∨ 1 ≤ 𝐴))
6135, 59, 60mpjaod 858 . . 3 (𝐴 ∈ ℤ → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ))
6261con4d 115 . 2 (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ → 𝐴 = 1))
63 oveq2 7434 . . . 4 (𝐴 = 1 → (2 · 𝐴) = (2 · 1))
64 2t1e2 12429 . . . 4 (2 · 1) = 2
6563, 64eqtrdi 2782 . . 3 (𝐴 = 1 → (2 · 𝐴) = 2)
66 2prm 16695 . . 3 2 ∈ ℙ
6765, 66eqeltrdi 2834 . 2 (𝐴 = 1 → (2 · 𝐴) ∈ ℙ)
6862, 67impbid1 224 1 (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ ↔ 𝐴 = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wne 2930   class class class wbr 5155  cfv 6556  (class class class)co 7426  cr 11159  0cc0 11160  1c1 11161   + caddc 11163   · cmul 11165   < clt 11300  cle 11301  cn 12266  2c2 12321  0cn0 12526  cz 12612  cuz 12876  cprime 16674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237  ax-pre-sup 11238
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-2o 8499  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-sup 9487  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12613  df-uz 12877  df-rp 13031  df-fz 13541  df-seq 14024  df-exp 14084  df-cj 15106  df-re 15107  df-im 15108  df-sqrt 15242  df-abs 15243  df-dvds 16259  df-prm 16675
This theorem is referenced by:  2sqreultlem  27479  2sqreunnltlem  27482
  Copyright terms: Public domain W3C validator