MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mulprm Structured version   Visualization version   GIF version

Theorem 2mulprm 16730
Description: A multiple of two is prime iff the multiplier is one. (Contributed by AV, 8-Jun-2023.)
Assertion
Ref Expression
2mulprm (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ ↔ 𝐴 = 1))

Proof of Theorem 2mulprm
StepHypRef Expression
1 zre 12617 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2 0red 11264 . . . . . 6 (𝐴 ∈ ℤ → 0 ∈ ℝ)
31, 2leloed 11404 . . . . 5 (𝐴 ∈ ℤ → (𝐴 ≤ 0 ↔ (𝐴 < 0 ∨ 𝐴 = 0)))
4 prmnn 16711 . . . . . . . . . 10 ((2 · 𝐴) ∈ ℙ → (2 · 𝐴) ∈ ℕ)
5 nnnn0 12533 . . . . . . . . . 10 ((2 · 𝐴) ∈ ℕ → (2 · 𝐴) ∈ ℕ0)
6 nn0ge0 12551 . . . . . . . . . 10 ((2 · 𝐴) ∈ ℕ0 → 0 ≤ (2 · 𝐴))
7 2pos 12369 . . . . . . . . . . . . . . . . . 18 0 < 2
87a1i 11 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → 0 < 2)
98anim1i 615 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → (0 < 2 ∧ 𝐴 < 0))
109olcd 875 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ((2 < 0 ∧ 0 < 𝐴) ∨ (0 < 2 ∧ 𝐴 < 0)))
11 2re 12340 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
1211a1i 11 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → 2 ∈ ℝ)
131adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
1412, 13mul2lt0bi 13141 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ((2 · 𝐴) < 0 ↔ ((2 < 0 ∧ 0 < 𝐴) ∨ (0 < 2 ∧ 𝐴 < 0))))
1510, 14mpbird 257 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → (2 · 𝐴) < 0)
1612, 13remulcld 11291 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → (2 · 𝐴) ∈ ℝ)
17 0red 11264 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → 0 ∈ ℝ)
1816, 17ltnled 11408 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ((2 · 𝐴) < 0 ↔ ¬ 0 ≤ (2 · 𝐴)))
1915, 18mpbid 232 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ¬ 0 ≤ (2 · 𝐴))
2019ex 412 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (𝐴 < 0 → ¬ 0 ≤ (2 · 𝐴)))
2120con2d 134 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (0 ≤ (2 · 𝐴) → ¬ 𝐴 < 0))
2221com12 32 . . . . . . . . . 10 (0 ≤ (2 · 𝐴) → (𝐴 ∈ ℤ → ¬ 𝐴 < 0))
234, 5, 6, 224syl 19 . . . . . . . . 9 ((2 · 𝐴) ∈ ℙ → (𝐴 ∈ ℤ → ¬ 𝐴 < 0))
2423com12 32 . . . . . . . 8 (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ → ¬ 𝐴 < 0))
2524con2d 134 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴 < 0 → ¬ (2 · 𝐴) ∈ ℙ))
2625a1dd 50 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 < 0 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
27 oveq2 7439 . . . . . . . . 9 (𝐴 = 0 → (2 · 𝐴) = (2 · 0))
28 2t0e0 12435 . . . . . . . . 9 (2 · 0) = 0
2927, 28eqtrdi 2793 . . . . . . . 8 (𝐴 = 0 → (2 · 𝐴) = 0)
30 0nprm 16715 . . . . . . . . 9 ¬ 0 ∈ ℙ
3130a1i 11 . . . . . . . 8 (𝐴 = 0 → ¬ 0 ∈ ℙ)
3229, 31eqneltrd 2861 . . . . . . 7 (𝐴 = 0 → ¬ (2 · 𝐴) ∈ ℙ)
3332a1i13 27 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 = 0 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
3426, 33jaod 860 . . . . 5 (𝐴 ∈ ℤ → ((𝐴 < 0 ∨ 𝐴 = 0) → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
353, 34sylbid 240 . . . 4 (𝐴 ∈ ℤ → (𝐴 ≤ 0 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
36 2z 12649 . . . . . . 7 2 ∈ ℤ
37 uzid 12893 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
3836, 37ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
3936a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 2 ∈ ℤ)
40 simp1 1137 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 𝐴 ∈ ℤ)
41 df-ne 2941 . . . . . . . . 9 (𝐴 ≠ 1 ↔ ¬ 𝐴 = 1)
42 1red 11262 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 1 ∈ ℝ)
4342, 1ltlend 11406 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (1 < 𝐴 ↔ (1 ≤ 𝐴𝐴 ≠ 1)))
44 1zzd 12648 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 1 ∈ ℤ)
45 zltp1le 12667 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
4644, 45mpancom 688 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
4746biimpd 229 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (1 < 𝐴 → (1 + 1) ≤ 𝐴))
48 df-2 12329 . . . . . . . . . . . . 13 2 = (1 + 1)
4948breq1i 5150 . . . . . . . . . . . 12 (2 ≤ 𝐴 ↔ (1 + 1) ≤ 𝐴)
5047, 49imbitrrdi 252 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (1 < 𝐴 → 2 ≤ 𝐴))
5143, 50sylbird 260 . . . . . . . . . 10 (𝐴 ∈ ℤ → ((1 ≤ 𝐴𝐴 ≠ 1) → 2 ≤ 𝐴))
5251expdimp 452 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴) → (𝐴 ≠ 1 → 2 ≤ 𝐴))
5341, 52biimtrrid 243 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴) → (¬ 𝐴 = 1 → 2 ≤ 𝐴))
54533impia 1118 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 2 ≤ 𝐴)
55 eluz2 12884 . . . . . . 7 (𝐴 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
5639, 40, 54, 55syl3anbrc 1344 . . . . . 6 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 𝐴 ∈ (ℤ‘2))
57 nprm 16725 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2)) → ¬ (2 · 𝐴) ∈ ℙ)
5838, 56, 57sylancr 587 . . . . 5 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → ¬ (2 · 𝐴) ∈ ℙ)
59583exp 1120 . . . 4 (𝐴 ∈ ℤ → (1 ≤ 𝐴 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
60 zle0orge1 12630 . . . 4 (𝐴 ∈ ℤ → (𝐴 ≤ 0 ∨ 1 ≤ 𝐴))
6135, 59, 60mpjaod 861 . . 3 (𝐴 ∈ ℤ → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ))
6261con4d 115 . 2 (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ → 𝐴 = 1))
63 oveq2 7439 . . . 4 (𝐴 = 1 → (2 · 𝐴) = (2 · 1))
64 2t1e2 12429 . . . 4 (2 · 1) = 2
6563, 64eqtrdi 2793 . . 3 (𝐴 = 1 → (2 · 𝐴) = 2)
66 2prm 16729 . . 3 2 ∈ ℙ
6765, 66eqeltrdi 2849 . 2 (𝐴 = 1 → (2 · 𝐴) ∈ ℙ)
6862, 67impbid1 225 1 (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ ↔ 𝐴 = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  cprime 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-prm 16709
This theorem is referenced by:  2sqreultlem  27491  2sqreunnltlem  27494
  Copyright terms: Public domain W3C validator