MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mulprm Structured version   Visualization version   GIF version

Theorem 2mulprm 16601
Description: A multiple of two is prime iff the multiplier is one. (Contributed by AV, 8-Jun-2023.)
Assertion
Ref Expression
2mulprm (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ ↔ 𝐴 = 1))

Proof of Theorem 2mulprm
StepHypRef Expression
1 zre 12469 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2 0red 11112 . . . . . 6 (𝐴 ∈ ℤ → 0 ∈ ℝ)
31, 2leloed 11253 . . . . 5 (𝐴 ∈ ℤ → (𝐴 ≤ 0 ↔ (𝐴 < 0 ∨ 𝐴 = 0)))
4 prmnn 16582 . . . . . . . . . 10 ((2 · 𝐴) ∈ ℙ → (2 · 𝐴) ∈ ℕ)
5 nnnn0 12385 . . . . . . . . . 10 ((2 · 𝐴) ∈ ℕ → (2 · 𝐴) ∈ ℕ0)
6 nn0ge0 12403 . . . . . . . . . 10 ((2 · 𝐴) ∈ ℕ0 → 0 ≤ (2 · 𝐴))
7 2pos 12225 . . . . . . . . . . . . . . . . . 18 0 < 2
87a1i 11 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → 0 < 2)
98anim1i 615 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → (0 < 2 ∧ 𝐴 < 0))
109olcd 874 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ((2 < 0 ∧ 0 < 𝐴) ∨ (0 < 2 ∧ 𝐴 < 0)))
11 2re 12196 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
1211a1i 11 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → 2 ∈ ℝ)
131adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
1412, 13mul2lt0bi 12995 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ((2 · 𝐴) < 0 ↔ ((2 < 0 ∧ 0 < 𝐴) ∨ (0 < 2 ∧ 𝐴 < 0))))
1510, 14mpbird 257 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → (2 · 𝐴) < 0)
1612, 13remulcld 11139 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → (2 · 𝐴) ∈ ℝ)
17 0red 11112 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → 0 ∈ ℝ)
1816, 17ltnled 11257 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ((2 · 𝐴) < 0 ↔ ¬ 0 ≤ (2 · 𝐴)))
1915, 18mpbid 232 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐴 < 0) → ¬ 0 ≤ (2 · 𝐴))
2019ex 412 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (𝐴 < 0 → ¬ 0 ≤ (2 · 𝐴)))
2120con2d 134 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (0 ≤ (2 · 𝐴) → ¬ 𝐴 < 0))
2221com12 32 . . . . . . . . . 10 (0 ≤ (2 · 𝐴) → (𝐴 ∈ ℤ → ¬ 𝐴 < 0))
234, 5, 6, 224syl 19 . . . . . . . . 9 ((2 · 𝐴) ∈ ℙ → (𝐴 ∈ ℤ → ¬ 𝐴 < 0))
2423com12 32 . . . . . . . 8 (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ → ¬ 𝐴 < 0))
2524con2d 134 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴 < 0 → ¬ (2 · 𝐴) ∈ ℙ))
2625a1dd 50 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 < 0 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
27 oveq2 7354 . . . . . . . . 9 (𝐴 = 0 → (2 · 𝐴) = (2 · 0))
28 2t0e0 12286 . . . . . . . . 9 (2 · 0) = 0
2927, 28eqtrdi 2782 . . . . . . . 8 (𝐴 = 0 → (2 · 𝐴) = 0)
30 0nprm 16586 . . . . . . . . 9 ¬ 0 ∈ ℙ
3130a1i 11 . . . . . . . 8 (𝐴 = 0 → ¬ 0 ∈ ℙ)
3229, 31eqneltrd 2851 . . . . . . 7 (𝐴 = 0 → ¬ (2 · 𝐴) ∈ ℙ)
3332a1i13 27 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 = 0 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
3426, 33jaod 859 . . . . 5 (𝐴 ∈ ℤ → ((𝐴 < 0 ∨ 𝐴 = 0) → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
353, 34sylbid 240 . . . 4 (𝐴 ∈ ℤ → (𝐴 ≤ 0 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
36 2z 12501 . . . . . . 7 2 ∈ ℤ
37 uzid 12744 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
3836, 37ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
3936a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 2 ∈ ℤ)
40 simp1 1136 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 𝐴 ∈ ℤ)
41 df-ne 2929 . . . . . . . . 9 (𝐴 ≠ 1 ↔ ¬ 𝐴 = 1)
42 1red 11110 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 1 ∈ ℝ)
4342, 1ltlend 11255 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (1 < 𝐴 ↔ (1 ≤ 𝐴𝐴 ≠ 1)))
44 1zzd 12500 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 1 ∈ ℤ)
45 zltp1le 12519 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
4644, 45mpancom 688 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
4746biimpd 229 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (1 < 𝐴 → (1 + 1) ≤ 𝐴))
48 df-2 12185 . . . . . . . . . . . . 13 2 = (1 + 1)
4948breq1i 5098 . . . . . . . . . . . 12 (2 ≤ 𝐴 ↔ (1 + 1) ≤ 𝐴)
5047, 49imbitrrdi 252 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (1 < 𝐴 → 2 ≤ 𝐴))
5143, 50sylbird 260 . . . . . . . . . 10 (𝐴 ∈ ℤ → ((1 ≤ 𝐴𝐴 ≠ 1) → 2 ≤ 𝐴))
5251expdimp 452 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴) → (𝐴 ≠ 1 → 2 ≤ 𝐴))
5341, 52biimtrrid 243 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴) → (¬ 𝐴 = 1 → 2 ≤ 𝐴))
54533impia 1117 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 2 ≤ 𝐴)
55 eluz2 12735 . . . . . . 7 (𝐴 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
5639, 40, 54, 55syl3anbrc 1344 . . . . . 6 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → 𝐴 ∈ (ℤ‘2))
57 nprm 16596 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2)) → ¬ (2 · 𝐴) ∈ ℙ)
5838, 56, 57sylancr 587 . . . . 5 ((𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1) → ¬ (2 · 𝐴) ∈ ℙ)
59583exp 1119 . . . 4 (𝐴 ∈ ℤ → (1 ≤ 𝐴 → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ)))
60 zle0orge1 12482 . . . 4 (𝐴 ∈ ℤ → (𝐴 ≤ 0 ∨ 1 ≤ 𝐴))
6135, 59, 60mpjaod 860 . . 3 (𝐴 ∈ ℤ → (¬ 𝐴 = 1 → ¬ (2 · 𝐴) ∈ ℙ))
6261con4d 115 . 2 (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ → 𝐴 = 1))
63 oveq2 7354 . . . 4 (𝐴 = 1 → (2 · 𝐴) = (2 · 1))
64 2t1e2 12280 . . . 4 (2 · 1) = 2
6563, 64eqtrdi 2782 . . 3 (𝐴 = 1 → (2 · 𝐴) = 2)
66 2prm 16600 . . 3 2 ∈ ℙ
6765, 66eqeltrdi 2839 . 2 (𝐴 = 1 → (2 · 𝐴) ∈ ℙ)
6862, 67impbid1 225 1 (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ ↔ 𝐴 = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008   < clt 11143  cle 11144  cn 12122  2c2 12177  0cn0 12378  cz 12465  cuz 12729  cprime 16579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-dvds 16161  df-prm 16580
This theorem is referenced by:  2sqreultlem  27383  2sqreunnltlem  27386
  Copyright terms: Public domain W3C validator