MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comppfsc Structured version   Visualization version   GIF version

Theorem comppfsc 22429
Description: A space where every open cover has a point-finite subcover is compact. This is significant in part because it shows half of the proposition that if only half the generalization in the definition of metacompactness (and consequently paracompactness) is performed, one does not obtain any more spaces. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
comppfsc.1 𝑋 = 𝐽
Assertion
Ref Expression
comppfsc (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑))))
Distinct variable groups:   𝑐,𝑑,𝐽   𝑋,𝑐,𝑑

Proof of Theorem comppfsc
Dummy variables 𝑎 𝑏 𝑓 𝑝 𝑞 𝑠 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 4522 . . . 4 (𝑐 ∈ 𝒫 𝐽𝑐𝐽)
2 comppfsc.1 . . . . . . 7 𝑋 = 𝐽
32cmpcov 22286 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝑐𝐽𝑋 = 𝑐) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)
4 elfpw 8978 . . . . . . . 8 (𝑑 ∈ (𝒫 𝑐 ∩ Fin) ↔ (𝑑𝑐𝑑 ∈ Fin))
5 finptfin 22415 . . . . . . . . . . 11 (𝑑 ∈ Fin → 𝑑 ∈ PtFin)
65anim1i 618 . . . . . . . . . 10 ((𝑑 ∈ Fin ∧ (𝑑𝑐𝑋 = 𝑑)) → (𝑑 ∈ PtFin ∧ (𝑑𝑐𝑋 = 𝑑)))
76anassrs 471 . . . . . . . . 9 (((𝑑 ∈ Fin ∧ 𝑑𝑐) ∧ 𝑋 = 𝑑) → (𝑑 ∈ PtFin ∧ (𝑑𝑐𝑋 = 𝑑)))
87ancom1s 653 . . . . . . . 8 (((𝑑𝑐𝑑 ∈ Fin) ∧ 𝑋 = 𝑑) → (𝑑 ∈ PtFin ∧ (𝑑𝑐𝑋 = 𝑑)))
94, 8sylanb 584 . . . . . . 7 ((𝑑 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑋 = 𝑑) → (𝑑 ∈ PtFin ∧ (𝑑𝑐𝑋 = 𝑑)))
109reximi2 3167 . . . . . 6 (∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑))
113, 10syl 17 . . . . 5 ((𝐽 ∈ Comp ∧ 𝑐𝐽𝑋 = 𝑐) → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑))
12113exp 1121 . . . 4 (𝐽 ∈ Comp → (𝑐𝐽 → (𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑))))
131, 12syl5 34 . . 3 (𝐽 ∈ Comp → (𝑐 ∈ 𝒫 𝐽 → (𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑))))
1413ralrimiv 3104 . 2 (𝐽 ∈ Comp → ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)))
15 elpwi 4522 . . . . . . 7 (𝑎 ∈ 𝒫 𝐽𝑎𝐽)
16 0elpw 5247 . . . . . . . . . . 11 ∅ ∈ 𝒫 𝑎
17 0fin 8849 . . . . . . . . . . 11 ∅ ∈ Fin
1816, 17elini 4107 . . . . . . . . . 10 ∅ ∈ (𝒫 𝑎 ∩ Fin)
19 unieq 4830 . . . . . . . . . . . 12 (𝑏 = ∅ → 𝑏 = ∅)
20 uni0 4849 . . . . . . . . . . . 12 ∅ = ∅
2119, 20eqtrdi 2794 . . . . . . . . . . 11 (𝑏 = ∅ → 𝑏 = ∅)
2221rspceeqv 3552 . . . . . . . . . 10 ((∅ ∈ (𝒫 𝑎 ∩ Fin) ∧ 𝑋 = ∅) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)
2318, 22mpan 690 . . . . . . . . 9 (𝑋 = ∅ → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)
2423a1i13 27 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (𝑋 = ∅ → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
25 n0 4261 . . . . . . . . 9 (𝑋 ≠ ∅ ↔ ∃𝑥 𝑥𝑋)
26 simp2 1139 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → 𝑋 = 𝑎)
2726eleq2d 2823 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (𝑥𝑋𝑥 𝑎))
2827biimpd 232 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (𝑥𝑋𝑥 𝑎))
29 eluni2 4823 . . . . . . . . . . . 12 (𝑥 𝑎 ↔ ∃𝑠𝑎 𝑥𝑠)
3028, 29syl6ib 254 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (𝑥𝑋 → ∃𝑠𝑎 𝑥𝑠))
31 simpl3 1195 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑎𝐽)
32 simprl 771 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑠𝑎)
3331, 32sseldd 3902 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑠𝐽)
34 elssuni 4851 . . . . . . . . . . . . . . . . . . . . 21 (𝑠𝐽𝑠 𝐽)
3534, 2sseqtrrdi 3952 . . . . . . . . . . . . . . . . . . . 20 (𝑠𝐽𝑠𝑋)
3633, 35syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑠𝑋)
3736ralrimivw 3106 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → ∀𝑝𝑎 𝑠𝑋)
38 iunss 4954 . . . . . . . . . . . . . . . . . 18 ( 𝑝𝑎 𝑠𝑋 ↔ ∀𝑝𝑎 𝑠𝑋)
3937, 38sylibr 237 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑝𝑎 𝑠𝑋)
40 ssequn1 4094 . . . . . . . . . . . . . . . . 17 ( 𝑝𝑎 𝑠𝑋 ↔ ( 𝑝𝑎 𝑠𝑋) = 𝑋)
4139, 40sylib 221 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → ( 𝑝𝑎 𝑠𝑋) = 𝑋)
42 simpl2 1194 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑋 = 𝑎)
43 uniiun 4967 . . . . . . . . . . . . . . . . . 18 𝑎 = 𝑝𝑎 𝑝
4442, 43eqtrdi 2794 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑋 = 𝑝𝑎 𝑝)
4544uneq2d 4077 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → ( 𝑝𝑎 𝑠𝑋) = ( 𝑝𝑎 𝑠 𝑝𝑎 𝑝))
4641, 45eqtr3d 2779 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑋 = ( 𝑝𝑎 𝑠 𝑝𝑎 𝑝))
47 iunun 5001 . . . . . . . . . . . . . . . 16 𝑝𝑎 (𝑠𝑝) = ( 𝑝𝑎 𝑠 𝑝𝑎 𝑝)
48 vex 3412 . . . . . . . . . . . . . . . . . 18 𝑠 ∈ V
49 vex 3412 . . . . . . . . . . . . . . . . . 18 𝑝 ∈ V
5048, 49unex 7531 . . . . . . . . . . . . . . . . 17 (𝑠𝑝) ∈ V
5150dfiun3 5835 . . . . . . . . . . . . . . . 16 𝑝𝑎 (𝑠𝑝) = ran (𝑝𝑎 ↦ (𝑠𝑝))
5247, 51eqtr3i 2767 . . . . . . . . . . . . . . 15 ( 𝑝𝑎 𝑠 𝑝𝑎 𝑝) = ran (𝑝𝑎 ↦ (𝑠𝑝))
5346, 52eqtrdi 2794 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑋 = ran (𝑝𝑎 ↦ (𝑠𝑝)))
54 simpll1 1214 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ 𝑝𝑎) → 𝐽 ∈ Top)
5533adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ 𝑝𝑎) → 𝑠𝐽)
5631sselda 3901 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ 𝑝𝑎) → 𝑝𝐽)
57 unopn 21800 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ Top ∧ 𝑠𝐽𝑝𝐽) → (𝑠𝑝) ∈ 𝐽)
5854, 55, 56, 57syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ 𝑝𝑎) → (𝑠𝑝) ∈ 𝐽)
5958fmpttd 6932 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → (𝑝𝑎 ↦ (𝑠𝑝)):𝑎𝐽)
6059frnd 6553 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → ran (𝑝𝑎 ↦ (𝑠𝑝)) ⊆ 𝐽)
61 elpw2g 5237 . . . . . . . . . . . . . . . . . 18 (𝐽 ∈ Top → (ran (𝑝𝑎 ↦ (𝑠𝑝)) ∈ 𝒫 𝐽 ↔ ran (𝑝𝑎 ↦ (𝑠𝑝)) ⊆ 𝐽))
62613ad2ant1 1135 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (ran (𝑝𝑎 ↦ (𝑠𝑝)) ∈ 𝒫 𝐽 ↔ ran (𝑝𝑎 ↦ (𝑠𝑝)) ⊆ 𝐽))
6362adantr 484 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → (ran (𝑝𝑎 ↦ (𝑠𝑝)) ∈ 𝒫 𝐽 ↔ ran (𝑝𝑎 ↦ (𝑠𝑝)) ⊆ 𝐽))
6460, 63mpbird 260 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → ran (𝑝𝑎 ↦ (𝑠𝑝)) ∈ 𝒫 𝐽)
65 unieq 4830 . . . . . . . . . . . . . . . . . 18 (𝑐 = ran (𝑝𝑎 ↦ (𝑠𝑝)) → 𝑐 = ran (𝑝𝑎 ↦ (𝑠𝑝)))
6665eqeq2d 2748 . . . . . . . . . . . . . . . . 17 (𝑐 = ran (𝑝𝑎 ↦ (𝑠𝑝)) → (𝑋 = 𝑐𝑋 = ran (𝑝𝑎 ↦ (𝑠𝑝))))
67 sseq2 3927 . . . . . . . . . . . . . . . . . . 19 (𝑐 = ran (𝑝𝑎 ↦ (𝑠𝑝)) → (𝑑𝑐𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝))))
6867anbi1d 633 . . . . . . . . . . . . . . . . . 18 (𝑐 = ran (𝑝𝑎 ↦ (𝑠𝑝)) → ((𝑑𝑐𝑋 = 𝑑) ↔ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)))
6968rexbidv 3216 . . . . . . . . . . . . . . . . 17 (𝑐 = ran (𝑝𝑎 ↦ (𝑠𝑝)) → (∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑) ↔ ∃𝑑 ∈ PtFin (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)))
7066, 69imbi12d 348 . . . . . . . . . . . . . . . 16 (𝑐 = ran (𝑝𝑎 ↦ (𝑠𝑝)) → ((𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) ↔ (𝑋 = ran (𝑝𝑎 ↦ (𝑠𝑝)) → ∃𝑑 ∈ PtFin (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑))))
7170rspcv 3532 . . . . . . . . . . . . . . 15 (ran (𝑝𝑎 ↦ (𝑠𝑝)) ∈ 𝒫 𝐽 → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → (𝑋 = ran (𝑝𝑎 ↦ (𝑠𝑝)) → ∃𝑑 ∈ PtFin (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑))))
7264, 71syl 17 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → (𝑋 = ran (𝑝𝑎 ↦ (𝑠𝑝)) → ∃𝑑 ∈ PtFin (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑))))
7353, 72mpid 44 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑑 ∈ PtFin (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)))
74 simprr 773 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑥𝑠)
75 ssel2 3895 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎𝐽𝑠𝑎) → 𝑠𝐽)
76753ad2antl3 1189 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ 𝑠𝑎) → 𝑠𝐽)
7776adantrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑠𝐽)
78 elunii 4824 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝑠𝑠𝐽) → 𝑥 𝐽)
7974, 77, 78syl2anc 587 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑥 𝐽)
8079, 2eleqtrrdi 2849 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑥𝑋)
8180adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → 𝑥𝑋)
82 simprr 773 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → 𝑋 = 𝑑)
8381, 82eleqtrd 2840 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → 𝑥 𝑑)
84 eqid 2737 . . . . . . . . . . . . . . . . . . . 20 𝑑 = 𝑑
8584ptfinfin 22416 . . . . . . . . . . . . . . . . . . 19 ((𝑑 ∈ PtFin ∧ 𝑥 𝑑) → {𝑧𝑑𝑥𝑧} ∈ Fin)
8685expcom 417 . . . . . . . . . . . . . . . . . 18 (𝑥 𝑑 → (𝑑 ∈ PtFin → {𝑧𝑑𝑥𝑧} ∈ Fin))
8783, 86syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → (𝑑 ∈ PtFin → {𝑧𝑑𝑥𝑧} ∈ Fin))
88 simprl 771 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → 𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)))
89 elun1 4090 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑠𝑥 ∈ (𝑠𝑝))
9089ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑥 ∈ (𝑠𝑝))
9190ralrimivw 3106 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → ∀𝑝𝑎 𝑥 ∈ (𝑠𝑝))
9250rgenw 3073 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑝𝑎 (𝑠𝑝) ∈ V
93 eqid 2737 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝𝑎 ↦ (𝑠𝑝)) = (𝑝𝑎 ↦ (𝑠𝑝))
94 eleq2 2826 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = (𝑠𝑝) → (𝑥𝑧𝑥 ∈ (𝑠𝑝)))
9593, 94ralrnmptw 6913 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑝𝑎 (𝑠𝑝) ∈ V → (∀𝑧 ∈ ran (𝑝𝑎 ↦ (𝑠𝑝))𝑥𝑧 ↔ ∀𝑝𝑎 𝑥 ∈ (𝑠𝑝)))
9692, 95ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑧 ∈ ran (𝑝𝑎 ↦ (𝑠𝑝))𝑥𝑧 ↔ ∀𝑝𝑎 𝑥 ∈ (𝑠𝑝))
9791, 96sylibr 237 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → ∀𝑧 ∈ ran (𝑝𝑎 ↦ (𝑠𝑝))𝑥𝑧)
9897adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → ∀𝑧 ∈ ran (𝑝𝑎 ↦ (𝑠𝑝))𝑥𝑧)
99 ssralv 3967 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) → (∀𝑧 ∈ ran (𝑝𝑎 ↦ (𝑠𝑝))𝑥𝑧 → ∀𝑧𝑑 𝑥𝑧))
10088, 98, 99sylc 65 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → ∀𝑧𝑑 𝑥𝑧)
101 rabid2 3293 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = {𝑧𝑑𝑥𝑧} ↔ ∀𝑧𝑑 𝑥𝑧)
102100, 101sylibr 237 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → 𝑑 = {𝑧𝑑𝑥𝑧})
103102eleq1d 2822 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → (𝑑 ∈ Fin ↔ {𝑧𝑑𝑥𝑧} ∈ Fin))
104103biimprd 251 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → ({𝑧𝑑𝑥𝑧} ∈ Fin → 𝑑 ∈ Fin))
10593rnmpt 5824 . . . . . . . . . . . . . . . . . . . . 21 ran (𝑝𝑎 ↦ (𝑠𝑝)) = {𝑞 ∣ ∃𝑝𝑎 𝑞 = (𝑠𝑝)}
10688, 105sseqtrdi 3951 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → 𝑑 ⊆ {𝑞 ∣ ∃𝑝𝑎 𝑞 = (𝑠𝑝)})
107 ssabral 3976 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ⊆ {𝑞 ∣ ∃𝑝𝑎 𝑞 = (𝑠𝑝)} ↔ ∀𝑞𝑑𝑝𝑎 𝑞 = (𝑠𝑝))
108106, 107sylib 221 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → ∀𝑞𝑑𝑝𝑎 𝑞 = (𝑠𝑝))
109 uneq2 4071 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = (𝑓𝑞) → (𝑠𝑝) = (𝑠 ∪ (𝑓𝑞)))
110109eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = (𝑓𝑞) → (𝑞 = (𝑠𝑝) ↔ 𝑞 = (𝑠 ∪ (𝑓𝑞))))
111110ac6sfi 8915 . . . . . . . . . . . . . . . . . . . 20 ((𝑑 ∈ Fin ∧ ∀𝑞𝑑𝑝𝑎 𝑞 = (𝑠𝑝)) → ∃𝑓(𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))
112111expcom 417 . . . . . . . . . . . . . . . . . . 19 (∀𝑞𝑑𝑝𝑎 𝑞 = (𝑠𝑝) → (𝑑 ∈ Fin → ∃𝑓(𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞)))))
113108, 112syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → (𝑑 ∈ Fin → ∃𝑓(𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞)))))
114 frn 6552 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:𝑑𝑎 → ran 𝑓𝑎)
115114adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))) → ran 𝑓𝑎)
116115ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → ran 𝑓𝑎)
11732ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑠𝑎)
118117snssd 4722 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → {𝑠} ⊆ 𝑎)
119116, 118unssd 4100 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → (ran 𝑓 ∪ {𝑠}) ⊆ 𝑎)
120 simprl 771 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑑 ∈ Fin)
121 simprrl 781 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑓:𝑑𝑎)
122121ffnd 6546 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑓 Fn 𝑑)
123 dffn4 6639 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 Fn 𝑑𝑓:𝑑onto→ran 𝑓)
124122, 123sylib 221 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑓:𝑑onto→ran 𝑓)
125 fofi 8962 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ Fin ∧ 𝑓:𝑑onto→ran 𝑓) → ran 𝑓 ∈ Fin)
126120, 124, 125syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → ran 𝑓 ∈ Fin)
127 snfi 8721 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑠} ∈ Fin
128 unfi 8850 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ran 𝑓 ∈ Fin ∧ {𝑠} ∈ Fin) → (ran 𝑓 ∪ {𝑠}) ∈ Fin)
129126, 127, 128sylancl 589 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → (ran 𝑓 ∪ {𝑠}) ∈ Fin)
130 elfpw 8978 . . . . . . . . . . . . . . . . . . . . . . 23 ((ran 𝑓 ∪ {𝑠}) ∈ (𝒫 𝑎 ∩ Fin) ↔ ((ran 𝑓 ∪ {𝑠}) ⊆ 𝑎 ∧ (ran 𝑓 ∪ {𝑠}) ∈ Fin))
131119, 129, 130sylanbrc 586 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → (ran 𝑓 ∪ {𝑠}) ∈ (𝒫 𝑎 ∩ Fin))
132 simplrr 778 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑋 = 𝑑)
133 uniiun 4967 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑑 = 𝑞𝑑 𝑞
134 simprrr 782 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞)))
135 iuneq2 4923 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞)) → 𝑞𝑑 𝑞 = 𝑞𝑑 (𝑠 ∪ (𝑓𝑞)))
136134, 135syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑞𝑑 𝑞 = 𝑞𝑑 (𝑠 ∪ (𝑓𝑞)))
137133, 136syl5eq 2790 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑑 = 𝑞𝑑 (𝑠 ∪ (𝑓𝑞)))
138132, 137eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑋 = 𝑞𝑑 (𝑠 ∪ (𝑓𝑞)))
139 ssun2 4087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 {𝑠} ⊆ (ran 𝑓 ∪ {𝑠})
140 vsnid 4578 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑠 ∈ {𝑠}
141139, 140sselii 3897 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑠 ∈ (ran 𝑓 ∪ {𝑠})
142 elssuni 4851 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑠 ∈ (ran 𝑓 ∪ {𝑠}) → 𝑠 (ran 𝑓 ∪ {𝑠}))
143141, 142ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑠 (ran 𝑓 ∪ {𝑠})
144 fvssunirn 6746 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓𝑞) ⊆ ran 𝑓
145 ssun1 4086 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ran 𝑓 ⊆ (ran 𝑓 ∪ {𝑠})
146145unissi 4828 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ran 𝑓 (ran 𝑓 ∪ {𝑠})
147144, 146sstri 3910 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓𝑞) ⊆ (ran 𝑓 ∪ {𝑠})
148143, 147unssi 4099 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 ∪ (𝑓𝑞)) ⊆ (ran 𝑓 ∪ {𝑠})
149148rgenw 3073 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑞𝑑 (𝑠 ∪ (𝑓𝑞)) ⊆ (ran 𝑓 ∪ {𝑠})
150 iunss 4954 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( 𝑞𝑑 (𝑠 ∪ (𝑓𝑞)) ⊆ (ran 𝑓 ∪ {𝑠}) ↔ ∀𝑞𝑑 (𝑠 ∪ (𝑓𝑞)) ⊆ (ran 𝑓 ∪ {𝑠}))
151149, 150mpbir 234 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑞𝑑 (𝑠 ∪ (𝑓𝑞)) ⊆ (ran 𝑓 ∪ {𝑠})
152138, 151eqsstrdi 3955 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑋 (ran 𝑓 ∪ {𝑠}))
15331ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑎𝐽)
154116, 153sstrd 3911 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → ran 𝑓𝐽)
15533ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑠𝐽)
156155snssd 4722 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → {𝑠} ⊆ 𝐽)
157154, 156unssd 4100 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → (ran 𝑓 ∪ {𝑠}) ⊆ 𝐽)
158 uniss 4827 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ran 𝑓 ∪ {𝑠}) ⊆ 𝐽 (ran 𝑓 ∪ {𝑠}) ⊆ 𝐽)
159158, 2sseqtrrdi 3952 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ran 𝑓 ∪ {𝑠}) ⊆ 𝐽 (ran 𝑓 ∪ {𝑠}) ⊆ 𝑋)
160157, 159syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → (ran 𝑓 ∪ {𝑠}) ⊆ 𝑋)
161152, 160eqssd 3918 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑋 = (ran 𝑓 ∪ {𝑠}))
162 unieq 4830 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (ran 𝑓 ∪ {𝑠}) → 𝑏 = (ran 𝑓 ∪ {𝑠}))
163162rspceeqv 3552 . . . . . . . . . . . . . . . . . . . . . 22 (((ran 𝑓 ∪ {𝑠}) ∈ (𝒫 𝑎 ∩ Fin) ∧ 𝑋 = (ran 𝑓 ∪ {𝑠})) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)
164131, 161, 163syl2anc 587 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)
165164expr 460 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ 𝑑 ∈ Fin) → ((𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))
166165exlimdv 1941 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ 𝑑 ∈ Fin) → (∃𝑓(𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))
167166ex 416 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → (𝑑 ∈ Fin → (∃𝑓(𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
168113, 167mpdd 43 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → (𝑑 ∈ Fin → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))
16987, 104, 1683syld 60 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → (𝑑 ∈ PtFin → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))
170169ex 416 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → ((𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑) → (𝑑 ∈ PtFin → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
171170com23 86 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → (𝑑 ∈ PtFin → ((𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
172171rexlimdv 3202 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → (∃𝑑 ∈ PtFin (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))
17373, 172syld 47 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))
174173rexlimdvaa 3204 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (∃𝑠𝑎 𝑥𝑠 → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
17530, 174syld 47 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (𝑥𝑋 → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
176175exlimdv 1941 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (∃𝑥 𝑥𝑋 → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
17725, 176syl5bi 245 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (𝑋 ≠ ∅ → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
17824, 177pm2.61dne 3028 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))
17915, 178syl3an3 1167 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎 ∈ 𝒫 𝐽) → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))
1801793exp 1121 . . . . 5 (𝐽 ∈ Top → (𝑋 = 𝑎 → (𝑎 ∈ 𝒫 𝐽 → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))))
181180com24 95 . . . 4 (𝐽 ∈ Top → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → (𝑎 ∈ 𝒫 𝐽 → (𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))))
182181ralrimdv 3109 . . 3 (𝐽 ∈ Top → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∀𝑎 ∈ 𝒫 𝐽(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
1832iscmp 22285 . . . 4 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑎 ∈ 𝒫 𝐽(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
184183baibr 540 . . 3 (𝐽 ∈ Top → (∀𝑎 ∈ 𝒫 𝐽(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) ↔ 𝐽 ∈ Comp))
185182, 184sylibd 242 . 2 (𝐽 ∈ Top → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → 𝐽 ∈ Comp))
18614, 185impbid2 229 1 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2110  {cab 2714  wne 2940  wral 3061  wrex 3062  {crab 3065  Vcvv 3408  cun 3864  cin 3865  wss 3866  c0 4237  𝒫 cpw 4513  {csn 4541   cuni 4819   ciun 4904  cmpt 5135  ran crn 5552   Fn wfn 6375  wf 6376  ontowfo 6378  cfv 6380  Fincfn 8626  Topctop 21790  Compccmp 22283  PtFincptfin 22400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-fin 8630  df-top 21791  df-cmp 22284  df-ptfin 22403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator