MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comppfsc Structured version   Visualization version   GIF version

Theorem comppfsc 23555
Description: A space where every open cover has a point-finite subcover is compact. This is significant in part because it shows half of the proposition that if only half the generalization in the definition of metacompactness (and consequently paracompactness) is performed, one does not obtain any more spaces. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
comppfsc.1 𝑋 = 𝐽
Assertion
Ref Expression
comppfsc (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑))))
Distinct variable groups:   𝑐,𝑑,𝐽   𝑋,𝑐,𝑑

Proof of Theorem comppfsc
Dummy variables 𝑎 𝑏 𝑓 𝑝 𝑞 𝑠 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 4611 . . . 4 (𝑐 ∈ 𝒫 𝐽𝑐𝐽)
2 comppfsc.1 . . . . . . 7 𝑋 = 𝐽
32cmpcov 23412 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝑐𝐽𝑋 = 𝑐) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)
4 elfpw 9391 . . . . . . . 8 (𝑑 ∈ (𝒫 𝑐 ∩ Fin) ↔ (𝑑𝑐𝑑 ∈ Fin))
5 finptfin 23541 . . . . . . . . . . 11 (𝑑 ∈ Fin → 𝑑 ∈ PtFin)
65anim1i 615 . . . . . . . . . 10 ((𝑑 ∈ Fin ∧ (𝑑𝑐𝑋 = 𝑑)) → (𝑑 ∈ PtFin ∧ (𝑑𝑐𝑋 = 𝑑)))
76anassrs 467 . . . . . . . . 9 (((𝑑 ∈ Fin ∧ 𝑑𝑐) ∧ 𝑋 = 𝑑) → (𝑑 ∈ PtFin ∧ (𝑑𝑐𝑋 = 𝑑)))
87ancom1s 653 . . . . . . . 8 (((𝑑𝑐𝑑 ∈ Fin) ∧ 𝑋 = 𝑑) → (𝑑 ∈ PtFin ∧ (𝑑𝑐𝑋 = 𝑑)))
94, 8sylanb 581 . . . . . . 7 ((𝑑 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑋 = 𝑑) → (𝑑 ∈ PtFin ∧ (𝑑𝑐𝑋 = 𝑑)))
109reximi2 3076 . . . . . 6 (∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑))
113, 10syl 17 . . . . 5 ((𝐽 ∈ Comp ∧ 𝑐𝐽𝑋 = 𝑐) → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑))
12113exp 1118 . . . 4 (𝐽 ∈ Comp → (𝑐𝐽 → (𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑))))
131, 12syl5 34 . . 3 (𝐽 ∈ Comp → (𝑐 ∈ 𝒫 𝐽 → (𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑))))
1413ralrimiv 3142 . 2 (𝐽 ∈ Comp → ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)))
15 elpwi 4611 . . . . . . 7 (𝑎 ∈ 𝒫 𝐽𝑎𝐽)
16 0elpw 5361 . . . . . . . . . . 11 ∅ ∈ 𝒫 𝑎
17 0fi 9080 . . . . . . . . . . 11 ∅ ∈ Fin
1816, 17elini 4208 . . . . . . . . . 10 ∅ ∈ (𝒫 𝑎 ∩ Fin)
19 unieq 4922 . . . . . . . . . . . 12 (𝑏 = ∅ → 𝑏 = ∅)
20 uni0 4939 . . . . . . . . . . . 12 ∅ = ∅
2119, 20eqtrdi 2790 . . . . . . . . . . 11 (𝑏 = ∅ → 𝑏 = ∅)
2221rspceeqv 3644 . . . . . . . . . 10 ((∅ ∈ (𝒫 𝑎 ∩ Fin) ∧ 𝑋 = ∅) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)
2318, 22mpan 690 . . . . . . . . 9 (𝑋 = ∅ → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)
2423a1i13 27 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (𝑋 = ∅ → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
25 n0 4358 . . . . . . . . 9 (𝑋 ≠ ∅ ↔ ∃𝑥 𝑥𝑋)
26 simp2 1136 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → 𝑋 = 𝑎)
2726eleq2d 2824 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (𝑥𝑋𝑥 𝑎))
2827biimpd 229 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (𝑥𝑋𝑥 𝑎))
29 eluni2 4915 . . . . . . . . . . . 12 (𝑥 𝑎 ↔ ∃𝑠𝑎 𝑥𝑠)
3028, 29imbitrdi 251 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (𝑥𝑋 → ∃𝑠𝑎 𝑥𝑠))
31 simpl3 1192 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑎𝐽)
32 simprl 771 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑠𝑎)
3331, 32sseldd 3995 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑠𝐽)
34 elssuni 4941 . . . . . . . . . . . . . . . . . . . . 21 (𝑠𝐽𝑠 𝐽)
3534, 2sseqtrrdi 4046 . . . . . . . . . . . . . . . . . . . 20 (𝑠𝐽𝑠𝑋)
3633, 35syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑠𝑋)
3736ralrimivw 3147 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → ∀𝑝𝑎 𝑠𝑋)
38 iunss 5049 . . . . . . . . . . . . . . . . . 18 ( 𝑝𝑎 𝑠𝑋 ↔ ∀𝑝𝑎 𝑠𝑋)
3937, 38sylibr 234 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑝𝑎 𝑠𝑋)
40 ssequn1 4195 . . . . . . . . . . . . . . . . 17 ( 𝑝𝑎 𝑠𝑋 ↔ ( 𝑝𝑎 𝑠𝑋) = 𝑋)
4139, 40sylib 218 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → ( 𝑝𝑎 𝑠𝑋) = 𝑋)
42 simpl2 1191 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑋 = 𝑎)
43 uniiun 5062 . . . . . . . . . . . . . . . . . 18 𝑎 = 𝑝𝑎 𝑝
4442, 43eqtrdi 2790 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑋 = 𝑝𝑎 𝑝)
4544uneq2d 4177 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → ( 𝑝𝑎 𝑠𝑋) = ( 𝑝𝑎 𝑠 𝑝𝑎 𝑝))
4641, 45eqtr3d 2776 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑋 = ( 𝑝𝑎 𝑠 𝑝𝑎 𝑝))
47 iunun 5097 . . . . . . . . . . . . . . . 16 𝑝𝑎 (𝑠𝑝) = ( 𝑝𝑎 𝑠 𝑝𝑎 𝑝)
48 vex 3481 . . . . . . . . . . . . . . . . . 18 𝑠 ∈ V
49 vex 3481 . . . . . . . . . . . . . . . . . 18 𝑝 ∈ V
5048, 49unex 7762 . . . . . . . . . . . . . . . . 17 (𝑠𝑝) ∈ V
5150dfiun3 5982 . . . . . . . . . . . . . . . 16 𝑝𝑎 (𝑠𝑝) = ran (𝑝𝑎 ↦ (𝑠𝑝))
5247, 51eqtr3i 2764 . . . . . . . . . . . . . . 15 ( 𝑝𝑎 𝑠 𝑝𝑎 𝑝) = ran (𝑝𝑎 ↦ (𝑠𝑝))
5346, 52eqtrdi 2790 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑋 = ran (𝑝𝑎 ↦ (𝑠𝑝)))
54 simpll1 1211 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ 𝑝𝑎) → 𝐽 ∈ Top)
5533adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ 𝑝𝑎) → 𝑠𝐽)
5631sselda 3994 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ 𝑝𝑎) → 𝑝𝐽)
57 unopn 22924 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ Top ∧ 𝑠𝐽𝑝𝐽) → (𝑠𝑝) ∈ 𝐽)
5854, 55, 56, 57syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ 𝑝𝑎) → (𝑠𝑝) ∈ 𝐽)
5958fmpttd 7134 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → (𝑝𝑎 ↦ (𝑠𝑝)):𝑎𝐽)
6059frnd 6744 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → ran (𝑝𝑎 ↦ (𝑠𝑝)) ⊆ 𝐽)
61 elpw2g 5338 . . . . . . . . . . . . . . . . . 18 (𝐽 ∈ Top → (ran (𝑝𝑎 ↦ (𝑠𝑝)) ∈ 𝒫 𝐽 ↔ ran (𝑝𝑎 ↦ (𝑠𝑝)) ⊆ 𝐽))
62613ad2ant1 1132 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (ran (𝑝𝑎 ↦ (𝑠𝑝)) ∈ 𝒫 𝐽 ↔ ran (𝑝𝑎 ↦ (𝑠𝑝)) ⊆ 𝐽))
6362adantr 480 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → (ran (𝑝𝑎 ↦ (𝑠𝑝)) ∈ 𝒫 𝐽 ↔ ran (𝑝𝑎 ↦ (𝑠𝑝)) ⊆ 𝐽))
6460, 63mpbird 257 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → ran (𝑝𝑎 ↦ (𝑠𝑝)) ∈ 𝒫 𝐽)
65 unieq 4922 . . . . . . . . . . . . . . . . . 18 (𝑐 = ran (𝑝𝑎 ↦ (𝑠𝑝)) → 𝑐 = ran (𝑝𝑎 ↦ (𝑠𝑝)))
6665eqeq2d 2745 . . . . . . . . . . . . . . . . 17 (𝑐 = ran (𝑝𝑎 ↦ (𝑠𝑝)) → (𝑋 = 𝑐𝑋 = ran (𝑝𝑎 ↦ (𝑠𝑝))))
67 sseq2 4021 . . . . . . . . . . . . . . . . . . 19 (𝑐 = ran (𝑝𝑎 ↦ (𝑠𝑝)) → (𝑑𝑐𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝))))
6867anbi1d 631 . . . . . . . . . . . . . . . . . 18 (𝑐 = ran (𝑝𝑎 ↦ (𝑠𝑝)) → ((𝑑𝑐𝑋 = 𝑑) ↔ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)))
6968rexbidv 3176 . . . . . . . . . . . . . . . . 17 (𝑐 = ran (𝑝𝑎 ↦ (𝑠𝑝)) → (∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑) ↔ ∃𝑑 ∈ PtFin (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)))
7066, 69imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑐 = ran (𝑝𝑎 ↦ (𝑠𝑝)) → ((𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) ↔ (𝑋 = ran (𝑝𝑎 ↦ (𝑠𝑝)) → ∃𝑑 ∈ PtFin (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑))))
7170rspcv 3617 . . . . . . . . . . . . . . 15 (ran (𝑝𝑎 ↦ (𝑠𝑝)) ∈ 𝒫 𝐽 → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → (𝑋 = ran (𝑝𝑎 ↦ (𝑠𝑝)) → ∃𝑑 ∈ PtFin (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑))))
7264, 71syl 17 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → (𝑋 = ran (𝑝𝑎 ↦ (𝑠𝑝)) → ∃𝑑 ∈ PtFin (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑))))
7353, 72mpid 44 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑑 ∈ PtFin (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)))
74 simprr 773 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑥𝑠)
75 ssel2 3989 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎𝐽𝑠𝑎) → 𝑠𝐽)
76753ad2antl3 1186 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ 𝑠𝑎) → 𝑠𝐽)
7776adantrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑠𝐽)
78 elunii 4916 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝑠𝑠𝐽) → 𝑥 𝐽)
7974, 77, 78syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑥 𝐽)
8079, 2eleqtrrdi 2849 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑥𝑋)
8180adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → 𝑥𝑋)
82 simprr 773 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → 𝑋 = 𝑑)
8381, 82eleqtrd 2840 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → 𝑥 𝑑)
84 eqid 2734 . . . . . . . . . . . . . . . . . . . 20 𝑑 = 𝑑
8584ptfinfin 23542 . . . . . . . . . . . . . . . . . . 19 ((𝑑 ∈ PtFin ∧ 𝑥 𝑑) → {𝑧𝑑𝑥𝑧} ∈ Fin)
8685expcom 413 . . . . . . . . . . . . . . . . . 18 (𝑥 𝑑 → (𝑑 ∈ PtFin → {𝑧𝑑𝑥𝑧} ∈ Fin))
8783, 86syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → (𝑑 ∈ PtFin → {𝑧𝑑𝑥𝑧} ∈ Fin))
88 simprl 771 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → 𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)))
89 elun1 4191 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑠𝑥 ∈ (𝑠𝑝))
9089ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → 𝑥 ∈ (𝑠𝑝))
9190ralrimivw 3147 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → ∀𝑝𝑎 𝑥 ∈ (𝑠𝑝))
9250rgenw 3062 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑝𝑎 (𝑠𝑝) ∈ V
93 eqid 2734 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝𝑎 ↦ (𝑠𝑝)) = (𝑝𝑎 ↦ (𝑠𝑝))
94 eleq2 2827 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = (𝑠𝑝) → (𝑥𝑧𝑥 ∈ (𝑠𝑝)))
9593, 94ralrnmptw 7113 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑝𝑎 (𝑠𝑝) ∈ V → (∀𝑧 ∈ ran (𝑝𝑎 ↦ (𝑠𝑝))𝑥𝑧 ↔ ∀𝑝𝑎 𝑥 ∈ (𝑠𝑝)))
9692, 95ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑧 ∈ ran (𝑝𝑎 ↦ (𝑠𝑝))𝑥𝑧 ↔ ∀𝑝𝑎 𝑥 ∈ (𝑠𝑝))
9791, 96sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → ∀𝑧 ∈ ran (𝑝𝑎 ↦ (𝑠𝑝))𝑥𝑧)
9897adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → ∀𝑧 ∈ ran (𝑝𝑎 ↦ (𝑠𝑝))𝑥𝑧)
99 ssralv 4063 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) → (∀𝑧 ∈ ran (𝑝𝑎 ↦ (𝑠𝑝))𝑥𝑧 → ∀𝑧𝑑 𝑥𝑧))
10088, 98, 99sylc 65 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → ∀𝑧𝑑 𝑥𝑧)
101 rabid2 3467 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = {𝑧𝑑𝑥𝑧} ↔ ∀𝑧𝑑 𝑥𝑧)
102100, 101sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → 𝑑 = {𝑧𝑑𝑥𝑧})
103102eleq1d 2823 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → (𝑑 ∈ Fin ↔ {𝑧𝑑𝑥𝑧} ∈ Fin))
104103biimprd 248 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → ({𝑧𝑑𝑥𝑧} ∈ Fin → 𝑑 ∈ Fin))
10593rnmpt 5970 . . . . . . . . . . . . . . . . . . . . 21 ran (𝑝𝑎 ↦ (𝑠𝑝)) = {𝑞 ∣ ∃𝑝𝑎 𝑞 = (𝑠𝑝)}
10688, 105sseqtrdi 4045 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → 𝑑 ⊆ {𝑞 ∣ ∃𝑝𝑎 𝑞 = (𝑠𝑝)})
107 ssabral 4074 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ⊆ {𝑞 ∣ ∃𝑝𝑎 𝑞 = (𝑠𝑝)} ↔ ∀𝑞𝑑𝑝𝑎 𝑞 = (𝑠𝑝))
108106, 107sylib 218 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → ∀𝑞𝑑𝑝𝑎 𝑞 = (𝑠𝑝))
109 uneq2 4171 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = (𝑓𝑞) → (𝑠𝑝) = (𝑠 ∪ (𝑓𝑞)))
110109eqeq2d 2745 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = (𝑓𝑞) → (𝑞 = (𝑠𝑝) ↔ 𝑞 = (𝑠 ∪ (𝑓𝑞))))
111110ac6sfi 9317 . . . . . . . . . . . . . . . . . . . 20 ((𝑑 ∈ Fin ∧ ∀𝑞𝑑𝑝𝑎 𝑞 = (𝑠𝑝)) → ∃𝑓(𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))
112111expcom 413 . . . . . . . . . . . . . . . . . . 19 (∀𝑞𝑑𝑝𝑎 𝑞 = (𝑠𝑝) → (𝑑 ∈ Fin → ∃𝑓(𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞)))))
113108, 112syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → (𝑑 ∈ Fin → ∃𝑓(𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞)))))
114 frn 6743 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:𝑑𝑎 → ran 𝑓𝑎)
115114adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))) → ran 𝑓𝑎)
116115ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → ran 𝑓𝑎)
11732ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑠𝑎)
118117snssd 4813 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → {𝑠} ⊆ 𝑎)
119116, 118unssd 4201 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → (ran 𝑓 ∪ {𝑠}) ⊆ 𝑎)
120 simprl 771 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑑 ∈ Fin)
121 simprrl 781 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑓:𝑑𝑎)
122121ffnd 6737 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑓 Fn 𝑑)
123 dffn4 6826 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 Fn 𝑑𝑓:𝑑onto→ran 𝑓)
124122, 123sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑓:𝑑onto→ran 𝑓)
125 fofi 9348 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ Fin ∧ 𝑓:𝑑onto→ran 𝑓) → ran 𝑓 ∈ Fin)
126120, 124, 125syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → ran 𝑓 ∈ Fin)
127 snfi 9081 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑠} ∈ Fin
128 unfi 9209 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ran 𝑓 ∈ Fin ∧ {𝑠} ∈ Fin) → (ran 𝑓 ∪ {𝑠}) ∈ Fin)
129126, 127, 128sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → (ran 𝑓 ∪ {𝑠}) ∈ Fin)
130 elfpw 9391 . . . . . . . . . . . . . . . . . . . . . . 23 ((ran 𝑓 ∪ {𝑠}) ∈ (𝒫 𝑎 ∩ Fin) ↔ ((ran 𝑓 ∪ {𝑠}) ⊆ 𝑎 ∧ (ran 𝑓 ∪ {𝑠}) ∈ Fin))
131119, 129, 130sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → (ran 𝑓 ∪ {𝑠}) ∈ (𝒫 𝑎 ∩ Fin))
132 simplrr 778 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑋 = 𝑑)
133 uniiun 5062 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑑 = 𝑞𝑑 𝑞
134 simprrr 782 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞)))
135 iuneq2 5015 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞)) → 𝑞𝑑 𝑞 = 𝑞𝑑 (𝑠 ∪ (𝑓𝑞)))
136134, 135syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑞𝑑 𝑞 = 𝑞𝑑 (𝑠 ∪ (𝑓𝑞)))
137133, 136eqtrid 2786 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑑 = 𝑞𝑑 (𝑠 ∪ (𝑓𝑞)))
138132, 137eqtrd 2774 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑋 = 𝑞𝑑 (𝑠 ∪ (𝑓𝑞)))
139 ssun2 4188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 {𝑠} ⊆ (ran 𝑓 ∪ {𝑠})
140 vsnid 4667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑠 ∈ {𝑠}
141139, 140sselii 3991 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑠 ∈ (ran 𝑓 ∪ {𝑠})
142 elssuni 4941 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑠 ∈ (ran 𝑓 ∪ {𝑠}) → 𝑠 (ran 𝑓 ∪ {𝑠}))
143141, 142ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑠 (ran 𝑓 ∪ {𝑠})
144 fvssunirn 6939 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓𝑞) ⊆ ran 𝑓
145 ssun1 4187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ran 𝑓 ⊆ (ran 𝑓 ∪ {𝑠})
146145unissi 4920 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ran 𝑓 (ran 𝑓 ∪ {𝑠})
147144, 146sstri 4004 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓𝑞) ⊆ (ran 𝑓 ∪ {𝑠})
148143, 147unssi 4200 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 ∪ (𝑓𝑞)) ⊆ (ran 𝑓 ∪ {𝑠})
149148rgenw 3062 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑞𝑑 (𝑠 ∪ (𝑓𝑞)) ⊆ (ran 𝑓 ∪ {𝑠})
150 iunss 5049 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( 𝑞𝑑 (𝑠 ∪ (𝑓𝑞)) ⊆ (ran 𝑓 ∪ {𝑠}) ↔ ∀𝑞𝑑 (𝑠 ∪ (𝑓𝑞)) ⊆ (ran 𝑓 ∪ {𝑠}))
151149, 150mpbir 231 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑞𝑑 (𝑠 ∪ (𝑓𝑞)) ⊆ (ran 𝑓 ∪ {𝑠})
152138, 151eqsstrdi 4049 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑋 (ran 𝑓 ∪ {𝑠}))
15331ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑎𝐽)
154116, 153sstrd 4005 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → ran 𝑓𝐽)
15533ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑠𝐽)
156155snssd 4813 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → {𝑠} ⊆ 𝐽)
157154, 156unssd 4201 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → (ran 𝑓 ∪ {𝑠}) ⊆ 𝐽)
158 uniss 4919 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ran 𝑓 ∪ {𝑠}) ⊆ 𝐽 (ran 𝑓 ∪ {𝑠}) ⊆ 𝐽)
159158, 2sseqtrrdi 4046 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ran 𝑓 ∪ {𝑠}) ⊆ 𝐽 (ran 𝑓 ∪ {𝑠}) ⊆ 𝑋)
160157, 159syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → (ran 𝑓 ∪ {𝑠}) ⊆ 𝑋)
161152, 160eqssd 4012 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → 𝑋 = (ran 𝑓 ∪ {𝑠}))
162 unieq 4922 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (ran 𝑓 ∪ {𝑠}) → 𝑏 = (ran 𝑓 ∪ {𝑠}))
163162rspceeqv 3644 . . . . . . . . . . . . . . . . . . . . . 22 (((ran 𝑓 ∪ {𝑠}) ∈ (𝒫 𝑎 ∩ Fin) ∧ 𝑋 = (ran 𝑓 ∪ {𝑠})) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)
164131, 161, 163syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ (𝑑 ∈ Fin ∧ (𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))))) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)
165164expr 456 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ 𝑑 ∈ Fin) → ((𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))
166165exlimdv 1930 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) ∧ 𝑑 ∈ Fin) → (∃𝑓(𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))
167166ex 412 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → (𝑑 ∈ Fin → (∃𝑓(𝑓:𝑑𝑎 ∧ ∀𝑞𝑑 𝑞 = (𝑠 ∪ (𝑓𝑞))) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
168113, 167mpdd 43 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → (𝑑 ∈ Fin → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))
16987, 104, 1683syld 60 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) ∧ (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑)) → (𝑑 ∈ PtFin → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))
170169ex 412 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → ((𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑) → (𝑑 ∈ PtFin → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
171170com23 86 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → (𝑑 ∈ PtFin → ((𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
172171rexlimdv 3150 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → (∃𝑑 ∈ PtFin (𝑑 ⊆ ran (𝑝𝑎 ↦ (𝑠𝑝)) ∧ 𝑋 = 𝑑) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))
17373, 172syld 47 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) ∧ (𝑠𝑎𝑥𝑠)) → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))
174173rexlimdvaa 3153 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (∃𝑠𝑎 𝑥𝑠 → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
17530, 174syld 47 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (𝑥𝑋 → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
176175exlimdv 1930 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (∃𝑥 𝑥𝑋 → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
17725, 176biimtrid 242 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (𝑋 ≠ ∅ → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
17824, 177pm2.61dne 3025 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽) → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))
17915, 178syl3an3 1164 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎 ∈ 𝒫 𝐽) → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))
1801793exp 1118 . . . . 5 (𝐽 ∈ Top → (𝑋 = 𝑎 → (𝑎 ∈ 𝒫 𝐽 → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))))
181180com24 95 . . . 4 (𝐽 ∈ Top → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → (𝑎 ∈ 𝒫 𝐽 → (𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏))))
182181ralrimdv 3149 . . 3 (𝐽 ∈ Top → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → ∀𝑎 ∈ 𝒫 𝐽(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
1832iscmp 23411 . . . 4 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑎 ∈ 𝒫 𝐽(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏)))
184183baibr 536 . . 3 (𝐽 ∈ Top → (∀𝑎 ∈ 𝒫 𝐽(𝑋 = 𝑎 → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)𝑋 = 𝑏) ↔ 𝐽 ∈ Comp))
185182, 184sylibd 239 . 2 (𝐽 ∈ Top → (∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑)) → 𝐽 ∈ Comp))
18614, 185impbid2 226 1 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ PtFin (𝑑𝑐𝑋 = 𝑑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wex 1775  wcel 2105  {cab 2711  wne 2937  wral 3058  wrex 3067  {crab 3432  Vcvv 3477  cun 3960  cin 3961  wss 3962  c0 4338  𝒫 cpw 4604  {csn 4630   cuni 4911   ciun 4995  cmpt 5230  ran crn 5689   Fn wfn 6557  wf 6558  ontowfo 6560  cfv 6562  Fincfn 8983  Topctop 22914  Compccmp 23409  PtFincptfin 23526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-om 7887  df-1o 8504  df-en 8984  df-dom 8985  df-fin 8987  df-top 22915  df-cmp 23410  df-ptfin 23529
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator