Step | Hyp | Ref
| Expression |
1 | | usgr2pthspth 28130 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ (𝐹(Paths‘𝐺)𝑃 ↔ 𝐹(SPaths‘𝐺)𝑃)) |
2 | | usgrupgr 27552 |
. . . . . . 7
⊢ (𝐺 ∈ USGraph → 𝐺 ∈
UPGraph) |
3 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ 𝐺 ∈
UPGraph) |
4 | | isspth 28092 |
. . . . . . . . 9
⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) |
5 | 4 | a1i 11 |
. . . . . . . 8
⊢ (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃))) |
6 | | usgr2pthlem.v |
. . . . . . . . . . 11
⊢ 𝑉 = (Vtx‘𝐺) |
7 | | usgr2pthlem.i |
. . . . . . . . . . 11
⊢ 𝐼 = (iEdg‘𝐺) |
8 | 6, 7 | upgrf1istrl 28071 |
. . . . . . . . . 10
⊢ (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
9 | 8 | anbi1d 630 |
. . . . . . . . 9
⊢ (𝐺 ∈ UPGraph → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) ↔ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃))) |
10 | | oveq2 7283 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐹) =
2 → (0..^(♯‘𝐹)) = (0..^2)) |
11 | | f1eq2 6666 |
. . . . . . . . . . . . . . . . 17
⊢
((0..^(♯‘𝐹)) = (0..^2) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ 𝐹:(0..^2)–1-1→dom 𝐼)) |
12 | 10, 11 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝐹) =
2 → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ 𝐹:(0..^2)–1-1→dom 𝐼)) |
13 | 12 | biimpd 228 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐹) =
2 → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → 𝐹:(0..^2)–1-1→dom 𝐼)) |
14 | 13 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → 𝐹:(0..^2)–1-1→dom 𝐼)) |
15 | 14 | com12 32 |
. . . . . . . . . . . . 13
⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼)) |
16 | 15 | 3ad2ant1 1132 |
. . . . . . . . . . . 12
⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼)) |
17 | 16 | ad2antrl 725 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼)) |
18 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝐹) =
2 → (0...(♯‘𝐹)) = (0...2)) |
19 | 18 | feq2d 6586 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐹) =
2 → (𝑃:(0...(♯‘𝐹))⟶𝑉 ↔ 𝑃:(0...2)⟶𝑉)) |
20 | | df-f1 6438 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃:(0...2)–1-1→𝑉 ↔ (𝑃:(0...2)⟶𝑉 ∧ Fun ◡𝑃)) |
21 | 20 | simplbi2 501 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃:(0...2)⟶𝑉 → (Fun ◡𝑃 → 𝑃:(0...2)–1-1→𝑉)) |
22 | 21 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐹) =
2 → (𝑃:(0...2)⟶𝑉 → (Fun ◡𝑃 → 𝑃:(0...2)–1-1→𝑉))) |
23 | 19, 22 | sylbid 239 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝐹) =
2 → (𝑃:(0...(♯‘𝐹))⟶𝑉 → (Fun ◡𝑃 → 𝑃:(0...2)–1-1→𝑉))) |
24 | 23 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ (𝑃:(0...(♯‘𝐹))⟶𝑉 → (Fun ◡𝑃 → 𝑃:(0...2)–1-1→𝑉))) |
25 | 24 | com3l 89 |
. . . . . . . . . . . . . 14
⊢ (𝑃:(0...(♯‘𝐹))⟶𝑉 → (Fun ◡𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝑃:(0...2)–1-1→𝑉))) |
26 | 25 | 3ad2ant2 1133 |
. . . . . . . . . . . . 13
⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → (Fun ◡𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝑃:(0...2)–1-1→𝑉))) |
27 | 26 | imp 407 |
. . . . . . . . . . . 12
⊢ (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝑃:(0...2)–1-1→𝑉)) |
28 | 27 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝑃:(0...2)–1-1→𝑉)) |
29 | 6, 7 | usgr2pthlem 28131 |
. . . . . . . . . . . 12
⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))) |
30 | 29 | ad2antrl 725 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))) |
31 | 17, 28, 30 | 3jcad 1128 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |
32 | 31 | ex 413 |
. . . . . . . . 9
⊢ (𝐺 ∈ UPGraph → (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
33 | 9, 32 | sylbid 239 |
. . . . . . . 8
⊢ (𝐺 ∈ UPGraph → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
34 | 5, 33 | sylbid 239 |
. . . . . . 7
⊢ (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
35 | 34 | com23 86 |
. . . . . 6
⊢ (𝐺 ∈ UPGraph → ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ (𝐹(SPaths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
36 | 3, 35 | mpcom 38 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ (𝐹(SPaths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |
37 | 1, 36 | sylbid 239 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ (𝐹(Paths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |
38 | 37 | ex 413 |
. . 3
⊢ (𝐺 ∈ USGraph →
((♯‘𝐹) = 2
→ (𝐹(Paths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
39 | 38 | impcomd 412 |
. 2
⊢ (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |
40 | | 2nn0 12250 |
. . . . . 6
⊢ 2 ∈
ℕ0 |
41 | | f1f 6670 |
. . . . . 6
⊢ (𝐹:(0..^2)–1-1→dom 𝐼 → 𝐹:(0..^2)⟶dom 𝐼) |
42 | | fnfzo0hash 14162 |
. . . . . 6
⊢ ((2
∈ ℕ0 ∧ 𝐹:(0..^2)⟶dom 𝐼) → (♯‘𝐹) = 2) |
43 | 40, 41, 42 | sylancr 587 |
. . . . 5
⊢ (𝐹:(0..^2)–1-1→dom 𝐼 → (♯‘𝐹) = 2) |
44 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . 18
⊢ (2 =
(♯‘𝐹) →
(0..^2) = (0..^(♯‘𝐹))) |
45 | 44 | eqcoms 2746 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐹) =
2 → (0..^2) = (0..^(♯‘𝐹))) |
46 | | f1eq2 6666 |
. . . . . . . . . . . . . . . . 17
⊢ ((0..^2)
= (0..^(♯‘𝐹))
→ (𝐹:(0..^2)–1-1→dom 𝐼 ↔ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)) |
47 | 45, 46 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝐹) =
2 → (𝐹:(0..^2)–1-1→dom 𝐼 ↔ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)) |
48 | 47 | biimpd 228 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐹) =
2 → (𝐹:(0..^2)–1-1→dom 𝐼 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)) |
49 | 48 | imp 407 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝐹)
= 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
50 | 49 | adantr 481 |
. . . . . . . . . . . . 13
⊢
((((♯‘𝐹)
= 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
51 | 50 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
52 | | f1f 6670 |
. . . . . . . . . . . . . . 15
⊢ (𝑃:(0...2)–1-1→𝑉 → 𝑃:(0...2)⟶𝑉) |
53 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . 18
⊢ (2 =
(♯‘𝐹) →
(0...2) = (0...(♯‘𝐹))) |
54 | 53 | eqcoms 2746 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐹) =
2 → (0...2) = (0...(♯‘𝐹))) |
55 | 54 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((♯‘𝐹)
= 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (0...2) = (0...(♯‘𝐹))) |
56 | 55 | feq2d 6586 |
. . . . . . . . . . . . . . 15
⊢
(((♯‘𝐹)
= 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (𝑃:(0...2)⟶𝑉 ↔ 𝑃:(0...(♯‘𝐹))⟶𝑉)) |
57 | 52, 56 | syl5ib 243 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝐹)
= 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (𝑃:(0...2)–1-1→𝑉 → 𝑃:(0...(♯‘𝐹))⟶𝑉)) |
58 | 57 | imp 407 |
. . . . . . . . . . . . 13
⊢
((((♯‘𝐹)
= 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
59 | 58 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
60 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃‘0) = 𝑥 ↔ 𝑥 = (𝑃‘0)) |
61 | 60 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃‘0) = 𝑥 → 𝑥 = (𝑃‘0)) |
62 | 61 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑥 = (𝑃‘0)) |
63 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃‘1) = 𝑦 ↔ 𝑦 = (𝑃‘1)) |
64 | 63 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃‘1) = 𝑦 → 𝑦 = (𝑃‘1)) |
65 | 64 | 3ad2ant2 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑦 = (𝑃‘1)) |
66 | 62, 65 | preq12d 4677 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → {𝑥, 𝑦} = {(𝑃‘0), (𝑃‘1)}) |
67 | 66 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ↔ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) |
68 | 67 | biimpcd 248 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) |
69 | 68 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) |
70 | 69 | impcom 408 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}) |
71 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃‘2) = 𝑧 ↔ 𝑧 = (𝑃‘2)) |
72 | 71 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃‘2) = 𝑧 → 𝑧 = (𝑃‘2)) |
73 | 72 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑧 = (𝑃‘2)) |
74 | 65, 73 | preq12d 4677 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → {𝑦, 𝑧} = {(𝑃‘1), (𝑃‘2)}) |
75 | 74 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → ((𝐼‘(𝐹‘1)) = {𝑦, 𝑧} ↔ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
76 | 75 | biimpcd 248 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐼‘(𝐹‘1)) = {𝑦, 𝑧} → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
77 | 76 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
78 | 77 | impcom 408 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) |
79 | 70, 78 | jca 512 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
80 | 79 | rexlimivw 3211 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑧 ∈
(𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
81 | 80 | rexlimivw 3211 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑦 ∈
(𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
82 | 81 | rexlimivw 3211 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑥 ∈
𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
83 | 82 | a1i13 27 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝐹) =
2 → (∃𝑥 ∈
𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))) |
84 | | fzo0to2pr 13472 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0..^2) =
{0, 1} |
85 | 10, 84 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝐹) =
2 → (0..^(♯‘𝐹)) = {0, 1}) |
86 | 85 | raleqdv 3348 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝐹) =
2 → (∀𝑖 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ {0, 1} (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
87 | | 2wlklem 28035 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑖 ∈
{0, 1} (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
88 | 86, 87 | bitrdi 287 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐹) =
2 → (∀𝑖 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) |
89 | 88 | imbi2d 341 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝐹) =
2 → ((𝐺 ∈ USGraph
→ ∀𝑖 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ↔ (𝐺 ∈ USGraph → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))) |
90 | 83, 89 | sylibrd 258 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐹) =
2 → (∃𝑥 ∈
𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ∀𝑖 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
91 | 90 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢
((((♯‘𝐹)
= 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ∀𝑖 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
92 | 91 | imp 407 |
. . . . . . . . . . . . 13
⊢
(((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → ∀𝑖 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
93 | 92 | imp 407 |
. . . . . . . . . . . 12
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → ∀𝑖 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) |
94 | 51, 59, 93 | 3jca 1127 |
. . . . . . . . . . 11
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
95 | 20 | simprbi 497 |
. . . . . . . . . . . . 13
⊢ (𝑃:(0...2)–1-1→𝑉 → Fun ◡𝑃) |
96 | 95 | adantl 482 |
. . . . . . . . . . . 12
⊢
((((♯‘𝐹)
= 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) → Fun ◡𝑃) |
97 | 96 | ad2antrr 723 |
. . . . . . . . . . 11
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → Fun ◡𝑃) |
98 | 94, 97 | jca 512 |
. . . . . . . . . 10
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) |
99 | 5, 9 | bitrd 278 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃))) |
100 | 2, 99 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃))) |
101 | 100 | adantl 482 |
. . . . . . . . . 10
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃))) |
102 | 98, 101 | mpbird 256 |
. . . . . . . . 9
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐹(SPaths‘𝐺)𝑃) |
103 | | simpr 485 |
. . . . . . . . . 10
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐺 ∈ USGraph) |
104 | | simp-4l 780 |
. . . . . . . . . 10
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (♯‘𝐹) = 2) |
105 | 103, 104,
1 | syl2anc 584 |
. . . . . . . . 9
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹(Paths‘𝐺)𝑃 ↔ 𝐹(SPaths‘𝐺)𝑃)) |
106 | 102, 105 | mpbird 256 |
. . . . . . . 8
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐹(Paths‘𝐺)𝑃) |
107 | 106, 104 | jca 512 |
. . . . . . 7
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2)) |
108 | 107 | ex 413 |
. . . . . 6
⊢
(((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2))) |
109 | 108 | exp41 435 |
. . . . 5
⊢
((♯‘𝐹) =
2 → (𝐹:(0..^2)–1-1→dom 𝐼 → (𝑃:(0...2)–1-1→𝑉 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2)))))) |
110 | 43, 109 | mpcom 38 |
. . . 4
⊢ (𝐹:(0..^2)–1-1→dom 𝐼 → (𝑃:(0...2)–1-1→𝑉 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2))))) |
111 | 110 | 3imp 1110 |
. . 3
⊢ ((𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2))) |
112 | 111 | com12 32 |
. 2
⊢ (𝐺 ∈ USGraph → ((𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2))) |
113 | 39, 112 | impbid 211 |
1
⊢ (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |