| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | usgr2pthspth 29782 | . . . . 5
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ (𝐹(Paths‘𝐺)𝑃 ↔ 𝐹(SPaths‘𝐺)𝑃)) | 
| 2 |  | usgrupgr 29202 | . . . . . . 7
⊢ (𝐺 ∈ USGraph → 𝐺 ∈
UPGraph) | 
| 3 | 2 | adantr 480 | . . . . . 6
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ 𝐺 ∈
UPGraph) | 
| 4 |  | isspth 29742 | . . . . . . . . 9
⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) | 
| 5 | 4 | a1i 11 | . . . . . . . 8
⊢ (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃))) | 
| 6 |  | usgr2pthlem.v | . . . . . . . . . . 11
⊢ 𝑉 = (Vtx‘𝐺) | 
| 7 |  | usgr2pthlem.i | . . . . . . . . . . 11
⊢ 𝐼 = (iEdg‘𝐺) | 
| 8 | 6, 7 | upgrf1istrl 29721 | . . . . . . . . . 10
⊢ (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) | 
| 9 | 8 | anbi1d 631 | . . . . . . . . 9
⊢ (𝐺 ∈ UPGraph → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) ↔ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃))) | 
| 10 |  | oveq2 7439 | . . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐹) =
2 → (0..^(♯‘𝐹)) = (0..^2)) | 
| 11 |  | f1eq2 6800 | . . . . . . . . . . . . . . . . 17
⊢
((0..^(♯‘𝐹)) = (0..^2) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ 𝐹:(0..^2)–1-1→dom 𝐼)) | 
| 12 | 10, 11 | syl 17 | . . . . . . . . . . . . . . . 16
⊢
((♯‘𝐹) =
2 → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ 𝐹:(0..^2)–1-1→dom 𝐼)) | 
| 13 | 12 | biimpd 229 | . . . . . . . . . . . . . . 15
⊢
((♯‘𝐹) =
2 → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → 𝐹:(0..^2)–1-1→dom 𝐼)) | 
| 14 | 13 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → 𝐹:(0..^2)–1-1→dom 𝐼)) | 
| 15 | 14 | com12 32 | . . . . . . . . . . . . 13
⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼)) | 
| 16 | 15 | 3ad2ant1 1134 | . . . . . . . . . . . 12
⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼)) | 
| 17 | 16 | ad2antrl 728 | . . . . . . . . . . 11
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼)) | 
| 18 |  | oveq2 7439 | . . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝐹) =
2 → (0...(♯‘𝐹)) = (0...2)) | 
| 19 | 18 | feq2d 6722 | . . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐹) =
2 → (𝑃:(0...(♯‘𝐹))⟶𝑉 ↔ 𝑃:(0...2)⟶𝑉)) | 
| 20 |  | df-f1 6566 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑃:(0...2)–1-1→𝑉 ↔ (𝑃:(0...2)⟶𝑉 ∧ Fun ◡𝑃)) | 
| 21 | 20 | simplbi2 500 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑃:(0...2)⟶𝑉 → (Fun ◡𝑃 → 𝑃:(0...2)–1-1→𝑉)) | 
| 22 | 21 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐹) =
2 → (𝑃:(0...2)⟶𝑉 → (Fun ◡𝑃 → 𝑃:(0...2)–1-1→𝑉))) | 
| 23 | 19, 22 | sylbid 240 | . . . . . . . . . . . . . . . 16
⊢
((♯‘𝐹) =
2 → (𝑃:(0...(♯‘𝐹))⟶𝑉 → (Fun ◡𝑃 → 𝑃:(0...2)–1-1→𝑉))) | 
| 24 | 23 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ (𝑃:(0...(♯‘𝐹))⟶𝑉 → (Fun ◡𝑃 → 𝑃:(0...2)–1-1→𝑉))) | 
| 25 | 24 | com3l 89 | . . . . . . . . . . . . . 14
⊢ (𝑃:(0...(♯‘𝐹))⟶𝑉 → (Fun ◡𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝑃:(0...2)–1-1→𝑉))) | 
| 26 | 25 | 3ad2ant2 1135 | . . . . . . . . . . . . 13
⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → (Fun ◡𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝑃:(0...2)–1-1→𝑉))) | 
| 27 | 26 | imp 406 | . . . . . . . . . . . 12
⊢ (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝑃:(0...2)–1-1→𝑉)) | 
| 28 | 27 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝑃:(0...2)–1-1→𝑉)) | 
| 29 | 6, 7 | usgr2pthlem 29783 | . . . . . . . . . . . 12
⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))) | 
| 30 | 29 | ad2antrl 728 | . . . . . . . . . . 11
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))) | 
| 31 | 17, 28, 30 | 3jcad 1130 | . . . . . . . . . 10
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) | 
| 32 | 31 | ex 412 | . . . . . . . . 9
⊢ (𝐺 ∈ UPGraph → (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) | 
| 33 | 9, 32 | sylbid 240 | . . . . . . . 8
⊢ (𝐺 ∈ UPGraph → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) | 
| 34 | 5, 33 | sylbid 240 | . . . . . . 7
⊢ (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) | 
| 35 | 34 | com23 86 | . . . . . 6
⊢ (𝐺 ∈ UPGraph → ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ (𝐹(SPaths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) | 
| 36 | 3, 35 | mpcom 38 | . . . . 5
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ (𝐹(SPaths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) | 
| 37 | 1, 36 | sylbid 240 | . . . 4
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ (𝐹(Paths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) | 
| 38 | 37 | ex 412 | . . 3
⊢ (𝐺 ∈ USGraph →
((♯‘𝐹) = 2
→ (𝐹(Paths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) | 
| 39 | 38 | impcomd 411 | . 2
⊢ (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) | 
| 40 |  | 2nn0 12543 | . . . . . 6
⊢ 2 ∈
ℕ0 | 
| 41 |  | f1f 6804 | . . . . . 6
⊢ (𝐹:(0..^2)–1-1→dom 𝐼 → 𝐹:(0..^2)⟶dom 𝐼) | 
| 42 |  | fnfzo0hash 14489 | . . . . . 6
⊢ ((2
∈ ℕ0 ∧ 𝐹:(0..^2)⟶dom 𝐼) → (♯‘𝐹) = 2) | 
| 43 | 40, 41, 42 | sylancr 587 | . . . . 5
⊢ (𝐹:(0..^2)–1-1→dom 𝐼 → (♯‘𝐹) = 2) | 
| 44 |  | oveq2 7439 | . . . . . . . . . . . . . . . . . 18
⊢ (2 =
(♯‘𝐹) →
(0..^2) = (0..^(♯‘𝐹))) | 
| 45 | 44 | eqcoms 2745 | . . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐹) =
2 → (0..^2) = (0..^(♯‘𝐹))) | 
| 46 |  | f1eq2 6800 | . . . . . . . . . . . . . . . . 17
⊢ ((0..^2)
= (0..^(♯‘𝐹))
→ (𝐹:(0..^2)–1-1→dom 𝐼 ↔ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)) | 
| 47 | 45, 46 | syl 17 | . . . . . . . . . . . . . . . 16
⊢
((♯‘𝐹) =
2 → (𝐹:(0..^2)–1-1→dom 𝐼 ↔ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)) | 
| 48 | 47 | biimpd 229 | . . . . . . . . . . . . . . 15
⊢
((♯‘𝐹) =
2 → (𝐹:(0..^2)–1-1→dom 𝐼 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)) | 
| 49 | 48 | imp 406 | . . . . . . . . . . . . . 14
⊢
(((♯‘𝐹)
= 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) | 
| 50 | 49 | adantr 480 | . . . . . . . . . . . . 13
⊢
((((♯‘𝐹)
= 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) | 
| 51 | 50 | ad2antrr 726 | . . . . . . . . . . . 12
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) | 
| 52 |  | f1f 6804 | . . . . . . . . . . . . . . 15
⊢ (𝑃:(0...2)–1-1→𝑉 → 𝑃:(0...2)⟶𝑉) | 
| 53 |  | oveq2 7439 | . . . . . . . . . . . . . . . . . 18
⊢ (2 =
(♯‘𝐹) →
(0...2) = (0...(♯‘𝐹))) | 
| 54 | 53 | eqcoms 2745 | . . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐹) =
2 → (0...2) = (0...(♯‘𝐹))) | 
| 55 | 54 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢
(((♯‘𝐹)
= 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (0...2) = (0...(♯‘𝐹))) | 
| 56 | 55 | feq2d 6722 | . . . . . . . . . . . . . . 15
⊢
(((♯‘𝐹)
= 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (𝑃:(0...2)⟶𝑉 ↔ 𝑃:(0...(♯‘𝐹))⟶𝑉)) | 
| 57 | 52, 56 | imbitrid 244 | . . . . . . . . . . . . . 14
⊢
(((♯‘𝐹)
= 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (𝑃:(0...2)–1-1→𝑉 → 𝑃:(0...(♯‘𝐹))⟶𝑉)) | 
| 58 | 57 | imp 406 | . . . . . . . . . . . . 13
⊢
((((♯‘𝐹)
= 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) → 𝑃:(0...(♯‘𝐹))⟶𝑉) | 
| 59 | 58 | ad2antrr 726 | . . . . . . . . . . . 12
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝑃:(0...(♯‘𝐹))⟶𝑉) | 
| 60 |  | eqcom 2744 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃‘0) = 𝑥 ↔ 𝑥 = (𝑃‘0)) | 
| 61 | 60 | biimpi 216 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃‘0) = 𝑥 → 𝑥 = (𝑃‘0)) | 
| 62 | 61 | 3ad2ant1 1134 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑥 = (𝑃‘0)) | 
| 63 |  | eqcom 2744 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃‘1) = 𝑦 ↔ 𝑦 = (𝑃‘1)) | 
| 64 | 63 | biimpi 216 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃‘1) = 𝑦 → 𝑦 = (𝑃‘1)) | 
| 65 | 64 | 3ad2ant2 1135 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑦 = (𝑃‘1)) | 
| 66 | 62, 65 | preq12d 4741 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → {𝑥, 𝑦} = {(𝑃‘0), (𝑃‘1)}) | 
| 67 | 66 | eqeq2d 2748 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ↔ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) | 
| 68 | 67 | biimpcd 249 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) | 
| 69 | 68 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) | 
| 70 | 69 | impcom 407 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}) | 
| 71 |  | eqcom 2744 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃‘2) = 𝑧 ↔ 𝑧 = (𝑃‘2)) | 
| 72 | 71 | biimpi 216 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃‘2) = 𝑧 → 𝑧 = (𝑃‘2)) | 
| 73 | 72 | 3ad2ant3 1136 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑧 = (𝑃‘2)) | 
| 74 | 65, 73 | preq12d 4741 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → {𝑦, 𝑧} = {(𝑃‘1), (𝑃‘2)}) | 
| 75 | 74 | eqeq2d 2748 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → ((𝐼‘(𝐹‘1)) = {𝑦, 𝑧} ↔ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) | 
| 76 | 75 | biimpcd 249 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐼‘(𝐹‘1)) = {𝑦, 𝑧} → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) | 
| 77 | 76 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) | 
| 78 | 77 | impcom 407 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) | 
| 79 | 70, 78 | jca 511 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) | 
| 80 | 79 | rexlimivw 3151 | . . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑧 ∈
(𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) | 
| 81 | 80 | rexlimivw 3151 | . . . . . . . . . . . . . . . . . 18
⊢
(∃𝑦 ∈
(𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) | 
| 82 | 81 | rexlimivw 3151 | . . . . . . . . . . . . . . . . 17
⊢
(∃𝑥 ∈
𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) | 
| 83 | 82 | a1i13 27 | . . . . . . . . . . . . . . . 16
⊢
((♯‘𝐹) =
2 → (∃𝑥 ∈
𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))) | 
| 84 |  | fzo0to2pr 13789 | . . . . . . . . . . . . . . . . . . . 20
⊢ (0..^2) =
{0, 1} | 
| 85 | 10, 84 | eqtrdi 2793 | . . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝐹) =
2 → (0..^(♯‘𝐹)) = {0, 1}) | 
| 86 | 85 | raleqdv 3326 | . . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝐹) =
2 → (∀𝑖 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ {0, 1} (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) | 
| 87 |  | 2wlklem 29685 | . . . . . . . . . . . . . . . . . 18
⊢
(∀𝑖 ∈
{0, 1} (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) | 
| 88 | 86, 87 | bitrdi 287 | . . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐹) =
2 → (∀𝑖 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) | 
| 89 | 88 | imbi2d 340 | . . . . . . . . . . . . . . . 16
⊢
((♯‘𝐹) =
2 → ((𝐺 ∈ USGraph
→ ∀𝑖 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ↔ (𝐺 ∈ USGraph → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))) | 
| 90 | 83, 89 | sylibrd 259 | . . . . . . . . . . . . . . 15
⊢
((♯‘𝐹) =
2 → (∃𝑥 ∈
𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ∀𝑖 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) | 
| 91 | 90 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢
((((♯‘𝐹)
= 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ∀𝑖 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) | 
| 92 | 91 | imp 406 | . . . . . . . . . . . . 13
⊢
(((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → ∀𝑖 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) | 
| 93 | 92 | imp 406 | . . . . . . . . . . . 12
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → ∀𝑖 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) | 
| 94 | 51, 59, 93 | 3jca 1129 | . . . . . . . . . . 11
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) | 
| 95 | 20 | simprbi 496 | . . . . . . . . . . . . 13
⊢ (𝑃:(0...2)–1-1→𝑉 → Fun ◡𝑃) | 
| 96 | 95 | adantl 481 | . . . . . . . . . . . 12
⊢
((((♯‘𝐹)
= 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) → Fun ◡𝑃) | 
| 97 | 96 | ad2antrr 726 | . . . . . . . . . . 11
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → Fun ◡𝑃) | 
| 98 | 94, 97 | jca 511 | . . . . . . . . . 10
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) | 
| 99 | 5, 9 | bitrd 279 | . . . . . . . . . . . 12
⊢ (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃))) | 
| 100 | 2, 99 | syl 17 | . . . . . . . . . . 11
⊢ (𝐺 ∈ USGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃))) | 
| 101 | 100 | adantl 481 | . . . . . . . . . 10
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃))) | 
| 102 | 98, 101 | mpbird 257 | . . . . . . . . 9
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐹(SPaths‘𝐺)𝑃) | 
| 103 |  | simpr 484 | . . . . . . . . . 10
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐺 ∈ USGraph) | 
| 104 |  | simp-4l 783 | . . . . . . . . . 10
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (♯‘𝐹) = 2) | 
| 105 | 103, 104,
1 | syl2anc 584 | . . . . . . . . 9
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹(Paths‘𝐺)𝑃 ↔ 𝐹(SPaths‘𝐺)𝑃)) | 
| 106 | 102, 105 | mpbird 257 | . . . . . . . 8
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐹(Paths‘𝐺)𝑃) | 
| 107 | 106, 104 | jca 511 | . . . . . . 7
⊢
((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2)) | 
| 108 | 107 | ex 412 | . . . . . 6
⊢
(((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2))) | 
| 109 | 108 | exp41 434 | . . . . 5
⊢
((♯‘𝐹) =
2 → (𝐹:(0..^2)–1-1→dom 𝐼 → (𝑃:(0...2)–1-1→𝑉 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2)))))) | 
| 110 | 43, 109 | mpcom 38 | . . . 4
⊢ (𝐹:(0..^2)–1-1→dom 𝐼 → (𝑃:(0...2)–1-1→𝑉 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2))))) | 
| 111 | 110 | 3imp 1111 | . . 3
⊢ ((𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2))) | 
| 112 | 111 | com12 32 | . 2
⊢ (𝐺 ∈ USGraph → ((𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2))) | 
| 113 | 39, 112 | impbid 212 | 1
⊢ (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |