Step | Hyp | Ref
| Expression |
1 | | usgr2pthspth 29008 |
. . . . 5
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2)
β (πΉ(PathsβπΊ)π β πΉ(SPathsβπΊ)π)) |
2 | | usgrupgr 28431 |
. . . . . . 7
β’ (πΊ β USGraph β πΊ β
UPGraph) |
3 | 2 | adantr 481 |
. . . . . 6
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2)
β πΊ β
UPGraph) |
4 | | isspth 28970 |
. . . . . . . . 9
β’ (πΉ(SPathsβπΊ)π β (πΉ(TrailsβπΊ)π β§ Fun β‘π)) |
5 | 4 | a1i 11 |
. . . . . . . 8
β’ (πΊ β UPGraph β (πΉ(SPathsβπΊ)π β (πΉ(TrailsβπΊ)π β§ Fun β‘π))) |
6 | | usgr2pthlem.v |
. . . . . . . . . . 11
β’ π = (VtxβπΊ) |
7 | | usgr2pthlem.i |
. . . . . . . . . . 11
β’ πΌ = (iEdgβπΊ) |
8 | 6, 7 | upgrf1istrl 28949 |
. . . . . . . . . 10
β’ (πΊ β UPGraph β (πΉ(TrailsβπΊ)π β (πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) |
9 | 8 | anbi1d 630 |
. . . . . . . . 9
β’ (πΊ β UPGraph β ((πΉ(TrailsβπΊ)π β§ Fun β‘π) β ((πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ Fun β‘π))) |
10 | | oveq2 7413 |
. . . . . . . . . . . . . . . . 17
β’
((β―βπΉ) =
2 β (0..^(β―βπΉ)) = (0..^2)) |
11 | | f1eq2 6780 |
. . . . . . . . . . . . . . . . 17
β’
((0..^(β―βπΉ)) = (0..^2) β (πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β πΉ:(0..^2)β1-1βdom πΌ)) |
12 | 10, 11 | syl 17 |
. . . . . . . . . . . . . . . 16
β’
((β―βπΉ) =
2 β (πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β πΉ:(0..^2)β1-1βdom πΌ)) |
13 | 12 | biimpd 228 |
. . . . . . . . . . . . . . 15
β’
((β―βπΉ) =
2 β (πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β πΉ:(0..^2)β1-1βdom πΌ)) |
14 | 13 | adantl 482 |
. . . . . . . . . . . . . 14
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2)
β (πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β πΉ:(0..^2)β1-1βdom πΌ)) |
15 | 14 | com12 32 |
. . . . . . . . . . . . 13
β’ (πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β ((πΊ β USGraph β§ (β―βπΉ) = 2) β πΉ:(0..^2)β1-1βdom πΌ)) |
16 | 15 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
β’ ((πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β ((πΊ β USGraph β§ (β―βπΉ) = 2) β πΉ:(0..^2)β1-1βdom πΌ)) |
17 | 16 | ad2antrl 726 |
. . . . . . . . . . 11
β’ ((πΊ β UPGraph β§ ((πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ Fun β‘π)) β ((πΊ β USGraph β§ (β―βπΉ) = 2) β πΉ:(0..^2)β1-1βdom πΌ)) |
18 | | oveq2 7413 |
. . . . . . . . . . . . . . . . . 18
β’
((β―βπΉ) =
2 β (0...(β―βπΉ)) = (0...2)) |
19 | 18 | feq2d 6700 |
. . . . . . . . . . . . . . . . 17
β’
((β―βπΉ) =
2 β (π:(0...(β―βπΉ))βΆπ β π:(0...2)βΆπ)) |
20 | | df-f1 6545 |
. . . . . . . . . . . . . . . . . . 19
β’ (π:(0...2)β1-1βπ β (π:(0...2)βΆπ β§ Fun β‘π)) |
21 | 20 | simplbi2 501 |
. . . . . . . . . . . . . . . . . 18
β’ (π:(0...2)βΆπ β (Fun β‘π β π:(0...2)β1-1βπ)) |
22 | 21 | a1i 11 |
. . . . . . . . . . . . . . . . 17
β’
((β―βπΉ) =
2 β (π:(0...2)βΆπ β (Fun β‘π β π:(0...2)β1-1βπ))) |
23 | 19, 22 | sylbid 239 |
. . . . . . . . . . . . . . . 16
β’
((β―βπΉ) =
2 β (π:(0...(β―βπΉ))βΆπ β (Fun β‘π β π:(0...2)β1-1βπ))) |
24 | 23 | adantl 482 |
. . . . . . . . . . . . . . 15
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2)
β (π:(0...(β―βπΉ))βΆπ β (Fun β‘π β π:(0...2)β1-1βπ))) |
25 | 24 | com3l 89 |
. . . . . . . . . . . . . 14
β’ (π:(0...(β―βπΉ))βΆπ β (Fun β‘π β ((πΊ β USGraph β§ (β―βπΉ) = 2) β π:(0...2)β1-1βπ))) |
26 | 25 | 3ad2ant2 1134 |
. . . . . . . . . . . . 13
β’ ((πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (Fun β‘π β ((πΊ β USGraph β§ (β―βπΉ) = 2) β π:(0...2)β1-1βπ))) |
27 | 26 | imp 407 |
. . . . . . . . . . . 12
β’ (((πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ Fun β‘π) β ((πΊ β USGraph β§ (β―βπΉ) = 2) β π:(0...2)β1-1βπ)) |
28 | 27 | adantl 482 |
. . . . . . . . . . 11
β’ ((πΊ β UPGraph β§ ((πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ Fun β‘π)) β ((πΊ β USGraph β§ (β―βπΉ) = 2) β π:(0...2)β1-1βπ)) |
29 | 6, 7 | usgr2pthlem 29009 |
. . . . . . . . . . . 12
β’ ((πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β ((πΊ β USGraph β§ (β―βπΉ) = 2) β βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§})))) |
30 | 29 | ad2antrl 726 |
. . . . . . . . . . 11
β’ ((πΊ β UPGraph β§ ((πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ Fun β‘π)) β ((πΊ β USGraph β§ (β―βπΉ) = 2) β βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§})))) |
31 | 17, 28, 30 | 3jcad 1129 |
. . . . . . . . . 10
β’ ((πΊ β UPGraph β§ ((πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ Fun β‘π)) β ((πΊ β USGraph β§ (β―βπΉ) = 2) β (πΉ:(0..^2)β1-1βdom πΌ β§ π:(0...2)β1-1βπ β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))))) |
32 | 31 | ex 413 |
. . . . . . . . 9
β’ (πΊ β UPGraph β (((πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ Fun β‘π) β ((πΊ β USGraph β§ (β―βπΉ) = 2) β (πΉ:(0..^2)β1-1βdom πΌ β§ π:(0...2)β1-1βπ β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§})))))) |
33 | 9, 32 | sylbid 239 |
. . . . . . . 8
β’ (πΊ β UPGraph β ((πΉ(TrailsβπΊ)π β§ Fun β‘π) β ((πΊ β USGraph β§ (β―βπΉ) = 2) β (πΉ:(0..^2)β1-1βdom πΌ β§ π:(0...2)β1-1βπ β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§})))))) |
34 | 5, 33 | sylbid 239 |
. . . . . . 7
β’ (πΊ β UPGraph β (πΉ(SPathsβπΊ)π β ((πΊ β USGraph β§ (β―βπΉ) = 2) β (πΉ:(0..^2)β1-1βdom πΌ β§ π:(0...2)β1-1βπ β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§})))))) |
35 | 34 | com23 86 |
. . . . . 6
β’ (πΊ β UPGraph β ((πΊ β USGraph β§
(β―βπΉ) = 2)
β (πΉ(SPathsβπΊ)π β (πΉ:(0..^2)β1-1βdom πΌ β§ π:(0...2)β1-1βπ β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§})))))) |
36 | 3, 35 | mpcom 38 |
. . . . 5
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2)
β (πΉ(SPathsβπΊ)π β (πΉ:(0..^2)β1-1βdom πΌ β§ π:(0...2)β1-1βπ β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))))) |
37 | 1, 36 | sylbid 239 |
. . . 4
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2)
β (πΉ(PathsβπΊ)π β (πΉ:(0..^2)β1-1βdom πΌ β§ π:(0...2)β1-1βπ β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))))) |
38 | 37 | ex 413 |
. . 3
β’ (πΊ β USGraph β
((β―βπΉ) = 2
β (πΉ(PathsβπΊ)π β (πΉ:(0..^2)β1-1βdom πΌ β§ π:(0...2)β1-1βπ β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§})))))) |
39 | 38 | impcomd 412 |
. 2
β’ (πΊ β USGraph β ((πΉ(PathsβπΊ)π β§ (β―βπΉ) = 2) β (πΉ:(0..^2)β1-1βdom πΌ β§ π:(0...2)β1-1βπ β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))))) |
40 | | 2nn0 12485 |
. . . . . 6
β’ 2 β
β0 |
41 | | f1f 6784 |
. . . . . 6
β’ (πΉ:(0..^2)β1-1βdom πΌ β πΉ:(0..^2)βΆdom πΌ) |
42 | | fnfzo0hash 14405 |
. . . . . 6
β’ ((2
β β0 β§ πΉ:(0..^2)βΆdom πΌ) β (β―βπΉ) = 2) |
43 | 40, 41, 42 | sylancr 587 |
. . . . 5
β’ (πΉ:(0..^2)β1-1βdom πΌ β (β―βπΉ) = 2) |
44 | | oveq2 7413 |
. . . . . . . . . . . . . . . . . 18
β’ (2 =
(β―βπΉ) β
(0..^2) = (0..^(β―βπΉ))) |
45 | 44 | eqcoms 2740 |
. . . . . . . . . . . . . . . . 17
β’
((β―βπΉ) =
2 β (0..^2) = (0..^(β―βπΉ))) |
46 | | f1eq2 6780 |
. . . . . . . . . . . . . . . . 17
β’ ((0..^2)
= (0..^(β―βπΉ))
β (πΉ:(0..^2)β1-1βdom πΌ β πΉ:(0..^(β―βπΉ))β1-1βdom πΌ)) |
47 | 45, 46 | syl 17 |
. . . . . . . . . . . . . . . 16
β’
((β―βπΉ) =
2 β (πΉ:(0..^2)β1-1βdom πΌ β πΉ:(0..^(β―βπΉ))β1-1βdom πΌ)) |
48 | 47 | biimpd 228 |
. . . . . . . . . . . . . . 15
β’
((β―βπΉ) =
2 β (πΉ:(0..^2)β1-1βdom πΌ β πΉ:(0..^(β―βπΉ))β1-1βdom πΌ)) |
49 | 48 | imp 407 |
. . . . . . . . . . . . . 14
β’
(((β―βπΉ)
= 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β πΉ:(0..^(β―βπΉ))β1-1βdom πΌ) |
50 | 49 | adantr 481 |
. . . . . . . . . . . . 13
β’
((((β―βπΉ)
= 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β πΉ:(0..^(β―βπΉ))β1-1βdom πΌ) |
51 | 50 | ad2antrr 724 |
. . . . . . . . . . . 12
β’
((((((β―βπΉ) = 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))) β§ πΊ β USGraph) β πΉ:(0..^(β―βπΉ))β1-1βdom πΌ) |
52 | | f1f 6784 |
. . . . . . . . . . . . . . 15
β’ (π:(0...2)β1-1βπ β π:(0...2)βΆπ) |
53 | | oveq2 7413 |
. . . . . . . . . . . . . . . . . 18
β’ (2 =
(β―βπΉ) β
(0...2) = (0...(β―βπΉ))) |
54 | 53 | eqcoms 2740 |
. . . . . . . . . . . . . . . . 17
β’
((β―βπΉ) =
2 β (0...2) = (0...(β―βπΉ))) |
55 | 54 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’
(((β―βπΉ)
= 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β (0...2) = (0...(β―βπΉ))) |
56 | 55 | feq2d 6700 |
. . . . . . . . . . . . . . 15
β’
(((β―βπΉ)
= 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β (π:(0...2)βΆπ β π:(0...(β―βπΉ))βΆπ)) |
57 | 52, 56 | imbitrid 243 |
. . . . . . . . . . . . . 14
β’
(((β―βπΉ)
= 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β (π:(0...2)β1-1βπ β π:(0...(β―βπΉ))βΆπ)) |
58 | 57 | imp 407 |
. . . . . . . . . . . . 13
β’
((((β―βπΉ)
= 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β π:(0...(β―βπΉ))βΆπ) |
59 | 58 | ad2antrr 724 |
. . . . . . . . . . . 12
β’
((((((β―βπΉ) = 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))) β§ πΊ β USGraph) β π:(0...(β―βπΉ))βΆπ) |
60 | | eqcom 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((πβ0) = π₯ β π₯ = (πβ0)) |
61 | 60 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((πβ0) = π₯ β π₯ = (πβ0)) |
62 | 61 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β π₯ = (πβ0)) |
63 | | eqcom 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((πβ1) = π¦ β π¦ = (πβ1)) |
64 | 63 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((πβ1) = π¦ β π¦ = (πβ1)) |
65 | 64 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β π¦ = (πβ1)) |
66 | 62, 65 | preq12d 4744 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β {π₯, π¦} = {(πβ0), (πβ1)}) |
67 | 66 | eqeq2d 2743 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β ((πΌβ(πΉβ0)) = {π₯, π¦} β (πΌβ(πΉβ0)) = {(πβ0), (πβ1)})) |
68 | 67 | biimpcd 248 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((πΌβ(πΉβ0)) = {π₯, π¦} β (((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β (πΌβ(πΉβ0)) = {(πβ0), (πβ1)})) |
69 | 68 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}) β (((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β (πΌβ(πΉβ0)) = {(πβ0), (πβ1)})) |
70 | 69 | impcom 408 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§})) β (πΌβ(πΉβ0)) = {(πβ0), (πβ1)}) |
71 | | eqcom 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((πβ2) = π§ β π§ = (πβ2)) |
72 | 71 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((πβ2) = π§ β π§ = (πβ2)) |
73 | 72 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β π§ = (πβ2)) |
74 | 65, 73 | preq12d 4744 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β {π¦, π§} = {(πβ1), (πβ2)}) |
75 | 74 | eqeq2d 2743 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β ((πΌβ(πΉβ1)) = {π¦, π§} β (πΌβ(πΉβ1)) = {(πβ1), (πβ2)})) |
76 | 75 | biimpcd 248 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((πΌβ(πΉβ1)) = {π¦, π§} β (((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β (πΌβ(πΉβ1)) = {(πβ1), (πβ2)})) |
77 | 76 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}) β (((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β (πΌβ(πΉβ1)) = {(πβ1), (πβ2)})) |
78 | 77 | impcom 408 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§})) β (πΌβ(πΉβ1)) = {(πβ1), (πβ2)}) |
79 | 70, 78 | jca 512 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§})) β ((πΌβ(πΉβ0)) = {(πβ0), (πβ1)} β§ (πΌβ(πΉβ1)) = {(πβ1), (πβ2)})) |
80 | 79 | rexlimivw 3151 |
. . . . . . . . . . . . . . . . . . 19
β’
(βπ§ β
(π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§})) β ((πΌβ(πΉβ0)) = {(πβ0), (πβ1)} β§ (πΌβ(πΉβ1)) = {(πβ1), (πβ2)})) |
81 | 80 | rexlimivw 3151 |
. . . . . . . . . . . . . . . . . 18
β’
(βπ¦ β
(π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§})) β ((πΌβ(πΉβ0)) = {(πβ0), (πβ1)} β§ (πΌβ(πΉβ1)) = {(πβ1), (πβ2)})) |
82 | 81 | rexlimivw 3151 |
. . . . . . . . . . . . . . . . 17
β’
(βπ₯ β
π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§})) β ((πΌβ(πΉβ0)) = {(πβ0), (πβ1)} β§ (πΌβ(πΉβ1)) = {(πβ1), (πβ2)})) |
83 | 82 | a1i13 27 |
. . . . . . . . . . . . . . . 16
β’
((β―βπΉ) =
2 β (βπ₯ β
π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§})) β (πΊ β USGraph β ((πΌβ(πΉβ0)) = {(πβ0), (πβ1)} β§ (πΌβ(πΉβ1)) = {(πβ1), (πβ2)})))) |
84 | | fzo0to2pr 13713 |
. . . . . . . . . . . . . . . . . . . 20
β’ (0..^2) =
{0, 1} |
85 | 10, 84 | eqtrdi 2788 |
. . . . . . . . . . . . . . . . . . 19
β’
((β―βπΉ) =
2 β (0..^(β―βπΉ)) = {0, 1}) |
86 | 85 | raleqdv 3325 |
. . . . . . . . . . . . . . . . . 18
β’
((β―βπΉ) =
2 β (βπ β
(0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))} β βπ β {0, 1} (πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))})) |
87 | | 2wlklem 28913 |
. . . . . . . . . . . . . . . . . 18
β’
(βπ β
{0, 1} (πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))} β ((πΌβ(πΉβ0)) = {(πβ0), (πβ1)} β§ (πΌβ(πΉβ1)) = {(πβ1), (πβ2)})) |
88 | 86, 87 | bitrdi 286 |
. . . . . . . . . . . . . . . . 17
β’
((β―βπΉ) =
2 β (βπ β
(0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))} β ((πΌβ(πΉβ0)) = {(πβ0), (πβ1)} β§ (πΌβ(πΉβ1)) = {(πβ1), (πβ2)}))) |
89 | 88 | imbi2d 340 |
. . . . . . . . . . . . . . . 16
β’
((β―βπΉ) =
2 β ((πΊ β USGraph
β βπ β
(0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (πΊ β USGraph β ((πΌβ(πΉβ0)) = {(πβ0), (πβ1)} β§ (πΌβ(πΉβ1)) = {(πβ1), (πβ2)})))) |
90 | 83, 89 | sylibrd 258 |
. . . . . . . . . . . . . . 15
β’
((β―βπΉ) =
2 β (βπ₯ β
π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§})) β (πΊ β USGraph β βπ β
(0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) |
91 | 90 | ad2antrr 724 |
. . . . . . . . . . . . . 14
β’
((((β―βπΉ)
= 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β (βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§})) β (πΊ β USGraph β βπ β
(0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) |
92 | 91 | imp 407 |
. . . . . . . . . . . . 13
β’
(((((β―βπΉ) = 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))) β (πΊ β USGraph β βπ β
(0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))})) |
93 | 92 | imp 407 |
. . . . . . . . . . . 12
β’
((((((β―βπΉ) = 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))) β§ πΊ β USGraph) β βπ β
(0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) |
94 | 51, 59, 93 | 3jca 1128 |
. . . . . . . . . . 11
β’
((((((β―βπΉ) = 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))) β§ πΊ β USGraph) β (πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))})) |
95 | 20 | simprbi 497 |
. . . . . . . . . . . . 13
β’ (π:(0...2)β1-1βπ β Fun β‘π) |
96 | 95 | adantl 482 |
. . . . . . . . . . . 12
β’
((((β―βπΉ)
= 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β Fun β‘π) |
97 | 96 | ad2antrr 724 |
. . . . . . . . . . 11
β’
((((((β―βπΉ) = 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))) β§ πΊ β USGraph) β Fun β‘π) |
98 | 94, 97 | jca 512 |
. . . . . . . . . 10
β’
((((((β―βπΉ) = 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))) β§ πΊ β USGraph) β ((πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ Fun β‘π)) |
99 | 5, 9 | bitrd 278 |
. . . . . . . . . . . 12
β’ (πΊ β UPGraph β (πΉ(SPathsβπΊ)π β ((πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ Fun β‘π))) |
100 | 2, 99 | syl 17 |
. . . . . . . . . . 11
β’ (πΊ β USGraph β (πΉ(SPathsβπΊ)π β ((πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ Fun β‘π))) |
101 | 100 | adantl 482 |
. . . . . . . . . 10
β’
((((((β―βπΉ) = 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))) β§ πΊ β USGraph) β (πΉ(SPathsβπΊ)π β ((πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ Fun β‘π))) |
102 | 98, 101 | mpbird 256 |
. . . . . . . . 9
β’
((((((β―βπΉ) = 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))) β§ πΊ β USGraph) β πΉ(SPathsβπΊ)π) |
103 | | simpr 485 |
. . . . . . . . . 10
β’
((((((β―βπΉ) = 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))) β§ πΊ β USGraph) β πΊ β USGraph) |
104 | | simp-4l 781 |
. . . . . . . . . 10
β’
((((((β―βπΉ) = 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))) β§ πΊ β USGraph) β (β―βπΉ) = 2) |
105 | 103, 104,
1 | syl2anc 584 |
. . . . . . . . 9
β’
((((((β―βπΉ) = 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))) β§ πΊ β USGraph) β (πΉ(PathsβπΊ)π β πΉ(SPathsβπΊ)π)) |
106 | 102, 105 | mpbird 256 |
. . . . . . . 8
β’
((((((β―βπΉ) = 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))) β§ πΊ β USGraph) β πΉ(PathsβπΊ)π) |
107 | 106, 104 | jca 512 |
. . . . . . 7
β’
((((((β―βπΉ) = 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))) β§ πΊ β USGraph) β (πΉ(PathsβπΊ)π β§ (β―βπΉ) = 2)) |
108 | 107 | ex 413 |
. . . . . 6
β’
(((((β―βπΉ) = 2 β§ πΉ:(0..^2)β1-1βdom πΌ) β§ π:(0...2)β1-1βπ) β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))) β (πΊ β USGraph β (πΉ(PathsβπΊ)π β§ (β―βπΉ) = 2))) |
109 | 108 | exp41 435 |
. . . . 5
β’
((β―βπΉ) =
2 β (πΉ:(0..^2)β1-1βdom πΌ β (π:(0...2)β1-1βπ β (βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§})) β (πΊ β USGraph β (πΉ(PathsβπΊ)π β§ (β―βπΉ) = 2)))))) |
110 | 43, 109 | mpcom 38 |
. . . 4
β’ (πΉ:(0..^2)β1-1βdom πΌ β (π:(0...2)β1-1βπ β (βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§})) β (πΊ β USGraph β (πΉ(PathsβπΊ)π β§ (β―βπΉ) = 2))))) |
111 | 110 | 3imp 1111 |
. . 3
β’ ((πΉ:(0..^2)β1-1βdom πΌ β§ π:(0...2)β1-1βπ β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))) β (πΊ β USGraph β (πΉ(PathsβπΊ)π β§ (β―βπΉ) = 2))) |
112 | 111 | com12 32 |
. 2
β’ (πΊ β USGraph β ((πΉ:(0..^2)β1-1βdom πΌ β§ π:(0...2)β1-1βπ β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))) β (πΉ(PathsβπΊ)π β§ (β―βπΉ) = 2))) |
113 | 39, 112 | impbid 211 |
1
β’ (πΊ β USGraph β ((πΉ(PathsβπΊ)π β§ (β―βπΉ) = 2) β (πΉ:(0..^2)β1-1βdom πΌ β§ π:(0...2)β1-1βπ β§ βπ₯ β π βπ¦ β (π β {π₯})βπ§ β (π β {π₯, π¦})(((πβ0) = π₯ β§ (πβ1) = π¦ β§ (πβ2) = π§) β§ ((πΌβ(πΉβ0)) = {π₯, π¦} β§ (πΌβ(πΉβ1)) = {π¦, π§}))))) |