MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2pth Structured version   Visualization version   GIF version

Theorem usgr2pth 29011
Description: In a simple graph, there is a path of length 2 iff there are three distinct vertices so that one of them is connected to each of the two others by an edge. (Contributed by Alexander van der Vekens, 27-Jan-2018.) (Revised by AV, 5-Jun-2021.) (Proof shortened by AV, 31-Oct-2021.)
Hypotheses
Ref Expression
usgr2pthlem.v 𝑉 = (Vtx‘𝐺)
usgr2pthlem.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
usgr2pth (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
Distinct variable groups:   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐼,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧

Proof of Theorem usgr2pth
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 usgr2pthspth 29009 . . . . 5 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Paths‘𝐺)𝑃𝐹(SPaths‘𝐺)𝑃))
2 usgrupgr 28432 . . . . . . 7 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
32adantr 482 . . . . . 6 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝐺 ∈ UPGraph)
4 isspth 28971 . . . . . . . . 9 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
54a1i 11 . . . . . . . 8 (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃)))
6 usgr2pthlem.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
7 usgr2pthlem.i . . . . . . . . . . 11 𝐼 = (iEdg‘𝐺)
86, 7upgrf1istrl 28950 . . . . . . . . . 10 (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
98anbi1d 631 . . . . . . . . 9 (𝐺 ∈ UPGraph → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) ↔ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)))
10 oveq2 7414 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = (0..^2))
11 f1eq2 6781 . . . . . . . . . . . . . . . . 17 ((0..^(♯‘𝐹)) = (0..^2) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:(0..^2)–1-1→dom 𝐼))
1210, 11syl 17 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 2 → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:(0..^2)–1-1→dom 𝐼))
1312biimpd 228 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 2 → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:(0..^2)–1-1→dom 𝐼))
1413adantl 483 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:(0..^2)–1-1→dom 𝐼))
1514com12 32 . . . . . . . . . . . . 13 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼))
16153ad2ant1 1134 . . . . . . . . . . . 12 ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼))
1716ad2antrl 727 . . . . . . . . . . 11 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼))
18 oveq2 7414 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐹) = 2 → (0...(♯‘𝐹)) = (0...2))
1918feq2d 6701 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 2 → (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃:(0...2)⟶𝑉))
20 df-f1 6546 . . . . . . . . . . . . . . . . . . 19 (𝑃:(0...2)–1-1𝑉 ↔ (𝑃:(0...2)⟶𝑉 ∧ Fun 𝑃))
2120simplbi2 502 . . . . . . . . . . . . . . . . . 18 (𝑃:(0...2)⟶𝑉 → (Fun 𝑃𝑃:(0...2)–1-1𝑉))
2221a1i 11 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 2 → (𝑃:(0...2)⟶𝑉 → (Fun 𝑃𝑃:(0...2)–1-1𝑉)))
2319, 22sylbid 239 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 2 → (𝑃:(0...(♯‘𝐹))⟶𝑉 → (Fun 𝑃𝑃:(0...2)–1-1𝑉)))
2423adantl 483 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝑃:(0...(♯‘𝐹))⟶𝑉 → (Fun 𝑃𝑃:(0...2)–1-1𝑉)))
2524com3l 89 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶𝑉 → (Fun 𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝑃:(0...2)–1-1𝑉)))
26253ad2ant2 1135 . . . . . . . . . . . . 13 ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (Fun 𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝑃:(0...2)–1-1𝑉)))
2726imp 408 . . . . . . . . . . . 12 (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝑃:(0...2)–1-1𝑉))
2827adantl 483 . . . . . . . . . . 11 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝑃:(0...2)–1-1𝑉))
296, 7usgr2pthlem 29010 . . . . . . . . . . . 12 ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))
3029ad2antrl 727 . . . . . . . . . . 11 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))
3117, 28, 303jcad 1130 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
3231ex 414 . . . . . . . . 9 (𝐺 ∈ UPGraph → (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
339, 32sylbid 239 . . . . . . . 8 (𝐺 ∈ UPGraph → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
345, 33sylbid 239 . . . . . . 7 (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
3534com23 86 . . . . . 6 (𝐺 ∈ UPGraph → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(SPaths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
363, 35mpcom 38 . . . . 5 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(SPaths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
371, 36sylbid 239 . . . 4 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Paths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
3837ex 414 . . 3 (𝐺 ∈ USGraph → ((♯‘𝐹) = 2 → (𝐹(Paths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
3938impcomd 413 . 2 (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
40 2nn0 12486 . . . . . 6 2 ∈ ℕ0
41 f1f 6785 . . . . . 6 (𝐹:(0..^2)–1-1→dom 𝐼𝐹:(0..^2)⟶dom 𝐼)
42 fnfzo0hash 14406 . . . . . 6 ((2 ∈ ℕ0𝐹:(0..^2)⟶dom 𝐼) → (♯‘𝐹) = 2)
4340, 41, 42sylancr 588 . . . . 5 (𝐹:(0..^2)–1-1→dom 𝐼 → (♯‘𝐹) = 2)
44 oveq2 7414 . . . . . . . . . . . . . . . . . 18 (2 = (♯‘𝐹) → (0..^2) = (0..^(♯‘𝐹)))
4544eqcoms 2741 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 2 → (0..^2) = (0..^(♯‘𝐹)))
46 f1eq2 6781 . . . . . . . . . . . . . . . . 17 ((0..^2) = (0..^(♯‘𝐹)) → (𝐹:(0..^2)–1-1→dom 𝐼𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼))
4745, 46syl 17 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 2 → (𝐹:(0..^2)–1-1→dom 𝐼𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼))
4847biimpd 228 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 2 → (𝐹:(0..^2)–1-1→dom 𝐼𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼))
4948imp 408 . . . . . . . . . . . . . 14 (((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
5049adantr 482 . . . . . . . . . . . . 13 ((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
5150ad2antrr 725 . . . . . . . . . . . 12 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
52 f1f 6785 . . . . . . . . . . . . . . 15 (𝑃:(0...2)–1-1𝑉𝑃:(0...2)⟶𝑉)
53 oveq2 7414 . . . . . . . . . . . . . . . . . 18 (2 = (♯‘𝐹) → (0...2) = (0...(♯‘𝐹)))
5453eqcoms 2741 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 2 → (0...2) = (0...(♯‘𝐹)))
5554adantr 482 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (0...2) = (0...(♯‘𝐹)))
5655feq2d 6701 . . . . . . . . . . . . . . 15 (((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (𝑃:(0...2)⟶𝑉𝑃:(0...(♯‘𝐹))⟶𝑉))
5752, 56imbitrid 243 . . . . . . . . . . . . . 14 (((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (𝑃:(0...2)–1-1𝑉𝑃:(0...(♯‘𝐹))⟶𝑉))
5857imp 408 . . . . . . . . . . . . 13 ((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) → 𝑃:(0...(♯‘𝐹))⟶𝑉)
5958ad2antrr 725 . . . . . . . . . . . 12 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝑃:(0...(♯‘𝐹))⟶𝑉)
60 eqcom 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃‘0) = 𝑥𝑥 = (𝑃‘0))
6160biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃‘0) = 𝑥𝑥 = (𝑃‘0))
62613ad2ant1 1134 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑥 = (𝑃‘0))
63 eqcom 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃‘1) = 𝑦𝑦 = (𝑃‘1))
6463biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃‘1) = 𝑦𝑦 = (𝑃‘1))
65643ad2ant2 1135 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑦 = (𝑃‘1))
6662, 65preq12d 4745 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → {𝑥, 𝑦} = {(𝑃‘0), (𝑃‘1)})
6766eqeq2d 2744 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ↔ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
6867biimpcd 248 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
6968adantr 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
7069impcom 409 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})
71 eqcom 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃‘2) = 𝑧𝑧 = (𝑃‘2))
7271biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃‘2) = 𝑧𝑧 = (𝑃‘2))
73723ad2ant3 1136 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑧 = (𝑃‘2))
7465, 73preq12d 4745 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → {𝑦, 𝑧} = {(𝑃‘1), (𝑃‘2)})
7574eqeq2d 2744 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → ((𝐼‘(𝐹‘1)) = {𝑦, 𝑧} ↔ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
7675biimpcd 248 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼‘(𝐹‘1)) = {𝑦, 𝑧} → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
7776adantl 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
7877impcom 409 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})
7970, 78jca 513 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
8079rexlimivw 3152 . . . . . . . . . . . . . . . . . . 19 (∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
8180rexlimivw 3152 . . . . . . . . . . . . . . . . . 18 (∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
8281rexlimivw 3152 . . . . . . . . . . . . . . . . 17 (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
8382a1i13 27 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 2 → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
84 fzo0to2pr 13714 . . . . . . . . . . . . . . . . . . . 20 (0..^2) = {0, 1}
8510, 84eqtrdi 2789 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = {0, 1})
8685raleqdv 3326 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐹) = 2 → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ {0, 1} (𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
87 2wlklem 28914 . . . . . . . . . . . . . . . . . 18 (∀𝑖 ∈ {0, 1} (𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
8886, 87bitrdi 287 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 2 → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
8988imbi2d 341 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 2 → ((𝐺 ∈ USGraph → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ (𝐺 ∈ USGraph → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
9083, 89sylibrd 259 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 2 → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
9190ad2antrr 725 . . . . . . . . . . . . . 14 ((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
9291imp 408 . . . . . . . . . . . . 13 (((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
9392imp 408 . . . . . . . . . . . 12 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
9451, 59, 933jca 1129 . . . . . . . . . . 11 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
9520simprbi 498 . . . . . . . . . . . . 13 (𝑃:(0...2)–1-1𝑉 → Fun 𝑃)
9695adantl 483 . . . . . . . . . . . 12 ((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) → Fun 𝑃)
9796ad2antrr 725 . . . . . . . . . . 11 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → Fun 𝑃)
9894, 97jca 513 . . . . . . . . . 10 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃))
995, 9bitrd 279 . . . . . . . . . . . 12 (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)))
1002, 99syl 17 . . . . . . . . . . 11 (𝐺 ∈ USGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)))
101100adantl 483 . . . . . . . . . 10 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)))
10298, 101mpbird 257 . . . . . . . . 9 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐹(SPaths‘𝐺)𝑃)
103 simpr 486 . . . . . . . . . 10 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐺 ∈ USGraph)
104 simp-4l 782 . . . . . . . . . 10 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (♯‘𝐹) = 2)
105103, 104, 1syl2anc 585 . . . . . . . . 9 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹(Paths‘𝐺)𝑃𝐹(SPaths‘𝐺)𝑃))
106102, 105mpbird 257 . . . . . . . 8 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐹(Paths‘𝐺)𝑃)
107106, 104jca 513 . . . . . . 7 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2))
108107ex 414 . . . . . 6 (((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2)))
109108exp41 436 . . . . 5 ((♯‘𝐹) = 2 → (𝐹:(0..^2)–1-1→dom 𝐼 → (𝑃:(0...2)–1-1𝑉 → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2))))))
11043, 109mpcom 38 . . . 4 (𝐹:(0..^2)–1-1→dom 𝐼 → (𝑃:(0...2)–1-1𝑉 → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2)))))
1111103imp 1112 . . 3 ((𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2)))
112111com12 32 . 2 (𝐺 ∈ USGraph → ((𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2)))
11339, 112impbid 211 1 (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071  cdif 3945  {csn 4628  {cpr 4630   class class class wbr 5148  ccnv 5675  dom cdm 5676  Fun wfun 6535  wf 6537  1-1wf1 6538  cfv 6541  (class class class)co 7406  0cc0 11107  1c1 11108   + caddc 11110  2c2 12264  0cn0 12469  ...cfz 13481  ..^cfzo 13624  chash 14287  Vtxcvtx 28246  iEdgciedg 28247  UPGraphcupgr 28330  USGraphcusgr 28399  Trailsctrls 28937  Pathscpths 28959  SPathscspths 28960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-2o 8464  df-oadd 8467  df-er 8700  df-map 8819  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-dju 9893  df-card 9931  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-xnn0 12542  df-z 12556  df-uz 12820  df-fz 13482  df-fzo 13625  df-hash 14288  df-word 14462  df-concat 14518  df-s1 14543  df-s2 14796  df-s3 14797  df-edg 28298  df-uhgr 28308  df-upgr 28332  df-umgr 28333  df-uspgr 28400  df-usgr 28401  df-wlks 28846  df-wlkson 28847  df-trls 28939  df-trlson 28940  df-pths 28963  df-spths 28964  df-pthson 28965  df-spthson 28966
This theorem is referenced by:  usgr2pth0  29012
  Copyright terms: Public domain W3C validator