MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2pth Structured version   Visualization version   GIF version

Theorem usgr2pth 28712
Description: In a simple graph, there is a path of length 2 iff there are three distinct vertices so that one of them is connected to each of the two others by an edge. (Contributed by Alexander van der Vekens, 27-Jan-2018.) (Revised by AV, 5-Jun-2021.) (Proof shortened by AV, 31-Oct-2021.)
Hypotheses
Ref Expression
usgr2pthlem.v 𝑉 = (Vtx‘𝐺)
usgr2pthlem.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
usgr2pth (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
Distinct variable groups:   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐼,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧

Proof of Theorem usgr2pth
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 usgr2pthspth 28710 . . . . 5 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Paths‘𝐺)𝑃𝐹(SPaths‘𝐺)𝑃))
2 usgrupgr 28133 . . . . . . 7 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
32adantr 481 . . . . . 6 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝐺 ∈ UPGraph)
4 isspth 28672 . . . . . . . . 9 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
54a1i 11 . . . . . . . 8 (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃)))
6 usgr2pthlem.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
7 usgr2pthlem.i . . . . . . . . . . 11 𝐼 = (iEdg‘𝐺)
86, 7upgrf1istrl 28651 . . . . . . . . . 10 (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
98anbi1d 630 . . . . . . . . 9 (𝐺 ∈ UPGraph → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) ↔ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)))
10 oveq2 7365 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = (0..^2))
11 f1eq2 6734 . . . . . . . . . . . . . . . . 17 ((0..^(♯‘𝐹)) = (0..^2) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:(0..^2)–1-1→dom 𝐼))
1210, 11syl 17 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 2 → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:(0..^2)–1-1→dom 𝐼))
1312biimpd 228 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 2 → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:(0..^2)–1-1→dom 𝐼))
1413adantl 482 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:(0..^2)–1-1→dom 𝐼))
1514com12 32 . . . . . . . . . . . . 13 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼))
16153ad2ant1 1133 . . . . . . . . . . . 12 ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼))
1716ad2antrl 726 . . . . . . . . . . 11 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼))
18 oveq2 7365 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐹) = 2 → (0...(♯‘𝐹)) = (0...2))
1918feq2d 6654 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 2 → (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃:(0...2)⟶𝑉))
20 df-f1 6501 . . . . . . . . . . . . . . . . . . 19 (𝑃:(0...2)–1-1𝑉 ↔ (𝑃:(0...2)⟶𝑉 ∧ Fun 𝑃))
2120simplbi2 501 . . . . . . . . . . . . . . . . . 18 (𝑃:(0...2)⟶𝑉 → (Fun 𝑃𝑃:(0...2)–1-1𝑉))
2221a1i 11 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 2 → (𝑃:(0...2)⟶𝑉 → (Fun 𝑃𝑃:(0...2)–1-1𝑉)))
2319, 22sylbid 239 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 2 → (𝑃:(0...(♯‘𝐹))⟶𝑉 → (Fun 𝑃𝑃:(0...2)–1-1𝑉)))
2423adantl 482 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝑃:(0...(♯‘𝐹))⟶𝑉 → (Fun 𝑃𝑃:(0...2)–1-1𝑉)))
2524com3l 89 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶𝑉 → (Fun 𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝑃:(0...2)–1-1𝑉)))
26253ad2ant2 1134 . . . . . . . . . . . . 13 ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (Fun 𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝑃:(0...2)–1-1𝑉)))
2726imp 407 . . . . . . . . . . . 12 (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝑃:(0...2)–1-1𝑉))
2827adantl 482 . . . . . . . . . . 11 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → 𝑃:(0...2)–1-1𝑉))
296, 7usgr2pthlem 28711 . . . . . . . . . . . 12 ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))
3029ad2antrl 726 . . . . . . . . . . 11 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))
3117, 28, 303jcad 1129 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
3231ex 413 . . . . . . . . 9 (𝐺 ∈ UPGraph → (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
339, 32sylbid 239 . . . . . . . 8 (𝐺 ∈ UPGraph → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
345, 33sylbid 239 . . . . . . 7 (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
3534com23 86 . . . . . 6 (𝐺 ∈ UPGraph → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(SPaths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
363, 35mpcom 38 . . . . 5 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(SPaths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
371, 36sylbid 239 . . . 4 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Paths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
3837ex 413 . . 3 (𝐺 ∈ USGraph → ((♯‘𝐹) = 2 → (𝐹(Paths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
3938impcomd 412 . 2 (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
40 2nn0 12430 . . . . . 6 2 ∈ ℕ0
41 f1f 6738 . . . . . 6 (𝐹:(0..^2)–1-1→dom 𝐼𝐹:(0..^2)⟶dom 𝐼)
42 fnfzo0hash 14347 . . . . . 6 ((2 ∈ ℕ0𝐹:(0..^2)⟶dom 𝐼) → (♯‘𝐹) = 2)
4340, 41, 42sylancr 587 . . . . 5 (𝐹:(0..^2)–1-1→dom 𝐼 → (♯‘𝐹) = 2)
44 oveq2 7365 . . . . . . . . . . . . . . . . . 18 (2 = (♯‘𝐹) → (0..^2) = (0..^(♯‘𝐹)))
4544eqcoms 2744 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 2 → (0..^2) = (0..^(♯‘𝐹)))
46 f1eq2 6734 . . . . . . . . . . . . . . . . 17 ((0..^2) = (0..^(♯‘𝐹)) → (𝐹:(0..^2)–1-1→dom 𝐼𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼))
4745, 46syl 17 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 2 → (𝐹:(0..^2)–1-1→dom 𝐼𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼))
4847biimpd 228 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 2 → (𝐹:(0..^2)–1-1→dom 𝐼𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼))
4948imp 407 . . . . . . . . . . . . . 14 (((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
5049adantr 481 . . . . . . . . . . . . 13 ((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
5150ad2antrr 724 . . . . . . . . . . . 12 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
52 f1f 6738 . . . . . . . . . . . . . . 15 (𝑃:(0...2)–1-1𝑉𝑃:(0...2)⟶𝑉)
53 oveq2 7365 . . . . . . . . . . . . . . . . . 18 (2 = (♯‘𝐹) → (0...2) = (0...(♯‘𝐹)))
5453eqcoms 2744 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 2 → (0...2) = (0...(♯‘𝐹)))
5554adantr 481 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (0...2) = (0...(♯‘𝐹)))
5655feq2d 6654 . . . . . . . . . . . . . . 15 (((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (𝑃:(0...2)⟶𝑉𝑃:(0...(♯‘𝐹))⟶𝑉))
5752, 56imbitrid 243 . . . . . . . . . . . . . 14 (((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (𝑃:(0...2)–1-1𝑉𝑃:(0...(♯‘𝐹))⟶𝑉))
5857imp 407 . . . . . . . . . . . . 13 ((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) → 𝑃:(0...(♯‘𝐹))⟶𝑉)
5958ad2antrr 724 . . . . . . . . . . . 12 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝑃:(0...(♯‘𝐹))⟶𝑉)
60 eqcom 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃‘0) = 𝑥𝑥 = (𝑃‘0))
6160biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃‘0) = 𝑥𝑥 = (𝑃‘0))
62613ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑥 = (𝑃‘0))
63 eqcom 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃‘1) = 𝑦𝑦 = (𝑃‘1))
6463biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃‘1) = 𝑦𝑦 = (𝑃‘1))
65643ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑦 = (𝑃‘1))
6662, 65preq12d 4702 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → {𝑥, 𝑦} = {(𝑃‘0), (𝑃‘1)})
6766eqeq2d 2747 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ↔ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
6867biimpcd 248 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
6968adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
7069impcom 408 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})
71 eqcom 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃‘2) = 𝑧𝑧 = (𝑃‘2))
7271biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃‘2) = 𝑧𝑧 = (𝑃‘2))
73723ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑧 = (𝑃‘2))
7465, 73preq12d 4702 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → {𝑦, 𝑧} = {(𝑃‘1), (𝑃‘2)})
7574eqeq2d 2747 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → ((𝐼‘(𝐹‘1)) = {𝑦, 𝑧} ↔ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
7675biimpcd 248 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼‘(𝐹‘1)) = {𝑦, 𝑧} → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
7776adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
7877impcom 408 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})
7970, 78jca 512 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
8079rexlimivw 3148 . . . . . . . . . . . . . . . . . . 19 (∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
8180rexlimivw 3148 . . . . . . . . . . . . . . . . . 18 (∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
8281rexlimivw 3148 . . . . . . . . . . . . . . . . 17 (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
8382a1i13 27 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 2 → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
84 fzo0to2pr 13657 . . . . . . . . . . . . . . . . . . . 20 (0..^2) = {0, 1}
8510, 84eqtrdi 2792 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = {0, 1})
8685raleqdv 3313 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐹) = 2 → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ {0, 1} (𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
87 2wlklem 28615 . . . . . . . . . . . . . . . . . 18 (∀𝑖 ∈ {0, 1} (𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
8886, 87bitrdi 286 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 2 → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
8988imbi2d 340 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 2 → ((𝐺 ∈ USGraph → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ (𝐺 ∈ USGraph → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
9083, 89sylibrd 258 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 2 → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
9190ad2antrr 724 . . . . . . . . . . . . . 14 ((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
9291imp 407 . . . . . . . . . . . . 13 (((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
9392imp 407 . . . . . . . . . . . 12 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
9451, 59, 933jca 1128 . . . . . . . . . . 11 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
9520simprbi 497 . . . . . . . . . . . . 13 (𝑃:(0...2)–1-1𝑉 → Fun 𝑃)
9695adantl 482 . . . . . . . . . . . 12 ((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) → Fun 𝑃)
9796ad2antrr 724 . . . . . . . . . . 11 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → Fun 𝑃)
9894, 97jca 512 . . . . . . . . . 10 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃))
995, 9bitrd 278 . . . . . . . . . . . 12 (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)))
1002, 99syl 17 . . . . . . . . . . 11 (𝐺 ∈ USGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)))
101100adantl 482 . . . . . . . . . 10 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)))
10298, 101mpbird 256 . . . . . . . . 9 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐹(SPaths‘𝐺)𝑃)
103 simpr 485 . . . . . . . . . 10 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐺 ∈ USGraph)
104 simp-4l 781 . . . . . . . . . 10 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (♯‘𝐹) = 2)
105103, 104, 1syl2anc 584 . . . . . . . . 9 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹(Paths‘𝐺)𝑃𝐹(SPaths‘𝐺)𝑃))
106102, 105mpbird 256 . . . . . . . 8 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐹(Paths‘𝐺)𝑃)
107106, 104jca 512 . . . . . . 7 ((((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2))
108107ex 413 . . . . . 6 (((((♯‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2)))
109108exp41 435 . . . . 5 ((♯‘𝐹) = 2 → (𝐹:(0..^2)–1-1→dom 𝐼 → (𝑃:(0...2)–1-1𝑉 → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2))))))
11043, 109mpcom 38 . . . 4 (𝐹:(0..^2)–1-1→dom 𝐼 → (𝑃:(0...2)–1-1𝑉 → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2)))))
1111103imp 1111 . . 3 ((𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2)))
112111com12 32 . 2 (𝐺 ∈ USGraph → ((𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2)))
11339, 112impbid 211 1 (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  cdif 3907  {csn 4586  {cpr 4588   class class class wbr 5105  ccnv 5632  dom cdm 5633  Fun wfun 6490  wf 6492  1-1wf1 6493  cfv 6496  (class class class)co 7357  0cc0 11051  1c1 11052   + caddc 11054  2c2 12208  0cn0 12413  ...cfz 13424  ..^cfzo 13567  chash 14230  Vtxcvtx 27947  iEdgciedg 27948  UPGraphcupgr 28031  USGraphcusgr 28100  Trailsctrls 28638  Pathscpths 28660  SPathscspths 28661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-s2 14737  df-s3 14738  df-edg 27999  df-uhgr 28009  df-upgr 28033  df-umgr 28034  df-uspgr 28101  df-usgr 28102  df-wlks 28547  df-wlkson 28548  df-trls 28640  df-trlson 28641  df-pths 28664  df-spths 28665  df-pthson 28666  df-spthson 28667
This theorem is referenced by:  usgr2pth0  28713
  Copyright terms: Public domain W3C validator