MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinq12ge0 Structured version   Visualization version   GIF version

Theorem sinq12ge0 24552
Description: The sine of a number between 0 and π is nonnegative. (Contributed by Mario Carneiro, 13-May-2014.)
Assertion
Ref Expression
sinq12ge0 (𝐴 ∈ (0[,]π) → 0 ≤ (sin‘𝐴))

Proof of Theorem sinq12ge0
StepHypRef Expression
1 0re 10295 . . . . . . . 8 0 ∈ ℝ
2 pire 24502 . . . . . . . 8 π ∈ ℝ
31, 2elicc2i 12441 . . . . . . 7 (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
43simp1bi 1175 . . . . . 6 (𝐴 ∈ (0[,]π) → 𝐴 ∈ ℝ)
5 rexr 10339 . . . . . . . . . 10 (0 ∈ ℝ → 0 ∈ ℝ*)
6 rexr 10339 . . . . . . . . . 10 (π ∈ ℝ → π ∈ ℝ*)
7 elioo2 12418 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ (0(,)π) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π)))
85, 6, 7syl2an 589 . . . . . . . . 9 ((0 ∈ ℝ ∧ π ∈ ℝ) → (𝐴 ∈ (0(,)π) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π)))
91, 2, 8mp2an 683 . . . . . . . 8 (𝐴 ∈ (0(,)π) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π))
10 sinq12gt0 24551 . . . . . . . 8 (𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴))
119, 10sylbir 226 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (sin‘𝐴))
12113expib 1152 . . . . . 6 (𝐴 ∈ ℝ → ((0 < 𝐴𝐴 < π) → 0 < (sin‘𝐴)))
134, 12syl 17 . . . . 5 (𝐴 ∈ (0[,]π) → ((0 < 𝐴𝐴 < π) → 0 < (sin‘𝐴)))
144resincld 15155 . . . . . 6 (𝐴 ∈ (0[,]π) → (sin‘𝐴) ∈ ℝ)
15 ltle 10380 . . . . . 6 ((0 ∈ ℝ ∧ (sin‘𝐴) ∈ ℝ) → (0 < (sin‘𝐴) → 0 ≤ (sin‘𝐴)))
161, 14, 15sylancr 581 . . . . 5 (𝐴 ∈ (0[,]π) → (0 < (sin‘𝐴) → 0 ≤ (sin‘𝐴)))
1713, 16syld 47 . . . 4 (𝐴 ∈ (0[,]π) → ((0 < 𝐴𝐴 < π) → 0 ≤ (sin‘𝐴)))
1817expd 404 . . 3 (𝐴 ∈ (0[,]π) → (0 < 𝐴 → (𝐴 < π → 0 ≤ (sin‘𝐴))))
19 0le0 11380 . . . . . . 7 0 ≤ 0
20 sin0 15161 . . . . . . 7 (sin‘0) = 0
2119, 20breqtrri 4836 . . . . . 6 0 ≤ (sin‘0)
22 fveq2 6375 . . . . . 6 (0 = 𝐴 → (sin‘0) = (sin‘𝐴))
2321, 22syl5breq 4846 . . . . 5 (0 = 𝐴 → 0 ≤ (sin‘𝐴))
2423a1d 25 . . . 4 (0 = 𝐴 → (𝐴 < π → 0 ≤ (sin‘𝐴)))
2524a1i 11 . . 3 (𝐴 ∈ (0[,]π) → (0 = 𝐴 → (𝐴 < π → 0 ≤ (sin‘𝐴))))
263simp2bi 1176 . . . 4 (𝐴 ∈ (0[,]π) → 0 ≤ 𝐴)
27 leloe 10378 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
281, 4, 27sylancr 581 . . . 4 (𝐴 ∈ (0[,]π) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
2926, 28mpbid 223 . . 3 (𝐴 ∈ (0[,]π) → (0 < 𝐴 ∨ 0 = 𝐴))
3018, 25, 29mpjaod 886 . 2 (𝐴 ∈ (0[,]π) → (𝐴 < π → 0 ≤ (sin‘𝐴)))
31 sinpi 24501 . . . . 5 (sin‘π) = 0
3219, 31breqtrri 4836 . . . 4 0 ≤ (sin‘π)
33 fveq2 6375 . . . 4 (𝐴 = π → (sin‘𝐴) = (sin‘π))
3432, 33syl5breqr 4847 . . 3 (𝐴 = π → 0 ≤ (sin‘𝐴))
3534a1i 11 . 2 (𝐴 ∈ (0[,]π) → (𝐴 = π → 0 ≤ (sin‘𝐴)))
363simp3bi 1177 . . 3 (𝐴 ∈ (0[,]π) → 𝐴 ≤ π)
37 leloe 10378 . . . 4 ((𝐴 ∈ ℝ ∧ π ∈ ℝ) → (𝐴 ≤ π ↔ (𝐴 < π ∨ 𝐴 = π)))
384, 2, 37sylancl 580 . . 3 (𝐴 ∈ (0[,]π) → (𝐴 ≤ π ↔ (𝐴 < π ∨ 𝐴 = π)))
3936, 38mpbid 223 . 2 (𝐴 ∈ (0[,]π) → (𝐴 < π ∨ 𝐴 = π))
4030, 35, 39mpjaod 886 1 (𝐴 ∈ (0[,]π) → 0 ≤ (sin‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155   class class class wbr 4809  cfv 6068  (class class class)co 6842  cr 10188  0cc0 10189  *cxr 10327   < clt 10328  cle 10329  (,)cioo 12377  [,]cicc 12380  sincsin 15076  πcpi 15079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14092  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-limsup 14487  df-clim 14504  df-rlim 14505  df-sum 14702  df-ef 15080  df-sin 15082  df-cos 15083  df-pi 15085  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-mulg 17808  df-cntz 18013  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922
This theorem is referenced by:  cosq14ge0  24555  argimgt0  24649  sin2h  33823
  Copyright terms: Public domain W3C validator