MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinq12ge0 Structured version   Visualization version   GIF version

Theorem sinq12ge0 25090
Description: The sine of a number between 0 and π is nonnegative. (Contributed by Mario Carneiro, 13-May-2014.)
Assertion
Ref Expression
sinq12ge0 (𝐴 ∈ (0[,]π) → 0 ≤ (sin‘𝐴))

Proof of Theorem sinq12ge0
StepHypRef Expression
1 0re 10628 . . . . . . . 8 0 ∈ ℝ
2 pire 25040 . . . . . . . 8 π ∈ ℝ
31, 2elicc2i 12789 . . . . . . 7 (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
43simp1bi 1142 . . . . . 6 (𝐴 ∈ (0[,]π) → 𝐴 ∈ ℝ)
5 rexr 10672 . . . . . . . . . 10 (0 ∈ ℝ → 0 ∈ ℝ*)
6 rexr 10672 . . . . . . . . . 10 (π ∈ ℝ → π ∈ ℝ*)
7 elioo2 12765 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ (0(,)π) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π)))
85, 6, 7syl2an 598 . . . . . . . . 9 ((0 ∈ ℝ ∧ π ∈ ℝ) → (𝐴 ∈ (0(,)π) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π)))
91, 2, 8mp2an 691 . . . . . . . 8 (𝐴 ∈ (0(,)π) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π))
10 sinq12gt0 25089 . . . . . . . 8 (𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴))
119, 10sylbir 238 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (sin‘𝐴))
12113expib 1119 . . . . . 6 (𝐴 ∈ ℝ → ((0 < 𝐴𝐴 < π) → 0 < (sin‘𝐴)))
134, 12syl 17 . . . . 5 (𝐴 ∈ (0[,]π) → ((0 < 𝐴𝐴 < π) → 0 < (sin‘𝐴)))
144resincld 15485 . . . . . 6 (𝐴 ∈ (0[,]π) → (sin‘𝐴) ∈ ℝ)
15 ltle 10714 . . . . . 6 ((0 ∈ ℝ ∧ (sin‘𝐴) ∈ ℝ) → (0 < (sin‘𝐴) → 0 ≤ (sin‘𝐴)))
161, 14, 15sylancr 590 . . . . 5 (𝐴 ∈ (0[,]π) → (0 < (sin‘𝐴) → 0 ≤ (sin‘𝐴)))
1713, 16syld 47 . . . 4 (𝐴 ∈ (0[,]π) → ((0 < 𝐴𝐴 < π) → 0 ≤ (sin‘𝐴)))
1817expd 419 . . 3 (𝐴 ∈ (0[,]π) → (0 < 𝐴 → (𝐴 < π → 0 ≤ (sin‘𝐴))))
19 0le0 11724 . . . . . 6 0 ≤ 0
20 sin0 15491 . . . . . 6 (sin‘0) = 0
2119, 20breqtrri 5074 . . . . 5 0 ≤ (sin‘0)
22 fveq2 6651 . . . . 5 (0 = 𝐴 → (sin‘0) = (sin‘𝐴))
2321, 22breqtrid 5084 . . . 4 (0 = 𝐴 → 0 ≤ (sin‘𝐴))
2423a1i13 27 . . 3 (𝐴 ∈ (0[,]π) → (0 = 𝐴 → (𝐴 < π → 0 ≤ (sin‘𝐴))))
253simp2bi 1143 . . . 4 (𝐴 ∈ (0[,]π) → 0 ≤ 𝐴)
26 leloe 10712 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
271, 4, 26sylancr 590 . . . 4 (𝐴 ∈ (0[,]π) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
2825, 27mpbid 235 . . 3 (𝐴 ∈ (0[,]π) → (0 < 𝐴 ∨ 0 = 𝐴))
2918, 24, 28mpjaod 857 . 2 (𝐴 ∈ (0[,]π) → (𝐴 < π → 0 ≤ (sin‘𝐴)))
30 sinpi 25039 . . . . 5 (sin‘π) = 0
3119, 30breqtrri 5074 . . . 4 0 ≤ (sin‘π)
32 fveq2 6651 . . . 4 (𝐴 = π → (sin‘𝐴) = (sin‘π))
3331, 32breqtrrid 5085 . . 3 (𝐴 = π → 0 ≤ (sin‘𝐴))
3433a1i 11 . 2 (𝐴 ∈ (0[,]π) → (𝐴 = π → 0 ≤ (sin‘𝐴)))
353simp3bi 1144 . . 3 (𝐴 ∈ (0[,]π) → 𝐴 ≤ π)
36 leloe 10712 . . . 4 ((𝐴 ∈ ℝ ∧ π ∈ ℝ) → (𝐴 ≤ π ↔ (𝐴 < π ∨ 𝐴 = π)))
374, 2, 36sylancl 589 . . 3 (𝐴 ∈ (0[,]π) → (𝐴 ≤ π ↔ (𝐴 < π ∨ 𝐴 = π)))
3835, 37mpbid 235 . 2 (𝐴 ∈ (0[,]π) → (𝐴 < π ∨ 𝐴 = π))
3929, 34, 38mpjaod 857 1 (𝐴 ∈ (0[,]π) → 0 ≤ (sin‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2115   class class class wbr 5047  cfv 6336  (class class class)co 7138  cr 10521  0cc0 10522  *cxr 10659   < clt 10660  cle 10661  (,)cioo 12724  [,]cicc 12727  sincsin 15406  πcpi 15409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-inf2 9088  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600  ax-addf 10601  ax-mulf 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-iin 4903  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-of 7392  df-om 7564  df-1st 7672  df-2nd 7673  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-9 11693  df-n0 11884  df-z 11968  df-dec 12085  df-uz 12230  df-q 12335  df-rp 12376  df-xneg 12493  df-xadd 12494  df-xmul 12495  df-ioo 12728  df-ioc 12729  df-ico 12730  df-icc 12731  df-fz 12884  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14415  df-cj 14447  df-re 14448  df-im 14449  df-sqrt 14583  df-abs 14584  df-limsup 14817  df-clim 14834  df-rlim 14835  df-sum 15032  df-ef 15410  df-sin 15412  df-cos 15413  df-pi 15415  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-ress 16480  df-plusg 16567  df-mulr 16568  df-starv 16569  df-sca 16570  df-vsca 16571  df-ip 16572  df-tset 16573  df-ple 16574  df-ds 16576  df-unif 16577  df-hom 16578  df-cco 16579  df-rest 16685  df-topn 16686  df-0g 16704  df-gsum 16705  df-topgen 16706  df-pt 16707  df-prds 16710  df-xrs 16764  df-qtop 16769  df-imas 16770  df-xps 16772  df-mre 16846  df-mrc 16847  df-acs 16849  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-submnd 17946  df-mulg 18214  df-cntz 18436  df-cmn 18897  df-psmet 20523  df-xmet 20524  df-met 20525  df-bl 20526  df-mopn 20527  df-fbas 20528  df-fg 20529  df-cnfld 20532  df-top 21488  df-topon 21505  df-topsp 21527  df-bases 21540  df-cld 21613  df-ntr 21614  df-cls 21615  df-nei 21692  df-lp 21730  df-perf 21731  df-cn 21821  df-cnp 21822  df-haus 21909  df-tx 22156  df-hmeo 22349  df-fil 22440  df-fm 22532  df-flim 22533  df-flf 22534  df-xms 22916  df-ms 22917  df-tms 22918  df-cncf 23472  df-limc 24458  df-dv 24459
This theorem is referenced by:  cosq14ge0  25093  argimgt0  25192  sin2h  34947
  Copyright terms: Public domain W3C validator