Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnfresb Structured version   Visualization version   GIF version

Theorem cantnfresb 43297
Description: A Cantor normal form which sums to less than a certain power has only zeros for larger components. (Contributed by RP, 3-Feb-2025.)
Assertion
Ref Expression
cantnfresb (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) ↔ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹

Proof of Theorem cantnfresb
Dummy variables 𝑎 𝑏 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . . . . . 11 dom (𝐴 CNF 𝐵) = dom (𝐴 CNF 𝐵)
2 eldifi 4082 . . . . . . . . . . . 12 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
32adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
4 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
5 eqid 2729 . . . . . . . . . . 11 {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))}
61, 3, 4, 5cantnf 9589 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐴 CNF 𝐵) Isom {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))}, E (dom (𝐴 CNF 𝐵), (𝐴o 𝐵)))
76adantr 480 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → (𝐴 CNF 𝐵) Isom {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))}, E (dom (𝐴 CNF 𝐵), (𝐴o 𝐵)))
8 simpr 484 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → 𝐹 ∈ dom (𝐴 CNF 𝐵))
9 ondif2 8420 . . . . . . . . . . . . . . 15 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
109simprbi 496 . . . . . . . . . . . . . 14 (𝐴 ∈ (On ∖ 2o) → 1o𝐴)
11 dif20el 8423 . . . . . . . . . . . . . 14 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
1210, 11ifcld 4523 . . . . . . . . . . . . 13 (𝐴 ∈ (On ∖ 2o) → if(𝑦 = 𝐶, 1o, ∅) ∈ 𝐴)
1312ad2antrr 726 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝑦𝐵) → if(𝑦 = 𝐶, 1o, ∅) ∈ 𝐴)
1413fmpttd 7049 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)):𝐵𝐴)
1511adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → ∅ ∈ 𝐴)
16 eqid 2729 . . . . . . . . . . . 12 (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))
174, 15, 16sniffsupp 9290 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) finSupp ∅)
181, 3, 4cantnfs 9562 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ dom (𝐴 CNF 𝐵) ↔ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)):𝐵𝐴 ∧ (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) finSupp ∅)))
1914, 17, 18mpbir2and 713 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ dom (𝐴 CNF 𝐵))
2019adantr 480 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ dom (𝐴 CNF 𝐵))
21 isorel 7263 . . . . . . . . 9 (((𝐴 CNF 𝐵) Isom {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))}, E (dom (𝐴 CNF 𝐵), (𝐴o 𝐵)) ∧ (𝐹 ∈ dom (𝐴 CNF 𝐵) ∧ (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ dom (𝐴 CNF 𝐵))) → (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ↔ ((𝐴 CNF 𝐵)‘𝐹) E ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)))))
227, 8, 20, 21syl12anc 836 . . . . . . . 8 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ↔ ((𝐴 CNF 𝐵)‘𝐹) E ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)))))
2322adantrl 716 . . . . . . 7 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ↔ ((𝐴 CNF 𝐵)‘𝐹) E ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)))))
2423adantr 480 . . . . . 6 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ↔ ((𝐴 CNF 𝐵)‘𝐹) E ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)))))
25 fvexd 6837 . . . . . . 7 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ∈ V)
26 epelg 5520 . . . . . . 7 (((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ∈ V → (((𝐴 CNF 𝐵)‘𝐹) E ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ↔ ((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)))))
2725, 26syl 17 . . . . . 6 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → (((𝐴 CNF 𝐵)‘𝐹) E ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ↔ ((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)))))
282ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → 𝐴 ∈ On)
29 simplr 768 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → 𝐵 ∈ On)
30 fconst6g 6713 . . . . . . . . . . . . . . . . . 18 (∅ ∈ 𝐴 → (𝐵 × {∅}):𝐵𝐴)
3111, 30syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (On ∖ 2o) → (𝐵 × {∅}):𝐵𝐴)
3231adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐵 × {∅}):𝐵𝐴)
334, 15fczfsuppd 9276 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐵 × {∅}) finSupp ∅)
341, 3, 4cantnfs 9562 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → ((𝐵 × {∅}) ∈ dom (𝐴 CNF 𝐵) ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
3532, 33, 34mpbir2and 713 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐵 × {∅}) ∈ dom (𝐴 CNF 𝐵))
3635adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → (𝐵 × {∅}) ∈ dom (𝐴 CNF 𝐵))
37 simpr 484 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → 𝐶𝐵)
3810ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → 1o𝐴)
39 fczsupp0 8126 . . . . . . . . . . . . . . . 16 ((𝐵 × {∅}) supp ∅) = ∅
40 0ss 4351 . . . . . . . . . . . . . . . 16 ∅ ⊆ 𝐶
4139, 40eqsstri 3982 . . . . . . . . . . . . . . 15 ((𝐵 × {∅}) supp ∅) ⊆ 𝐶
4241a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → ((𝐵 × {∅}) supp ∅) ⊆ 𝐶)
43 0ex 5246 . . . . . . . . . . . . . . . . . 18 ∅ ∈ V
4443fvconst2 7140 . . . . . . . . . . . . . . . . 17 (𝑦𝐵 → ((𝐵 × {∅})‘𝑦) = ∅)
4544ifeq2d 4497 . . . . . . . . . . . . . . . 16 (𝑦𝐵 → if(𝑦 = 𝐶, 1o, ((𝐵 × {∅})‘𝑦)) = if(𝑦 = 𝐶, 1o, ∅))
4645mpteq2ia 5187 . . . . . . . . . . . . . . 15 (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ((𝐵 × {∅})‘𝑦))) = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))
4746eqcomi 2738 . . . . . . . . . . . . . 14 (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ((𝐵 × {∅})‘𝑦)))
481, 28, 29, 36, 37, 38, 42, 47cantnfp1 9577 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ dom (𝐴 CNF 𝐵) ∧ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) = (((𝐴o 𝐶) ·o 1o) +o ((𝐴 CNF 𝐵)‘(𝐵 × {∅})))))
4948simprd 495 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) = (((𝐴o 𝐶) ·o 1o) +o ((𝐴 CNF 𝐵)‘(𝐵 × {∅}))))
5049adantrl 716 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐶𝐵)) → ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) = (((𝐴o 𝐶) ·o 1o) +o ((𝐴 CNF 𝐵)‘(𝐵 × {∅}))))
51 oecl 8455 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
523, 51sylan 580 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
53 om1 8460 . . . . . . . . . . . . . . 15 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) ·o 1o) = (𝐴o 𝐶))
5452, 53syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ((𝐴o 𝐶) ·o 1o) = (𝐴o 𝐶))
551, 3, 4, 15cantnf0 9571 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)
5655adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)
5754, 56oveq12d 7367 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (((𝐴o 𝐶) ·o 1o) +o ((𝐴 CNF 𝐵)‘(𝐵 × {∅}))) = ((𝐴o 𝐶) +o ∅))
58 oa0 8434 . . . . . . . . . . . . . 14 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) +o ∅) = (𝐴o 𝐶))
5952, 58syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ((𝐴o 𝐶) +o ∅) = (𝐴o 𝐶))
6057, 59eqtrd 2764 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (((𝐴o 𝐶) ·o 1o) +o ((𝐴 CNF 𝐵)‘(𝐵 × {∅}))) = (𝐴o 𝐶))
6160adantrr 717 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐶𝐵)) → (((𝐴o 𝐶) ·o 1o) +o ((𝐴 CNF 𝐵)‘(𝐵 × {∅}))) = (𝐴o 𝐶))
6250, 61eqtrd 2764 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐶𝐵)) → ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) = (𝐴o 𝐶))
6362eleq2d 2814 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐶𝐵)) → (((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ↔ ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶)))
6463exp32 420 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐶 ∈ On → (𝐶𝐵 → (((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ↔ ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶)))))
6564adantrd 491 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → ((𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → (𝐶𝐵 → (((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ↔ ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶)))))
6665imp31 417 . . . . . 6 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → (((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ↔ ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶)))
6724, 27, 663bitrrd 306 . . . . 5 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) ↔ 𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))))
68 fveq1 6821 . . . . . . . . . . 11 (𝑎 = 𝐹 → (𝑎𝑐) = (𝐹𝑐))
6968eleq1d 2813 . . . . . . . . . 10 (𝑎 = 𝐹 → ((𝑎𝑐) ∈ (𝑏𝑐) ↔ (𝐹𝑐) ∈ (𝑏𝑐)))
70 fveq1 6821 . . . . . . . . . . . . 13 (𝑎 = 𝐹 → (𝑎𝑥) = (𝐹𝑥))
7170eqeq1d 2731 . . . . . . . . . . . 12 (𝑎 = 𝐹 → ((𝑎𝑥) = (𝑏𝑥) ↔ (𝐹𝑥) = (𝑏𝑥)))
7271imbi2d 340 . . . . . . . . . . 11 (𝑎 = 𝐹 → ((𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)) ↔ (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥))))
7372ralbidv 3152 . . . . . . . . . 10 (𝑎 = 𝐹 → (∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)) ↔ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥))))
7469, 73anbi12d 632 . . . . . . . . 9 (𝑎 = 𝐹 → (((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥))) ↔ ((𝐹𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥)))))
7574rexbidv 3153 . . . . . . . 8 (𝑎 = 𝐹 → (∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥))) ↔ ∃𝑐𝐵 ((𝐹𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥)))))
76 fveq1 6821 . . . . . . . . . . 11 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → (𝑏𝑐) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐))
7776eleq2d 2814 . . . . . . . . . 10 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → ((𝐹𝑐) ∈ (𝑏𝑐) ↔ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)))
78 fveq1 6821 . . . . . . . . . . . . 13 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → (𝑏𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))
7978eqeq2d 2740 . . . . . . . . . . . 12 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → ((𝐹𝑥) = (𝑏𝑥) ↔ (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)))
8079imbi2d 340 . . . . . . . . . . 11 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → ((𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥)) ↔ (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))))
8180ralbidv 3152 . . . . . . . . . 10 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥)) ↔ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))))
8277, 81anbi12d 632 . . . . . . . . 9 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → (((𝐹𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥))) ↔ ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)))))
8382rexbidv 3153 . . . . . . . 8 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → (∃𝑐𝐵 ((𝐹𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥))) ↔ ∃𝑐𝐵 ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)))))
8475, 83, 5bropabg 43296 . . . . . . 7 (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ↔ ((𝐹 ∈ V ∧ (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ V) ∧ ∃𝑐𝐵 ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)))))
85 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝐶 → (𝐹𝑐) = (𝐹𝐶))
8685adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝐶𝑐𝐵) → (𝐹𝑐) = (𝐹𝐶))
87 eqeq1 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑐 → (𝑦 = 𝐶𝑐 = 𝐶))
8887ifbid 4500 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑐 → if(𝑦 = 𝐶, 1o, ∅) = if(𝑐 = 𝐶, 1o, ∅))
89 1oex 8398 . . . . . . . . . . . . . . . . . . . 20 1o ∈ V
9089, 43ifex 4527 . . . . . . . . . . . . . . . . . . 19 if(𝑐 = 𝐶, 1o, ∅) ∈ V
9188, 16, 90fvmpt 6930 . . . . . . . . . . . . . . . . . 18 (𝑐𝐵 → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) = if(𝑐 = 𝐶, 1o, ∅))
92 iftrue 4482 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝐶 → if(𝑐 = 𝐶, 1o, ∅) = 1o)
9391, 92sylan9eqr 2786 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝐶𝑐𝐵) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) = 1o)
9486, 93eleq12d 2822 . . . . . . . . . . . . . . . 16 ((𝑐 = 𝐶𝑐𝐵) → ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ↔ (𝐹𝐶) ∈ 1o))
95 el1o 8413 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐶) ∈ 1o ↔ (𝐹𝐶) = ∅)
9695a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑐 = 𝐶𝑐𝐵) → ((𝐹𝐶) ∈ 1o ↔ (𝐹𝐶) = ∅))
9796biimpd 229 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝐶𝑐𝐵) → ((𝐹𝐶) ∈ 1o → (𝐹𝐶) = ∅))
98 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝐶𝑐𝐵) → 𝑐 = 𝐶)
9997, 98jctild 525 . . . . . . . . . . . . . . . 16 ((𝑐 = 𝐶𝑐𝐵) → ((𝐹𝐶) ∈ 1o → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅)))
10094, 99sylbid 240 . . . . . . . . . . . . . . 15 ((𝑐 = 𝐶𝑐𝐵) → ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅)))
101100expimpd 453 . . . . . . . . . . . . . 14 (𝑐 = 𝐶 → ((𝑐𝐵 ∧ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)) → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅)))
10291adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑐𝐶𝑐𝐵) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) = if(𝑐 = 𝐶, 1o, ∅))
103 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐𝐶𝑐𝐵) → 𝑐𝐶)
104103neneqd 2930 . . . . . . . . . . . . . . . . . . . 20 ((𝑐𝐶𝑐𝐵) → ¬ 𝑐 = 𝐶)
105104iffalsed 4487 . . . . . . . . . . . . . . . . . . 19 ((𝑐𝐶𝑐𝐵) → if(𝑐 = 𝐶, 1o, ∅) = ∅)
106102, 105eqtrd 2764 . . . . . . . . . . . . . . . . . 18 ((𝑐𝐶𝑐𝐵) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) = ∅)
107106eleq2d 2814 . . . . . . . . . . . . . . . . 17 ((𝑐𝐶𝑐𝐵) → ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ↔ (𝐹𝑐) ∈ ∅))
108107biimpd 229 . . . . . . . . . . . . . . . 16 ((𝑐𝐶𝑐𝐵) → ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) → (𝐹𝑐) ∈ ∅))
109108expimpd 453 . . . . . . . . . . . . . . 15 (𝑐𝐶 → ((𝑐𝐵 ∧ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)) → (𝐹𝑐) ∈ ∅))
110 noel 4289 . . . . . . . . . . . . . . . 16 ¬ (𝐹𝑐) ∈ ∅
111110pm2.21i 119 . . . . . . . . . . . . . . 15 ((𝐹𝑐) ∈ ∅ → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅))
112109, 111syl6 35 . . . . . . . . . . . . . 14 (𝑐𝐶 → ((𝑐𝐵 ∧ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)) → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅)))
113101, 112pm2.61ine 3008 . . . . . . . . . . . . 13 ((𝑐𝐵 ∧ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)) → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅))
114113a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → ((𝑐𝐵 ∧ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)) → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅)))
115 fveqeq2 6831 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐶 → ((𝐹𝑥) = ∅ ↔ (𝐹𝐶) = ∅))
116115ralsng 4627 . . . . . . . . . . . . . . 15 (𝐶𝐵 → (∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅ ↔ (𝐹𝐶) = ∅))
117116anbi2d 630 . . . . . . . . . . . . . 14 (𝐶𝐵 → ((𝑐 = 𝐶 ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) ↔ (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅)))
118117biimprd 248 . . . . . . . . . . . . 13 (𝐶𝐵 → ((𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅) → (𝑐 = 𝐶 ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅)))
119118adantl 481 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → ((𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅) → (𝑐 = 𝐶 ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅)))
1204anim1i 615 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (𝐵 ∈ On ∧ 𝐶 ∈ On))
121120adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → (𝐵 ∈ On ∧ 𝐶 ∈ On))
122 pm3.31 449 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐵 → (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))) → ((𝑥𝐵𝑐𝑥) → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)))
123122a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → ((𝑥𝐵 → (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))) → ((𝑥𝐵𝑐𝑥) → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))))
124 eldif 3913 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐵 ∖ suc 𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥 ∈ suc 𝐶))
125 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → 𝑐 = 𝐶)
126125eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → (𝑐𝑥𝐶𝑥))
127 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐵 ∈ On)
128127adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → 𝐵 ∈ On)
129 onelon 6332 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
130128, 129sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → 𝑥 ∈ On)
131 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → 𝐶 ∈ On)
132 ontri1 6341 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ On ∧ 𝐶 ∈ On) → (𝑥𝐶 ↔ ¬ 𝐶𝑥))
133130, 131, 132syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → (𝑥𝐶 ↔ ¬ 𝐶𝑥))
134133con2bid 354 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → (𝐶𝑥 ↔ ¬ 𝑥𝐶))
135 onsssuc 6399 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ On ∧ 𝐶 ∈ On) → (𝑥𝐶𝑥 ∈ suc 𝐶))
136130, 131, 135syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → (𝑥𝐶𝑥 ∈ suc 𝐶))
137136notbid 318 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → (¬ 𝑥𝐶 ↔ ¬ 𝑥 ∈ suc 𝐶))
138126, 134, 1373bitrrd 306 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → (¬ 𝑥 ∈ suc 𝐶𝑐𝑥))
139138pm5.32da 579 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → ((𝑥𝐵 ∧ ¬ 𝑥 ∈ suc 𝐶) ↔ (𝑥𝐵𝑐𝑥)))
140124, 139bitrid 283 . . . . . . . . . . . . . . . . . . . 20 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) ↔ (𝑥𝐵𝑐𝑥)))
141140biimpd 229 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) → (𝑥𝐵𝑐𝑥)))
142141imim1d 82 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → (((𝑥𝐵𝑐𝑥) → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))))
143 eldifi 4082 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (𝐵 ∖ suc 𝐶) → 𝑥𝐵)
144143adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → 𝑥𝐵)
145 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑥 → (𝑦 = 𝐶𝑥 = 𝐶))
146145ifbid 4500 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑥 → if(𝑦 = 𝐶, 1o, ∅) = if(𝑥 = 𝐶, 1o, ∅))
14789, 43ifex 4527 . . . . . . . . . . . . . . . . . . . . . . . . 25 if(𝑥 = 𝐶, 1o, ∅) ∈ V
148146, 16, 147fvmpt 6930 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝐵 → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥) = if(𝑥 = 𝐶, 1o, ∅))
149144, 148syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥) = if(𝑥 = 𝐶, 1o, ∅))
150128, 143, 129syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → 𝑥 ∈ On)
151 eloni 6317 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ On → Ord 𝑥)
152150, 151syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → Ord 𝑥)
153 eloni 6317 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐵 ∈ On → Ord 𝐵)
154153ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → Ord 𝐵)
155 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → 𝐶 ∈ On)
156 ordeldifsucon 43232 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Ord 𝐵𝐶 ∈ On) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) ↔ (𝑥𝐵𝐶𝑥)))
157154, 155, 156syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) ↔ (𝑥𝐵𝐶𝑥)))
158157biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → (𝑥𝐵𝐶𝑥))
159 ordirr 6325 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Ord 𝑥 → ¬ 𝑥𝑥)
160 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = 𝐶 → (𝑥𝑥𝐶𝑥))
161160notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝐶 → (¬ 𝑥𝑥 ↔ ¬ 𝐶𝑥))
162159, 161syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Ord 𝑥 → (𝑥 = 𝐶 → ¬ 𝐶𝑥))
163162con2d 134 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Ord 𝑥 → (𝐶𝑥 → ¬ 𝑥 = 𝐶))
164163adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Ord 𝑥 → ((𝑥𝐵𝐶𝑥) → ¬ 𝑥 = 𝐶))
165152, 158, 164sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → ¬ 𝑥 = 𝐶)
166165iffalsed 4487 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → if(𝑥 = 𝐶, 1o, ∅) = ∅)
167149, 166eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥) = ∅)
168167eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → ((𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥) ↔ (𝐹𝑥) = ∅))
169168biimpd 229 . . . . . . . . . . . . . . . . . . . 20 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → ((𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥) → (𝐹𝑥) = ∅))
170169ex 412 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) → ((𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥) → (𝐹𝑥) = ∅)))
171170a2d 29 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → ((𝑥 ∈ (𝐵 ∖ suc 𝐶) → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) → (𝐹𝑥) = ∅)))
172123, 142, 1713syld 60 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → ((𝑥𝐵 → (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) → (𝐹𝑥) = ∅)))
173172ralimdv2 3138 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅))
174121, 173sylan 580 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅))
175174adantr 480 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅))
176 ralun 4149 . . . . . . . . . . . . . . . . 17 ((∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅ ∧ ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅) → ∀𝑥 ∈ ({𝐶} ∪ (𝐵 ∖ suc 𝐶))(𝐹𝑥) = ∅)
177176adantll 714 . . . . . . . . . . . . . . . 16 (((((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) ∧ ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅) → ∀𝑥 ∈ ({𝐶} ∪ (𝐵 ∖ suc 𝐶))(𝐹𝑥) = ∅)
178 undif3 4251 . . . . . . . . . . . . . . . . . . . . 21 ({𝐶} ∪ (𝐵 ∖ suc 𝐶)) = (({𝐶} ∪ 𝐵) ∖ (suc 𝐶 ∖ {𝐶}))
179 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐶 ∈ On ∧ 𝐶𝐵) → 𝐶𝐵)
180179snssd 4760 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ On ∧ 𝐶𝐵) → {𝐶} ⊆ 𝐵)
181 ssequn1 4137 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝐶} ⊆ 𝐵 ↔ ({𝐶} ∪ 𝐵) = 𝐵)
182180, 181sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ∈ On ∧ 𝐶𝐵) → ({𝐶} ∪ 𝐵) = 𝐵)
183 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐶 ∈ On ∧ 𝐶𝐵) → 𝐶 ∈ On)
184 eloni 6317 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐶 ∈ On → Ord 𝐶)
185 orddif 6405 . . . . . . . . . . . . . . . . . . . . . . . 24 (Ord 𝐶𝐶 = (suc 𝐶 ∖ {𝐶}))
186183, 184, 1853syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ On ∧ 𝐶𝐵) → 𝐶 = (suc 𝐶 ∖ {𝐶}))
187186eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ∈ On ∧ 𝐶𝐵) → (suc 𝐶 ∖ {𝐶}) = 𝐶)
188182, 187difeq12d 4078 . . . . . . . . . . . . . . . . . . . . 21 ((𝐶 ∈ On ∧ 𝐶𝐵) → (({𝐶} ∪ 𝐵) ∖ (suc 𝐶 ∖ {𝐶})) = (𝐵𝐶))
189178, 188eqtrid 2776 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ On ∧ 𝐶𝐵) → ({𝐶} ∪ (𝐵 ∖ suc 𝐶)) = (𝐵𝐶))
190189adantll 714 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → ({𝐶} ∪ (𝐵 ∖ suc 𝐶)) = (𝐵𝐶))
191190adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) → ({𝐶} ∪ (𝐵 ∖ suc 𝐶)) = (𝐵𝐶))
192191raleqdv 3289 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) → (∀𝑥 ∈ ({𝐶} ∪ (𝐵 ∖ suc 𝐶))(𝐹𝑥) = ∅ ↔ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
193192ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) ∧ ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅) → (∀𝑥 ∈ ({𝐶} ∪ (𝐵 ∖ suc 𝐶))(𝐹𝑥) = ∅ ↔ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
194177, 193mpbid 232 . . . . . . . . . . . . . . 15 (((((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) ∧ ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)
195194ex 412 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) → (∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅ → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
196175, 195syld 47 . . . . . . . . . . . . 13 ((((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
197196expl 457 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → ((𝑐 = 𝐶 ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)))
198114, 119, 1973syld 60 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → ((𝑐𝐵 ∧ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)))
199198expdimp 452 . . . . . . . . . 10 (((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐𝐵) → ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)))
200199impd 410 . . . . . . . . 9 (((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐𝐵) → (((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
201200rexlimdva 3130 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → (∃𝑐𝐵 ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
202201adantld 490 . . . . . . 7 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → (((𝐹 ∈ V ∧ (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ V) ∧ ∃𝑐𝐵 ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)))) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
20384, 202biimtrid 242 . . . . . 6 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
204203adantlrr 721 . . . . 5 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
20567, 204sylbid 240 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
206205ex 412 . . 3 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (𝐶𝐵 → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)))
207 ral0 4464 . . . . 5 𝑥 ∈ ∅ (𝐹𝑥) = ∅
208 ssdif0 4317 . . . . . . 7 (𝐵𝐶 ↔ (𝐵𝐶) = ∅)
209208biimpi 216 . . . . . 6 (𝐵𝐶 → (𝐵𝐶) = ∅)
210209raleqdv 3289 . . . . 5 (𝐵𝐶 → (∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅ ↔ ∀𝑥 ∈ ∅ (𝐹𝑥) = ∅))
211207, 210mpbiri 258 . . . 4 (𝐵𝐶 → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)
212211a1i13 27 . . 3 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (𝐵𝐶 → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)))
213184adantr 480 . . . 4 ((𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → Ord 𝐶)
214153adantl 481 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → Ord 𝐵)
215 ordtri2or 6407 . . . 4 ((Ord 𝐶 ∧ Ord 𝐵) → (𝐶𝐵𝐵𝐶))
216213, 214, 215syl2anr 597 . . 3 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (𝐶𝐵𝐵𝐶))
217206, 212, 216mpjaod 860 . 2 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
2183ad2antrr 726 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → 𝐴 ∈ On)
219 simpllr 775 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → 𝐵 ∈ On)
220 simplrr 777 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → 𝐹 ∈ dom (𝐴 CNF 𝐵))
22115ad2antrr 726 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → ∅ ∈ 𝐴)
222 simplrl 776 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → 𝐶 ∈ On)
2231, 3, 4cantnfs 9562 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐹 ∈ dom (𝐴 CNF 𝐵) ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
224223biimpd 229 . . . . . . . . 9 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐹 ∈ dom (𝐴 CNF 𝐵) → (𝐹:𝐵𝐴𝐹 finSupp ∅)))
225224adantld 490 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → ((𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → (𝐹:𝐵𝐴𝐹 finSupp ∅)))
226225imp 406 . . . . . . 7 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (𝐹:𝐵𝐴𝐹 finSupp ∅))
227226simpld 494 . . . . . 6 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → 𝐹:𝐵𝐴)
228227adantr 480 . . . . 5 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → 𝐹:𝐵𝐴)
229 fveqeq2 6831 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐹𝑥) = ∅ ↔ (𝐹𝑦) = ∅))
230229rspccv 3574 . . . . . . 7 (∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅ → (𝑦 ∈ (𝐵𝐶) → (𝐹𝑦) = ∅))
231230adantl 481 . . . . . 6 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → (𝑦 ∈ (𝐵𝐶) → (𝐹𝑦) = ∅))
232231imp 406 . . . . 5 (((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) ∧ 𝑦 ∈ (𝐵𝐶)) → (𝐹𝑦) = ∅)
233228, 232suppss 8127 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → (𝐹 supp ∅) ⊆ 𝐶)
2341, 218, 219, 220, 221, 222, 233cantnflt2 9569 . . 3 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶))
235234ex 412 . 2 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅ → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶)))
236217, 235impbid 212 1 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) ↔ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3436  cdif 3900  cun 3901  wss 3903  c0 4284  ifcif 4476  {csn 4577   class class class wbr 5092  {copab 5154  cmpt 5173   E cep 5518   × cxp 5617  dom cdm 5619  Ord word 6306  Oncon0 6307  suc csuc 6309  wf 6478  cfv 6482   Isom wiso 6483  (class class class)co 7349   supp csupp 8093  1oc1o 8381  2oc2o 8382   +o coa 8385   ·o comu 8386  o coe 8387   finSupp cfsupp 9251   CNF ccnf 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-seqom 8370  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-oexp 8394  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-cnf 9558
This theorem is referenced by:  cantnf2  43298
  Copyright terms: Public domain W3C validator