Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnfresb Structured version   Visualization version   GIF version

Theorem cantnfresb 43286
Description: A Cantor normal form which sums to less than a certain power has only zeros for larger components. (Contributed by RP, 3-Feb-2025.)
Assertion
Ref Expression
cantnfresb (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) ↔ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹

Proof of Theorem cantnfresb
Dummy variables 𝑎 𝑏 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . . . . . 11 dom (𝐴 CNF 𝐵) = dom (𝐴 CNF 𝐵)
2 eldifi 4090 . . . . . . . . . . . 12 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
32adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
4 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
5 eqid 2729 . . . . . . . . . . 11 {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))}
61, 3, 4, 5cantnf 9622 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐴 CNF 𝐵) Isom {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))}, E (dom (𝐴 CNF 𝐵), (𝐴o 𝐵)))
76adantr 480 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → (𝐴 CNF 𝐵) Isom {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))}, E (dom (𝐴 CNF 𝐵), (𝐴o 𝐵)))
8 simpr 484 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → 𝐹 ∈ dom (𝐴 CNF 𝐵))
9 ondif2 8443 . . . . . . . . . . . . . . 15 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
109simprbi 496 . . . . . . . . . . . . . 14 (𝐴 ∈ (On ∖ 2o) → 1o𝐴)
11 dif20el 8446 . . . . . . . . . . . . . 14 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
1210, 11ifcld 4531 . . . . . . . . . . . . 13 (𝐴 ∈ (On ∖ 2o) → if(𝑦 = 𝐶, 1o, ∅) ∈ 𝐴)
1312ad2antrr 726 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝑦𝐵) → if(𝑦 = 𝐶, 1o, ∅) ∈ 𝐴)
1413fmpttd 7069 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)):𝐵𝐴)
1511adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → ∅ ∈ 𝐴)
16 eqid 2729 . . . . . . . . . . . 12 (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))
174, 15, 16sniffsupp 9327 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) finSupp ∅)
181, 3, 4cantnfs 9595 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ dom (𝐴 CNF 𝐵) ↔ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)):𝐵𝐴 ∧ (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) finSupp ∅)))
1914, 17, 18mpbir2and 713 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ dom (𝐴 CNF 𝐵))
2019adantr 480 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ dom (𝐴 CNF 𝐵))
21 isorel 7283 . . . . . . . . 9 (((𝐴 CNF 𝐵) Isom {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))}, E (dom (𝐴 CNF 𝐵), (𝐴o 𝐵)) ∧ (𝐹 ∈ dom (𝐴 CNF 𝐵) ∧ (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ dom (𝐴 CNF 𝐵))) → (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ↔ ((𝐴 CNF 𝐵)‘𝐹) E ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)))))
227, 8, 20, 21syl12anc 836 . . . . . . . 8 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ↔ ((𝐴 CNF 𝐵)‘𝐹) E ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)))))
2322adantrl 716 . . . . . . 7 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ↔ ((𝐴 CNF 𝐵)‘𝐹) E ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)))))
2423adantr 480 . . . . . 6 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ↔ ((𝐴 CNF 𝐵)‘𝐹) E ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)))))
25 fvexd 6855 . . . . . . 7 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ∈ V)
26 epelg 5532 . . . . . . 7 (((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ∈ V → (((𝐴 CNF 𝐵)‘𝐹) E ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ↔ ((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)))))
2725, 26syl 17 . . . . . 6 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → (((𝐴 CNF 𝐵)‘𝐹) E ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ↔ ((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)))))
282ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → 𝐴 ∈ On)
29 simplr 768 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → 𝐵 ∈ On)
30 fconst6g 6731 . . . . . . . . . . . . . . . . . 18 (∅ ∈ 𝐴 → (𝐵 × {∅}):𝐵𝐴)
3111, 30syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (On ∖ 2o) → (𝐵 × {∅}):𝐵𝐴)
3231adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐵 × {∅}):𝐵𝐴)
334, 15fczfsuppd 9313 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐵 × {∅}) finSupp ∅)
341, 3, 4cantnfs 9595 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → ((𝐵 × {∅}) ∈ dom (𝐴 CNF 𝐵) ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
3532, 33, 34mpbir2and 713 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐵 × {∅}) ∈ dom (𝐴 CNF 𝐵))
3635adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → (𝐵 × {∅}) ∈ dom (𝐴 CNF 𝐵))
37 simpr 484 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → 𝐶𝐵)
3810ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → 1o𝐴)
39 fczsupp0 8149 . . . . . . . . . . . . . . . 16 ((𝐵 × {∅}) supp ∅) = ∅
40 0ss 4359 . . . . . . . . . . . . . . . 16 ∅ ⊆ 𝐶
4139, 40eqsstri 3990 . . . . . . . . . . . . . . 15 ((𝐵 × {∅}) supp ∅) ⊆ 𝐶
4241a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → ((𝐵 × {∅}) supp ∅) ⊆ 𝐶)
43 0ex 5257 . . . . . . . . . . . . . . . . . 18 ∅ ∈ V
4443fvconst2 7160 . . . . . . . . . . . . . . . . 17 (𝑦𝐵 → ((𝐵 × {∅})‘𝑦) = ∅)
4544ifeq2d 4505 . . . . . . . . . . . . . . . 16 (𝑦𝐵 → if(𝑦 = 𝐶, 1o, ((𝐵 × {∅})‘𝑦)) = if(𝑦 = 𝐶, 1o, ∅))
4645mpteq2ia 5197 . . . . . . . . . . . . . . 15 (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ((𝐵 × {∅})‘𝑦))) = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))
4746eqcomi 2738 . . . . . . . . . . . . . 14 (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ((𝐵 × {∅})‘𝑦)))
481, 28, 29, 36, 37, 38, 42, 47cantnfp1 9610 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ dom (𝐴 CNF 𝐵) ∧ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) = (((𝐴o 𝐶) ·o 1o) +o ((𝐴 CNF 𝐵)‘(𝐵 × {∅})))))
4948simprd 495 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) = (((𝐴o 𝐶) ·o 1o) +o ((𝐴 CNF 𝐵)‘(𝐵 × {∅}))))
5049adantrl 716 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐶𝐵)) → ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) = (((𝐴o 𝐶) ·o 1o) +o ((𝐴 CNF 𝐵)‘(𝐵 × {∅}))))
51 oecl 8478 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
523, 51sylan 580 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
53 om1 8483 . . . . . . . . . . . . . . 15 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) ·o 1o) = (𝐴o 𝐶))
5452, 53syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ((𝐴o 𝐶) ·o 1o) = (𝐴o 𝐶))
551, 3, 4, 15cantnf0 9604 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)
5655adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)
5754, 56oveq12d 7387 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (((𝐴o 𝐶) ·o 1o) +o ((𝐴 CNF 𝐵)‘(𝐵 × {∅}))) = ((𝐴o 𝐶) +o ∅))
58 oa0 8457 . . . . . . . . . . . . . 14 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) +o ∅) = (𝐴o 𝐶))
5952, 58syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ((𝐴o 𝐶) +o ∅) = (𝐴o 𝐶))
6057, 59eqtrd 2764 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (((𝐴o 𝐶) ·o 1o) +o ((𝐴 CNF 𝐵)‘(𝐵 × {∅}))) = (𝐴o 𝐶))
6160adantrr 717 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐶𝐵)) → (((𝐴o 𝐶) ·o 1o) +o ((𝐴 CNF 𝐵)‘(𝐵 × {∅}))) = (𝐴o 𝐶))
6250, 61eqtrd 2764 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐶𝐵)) → ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) = (𝐴o 𝐶))
6362eleq2d 2814 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐶𝐵)) → (((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ↔ ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶)))
6463exp32 420 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐶 ∈ On → (𝐶𝐵 → (((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ↔ ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶)))))
6564adantrd 491 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → ((𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → (𝐶𝐵 → (((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ↔ ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶)))))
6665imp31 417 . . . . . 6 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → (((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ↔ ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶)))
6724, 27, 663bitrrd 306 . . . . 5 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) ↔ 𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))))
68 fveq1 6839 . . . . . . . . . . 11 (𝑎 = 𝐹 → (𝑎𝑐) = (𝐹𝑐))
6968eleq1d 2813 . . . . . . . . . 10 (𝑎 = 𝐹 → ((𝑎𝑐) ∈ (𝑏𝑐) ↔ (𝐹𝑐) ∈ (𝑏𝑐)))
70 fveq1 6839 . . . . . . . . . . . . 13 (𝑎 = 𝐹 → (𝑎𝑥) = (𝐹𝑥))
7170eqeq1d 2731 . . . . . . . . . . . 12 (𝑎 = 𝐹 → ((𝑎𝑥) = (𝑏𝑥) ↔ (𝐹𝑥) = (𝑏𝑥)))
7271imbi2d 340 . . . . . . . . . . 11 (𝑎 = 𝐹 → ((𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)) ↔ (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥))))
7372ralbidv 3156 . . . . . . . . . 10 (𝑎 = 𝐹 → (∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)) ↔ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥))))
7469, 73anbi12d 632 . . . . . . . . 9 (𝑎 = 𝐹 → (((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥))) ↔ ((𝐹𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥)))))
7574rexbidv 3157 . . . . . . . 8 (𝑎 = 𝐹 → (∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥))) ↔ ∃𝑐𝐵 ((𝐹𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥)))))
76 fveq1 6839 . . . . . . . . . . 11 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → (𝑏𝑐) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐))
7776eleq2d 2814 . . . . . . . . . 10 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → ((𝐹𝑐) ∈ (𝑏𝑐) ↔ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)))
78 fveq1 6839 . . . . . . . . . . . . 13 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → (𝑏𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))
7978eqeq2d 2740 . . . . . . . . . . . 12 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → ((𝐹𝑥) = (𝑏𝑥) ↔ (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)))
8079imbi2d 340 . . . . . . . . . . 11 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → ((𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥)) ↔ (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))))
8180ralbidv 3156 . . . . . . . . . 10 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥)) ↔ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))))
8277, 81anbi12d 632 . . . . . . . . 9 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → (((𝐹𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥))) ↔ ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)))))
8382rexbidv 3157 . . . . . . . 8 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → (∃𝑐𝐵 ((𝐹𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥))) ↔ ∃𝑐𝐵 ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)))))
8475, 83, 5bropabg 43285 . . . . . . 7 (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ↔ ((𝐹 ∈ V ∧ (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ V) ∧ ∃𝑐𝐵 ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)))))
85 fveq2 6840 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝐶 → (𝐹𝑐) = (𝐹𝐶))
8685adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝐶𝑐𝐵) → (𝐹𝑐) = (𝐹𝐶))
87 eqeq1 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑐 → (𝑦 = 𝐶𝑐 = 𝐶))
8887ifbid 4508 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑐 → if(𝑦 = 𝐶, 1o, ∅) = if(𝑐 = 𝐶, 1o, ∅))
89 1oex 8421 . . . . . . . . . . . . . . . . . . . 20 1o ∈ V
9089, 43ifex 4535 . . . . . . . . . . . . . . . . . . 19 if(𝑐 = 𝐶, 1o, ∅) ∈ V
9188, 16, 90fvmpt 6950 . . . . . . . . . . . . . . . . . 18 (𝑐𝐵 → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) = if(𝑐 = 𝐶, 1o, ∅))
92 iftrue 4490 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝐶 → if(𝑐 = 𝐶, 1o, ∅) = 1o)
9391, 92sylan9eqr 2786 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝐶𝑐𝐵) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) = 1o)
9486, 93eleq12d 2822 . . . . . . . . . . . . . . . 16 ((𝑐 = 𝐶𝑐𝐵) → ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ↔ (𝐹𝐶) ∈ 1o))
95 el1o 8436 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐶) ∈ 1o ↔ (𝐹𝐶) = ∅)
9695a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑐 = 𝐶𝑐𝐵) → ((𝐹𝐶) ∈ 1o ↔ (𝐹𝐶) = ∅))
9796biimpd 229 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝐶𝑐𝐵) → ((𝐹𝐶) ∈ 1o → (𝐹𝐶) = ∅))
98 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝐶𝑐𝐵) → 𝑐 = 𝐶)
9997, 98jctild 525 . . . . . . . . . . . . . . . 16 ((𝑐 = 𝐶𝑐𝐵) → ((𝐹𝐶) ∈ 1o → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅)))
10094, 99sylbid 240 . . . . . . . . . . . . . . 15 ((𝑐 = 𝐶𝑐𝐵) → ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅)))
101100expimpd 453 . . . . . . . . . . . . . 14 (𝑐 = 𝐶 → ((𝑐𝐵 ∧ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)) → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅)))
10291adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑐𝐶𝑐𝐵) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) = if(𝑐 = 𝐶, 1o, ∅))
103 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐𝐶𝑐𝐵) → 𝑐𝐶)
104103neneqd 2930 . . . . . . . . . . . . . . . . . . . 20 ((𝑐𝐶𝑐𝐵) → ¬ 𝑐 = 𝐶)
105104iffalsed 4495 . . . . . . . . . . . . . . . . . . 19 ((𝑐𝐶𝑐𝐵) → if(𝑐 = 𝐶, 1o, ∅) = ∅)
106102, 105eqtrd 2764 . . . . . . . . . . . . . . . . . 18 ((𝑐𝐶𝑐𝐵) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) = ∅)
107106eleq2d 2814 . . . . . . . . . . . . . . . . 17 ((𝑐𝐶𝑐𝐵) → ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ↔ (𝐹𝑐) ∈ ∅))
108107biimpd 229 . . . . . . . . . . . . . . . 16 ((𝑐𝐶𝑐𝐵) → ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) → (𝐹𝑐) ∈ ∅))
109108expimpd 453 . . . . . . . . . . . . . . 15 (𝑐𝐶 → ((𝑐𝐵 ∧ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)) → (𝐹𝑐) ∈ ∅))
110 noel 4297 . . . . . . . . . . . . . . . 16 ¬ (𝐹𝑐) ∈ ∅
111110pm2.21i 119 . . . . . . . . . . . . . . 15 ((𝐹𝑐) ∈ ∅ → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅))
112109, 111syl6 35 . . . . . . . . . . . . . 14 (𝑐𝐶 → ((𝑐𝐵 ∧ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)) → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅)))
113101, 112pm2.61ine 3008 . . . . . . . . . . . . 13 ((𝑐𝐵 ∧ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)) → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅))
114113a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → ((𝑐𝐵 ∧ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)) → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅)))
115 fveqeq2 6849 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐶 → ((𝐹𝑥) = ∅ ↔ (𝐹𝐶) = ∅))
116115ralsng 4635 . . . . . . . . . . . . . . 15 (𝐶𝐵 → (∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅ ↔ (𝐹𝐶) = ∅))
117116anbi2d 630 . . . . . . . . . . . . . 14 (𝐶𝐵 → ((𝑐 = 𝐶 ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) ↔ (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅)))
118117biimprd 248 . . . . . . . . . . . . 13 (𝐶𝐵 → ((𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅) → (𝑐 = 𝐶 ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅)))
119118adantl 481 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → ((𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅) → (𝑐 = 𝐶 ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅)))
1204anim1i 615 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (𝐵 ∈ On ∧ 𝐶 ∈ On))
121120adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → (𝐵 ∈ On ∧ 𝐶 ∈ On))
122 pm3.31 449 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐵 → (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))) → ((𝑥𝐵𝑐𝑥) → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)))
123122a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → ((𝑥𝐵 → (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))) → ((𝑥𝐵𝑐𝑥) → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))))
124 eldif 3921 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐵 ∖ suc 𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥 ∈ suc 𝐶))
125 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → 𝑐 = 𝐶)
126125eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → (𝑐𝑥𝐶𝑥))
127 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐵 ∈ On)
128127adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → 𝐵 ∈ On)
129 onelon 6345 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
130128, 129sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → 𝑥 ∈ On)
131 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → 𝐶 ∈ On)
132 ontri1 6354 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ On ∧ 𝐶 ∈ On) → (𝑥𝐶 ↔ ¬ 𝐶𝑥))
133130, 131, 132syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → (𝑥𝐶 ↔ ¬ 𝐶𝑥))
134133con2bid 354 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → (𝐶𝑥 ↔ ¬ 𝑥𝐶))
135 onsssuc 6412 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ On ∧ 𝐶 ∈ On) → (𝑥𝐶𝑥 ∈ suc 𝐶))
136130, 131, 135syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → (𝑥𝐶𝑥 ∈ suc 𝐶))
137136notbid 318 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → (¬ 𝑥𝐶 ↔ ¬ 𝑥 ∈ suc 𝐶))
138126, 134, 1373bitrrd 306 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → (¬ 𝑥 ∈ suc 𝐶𝑐𝑥))
139138pm5.32da 579 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → ((𝑥𝐵 ∧ ¬ 𝑥 ∈ suc 𝐶) ↔ (𝑥𝐵𝑐𝑥)))
140124, 139bitrid 283 . . . . . . . . . . . . . . . . . . . 20 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) ↔ (𝑥𝐵𝑐𝑥)))
141140biimpd 229 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) → (𝑥𝐵𝑐𝑥)))
142141imim1d 82 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → (((𝑥𝐵𝑐𝑥) → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))))
143 eldifi 4090 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (𝐵 ∖ suc 𝐶) → 𝑥𝐵)
144143adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → 𝑥𝐵)
145 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑥 → (𝑦 = 𝐶𝑥 = 𝐶))
146145ifbid 4508 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑥 → if(𝑦 = 𝐶, 1o, ∅) = if(𝑥 = 𝐶, 1o, ∅))
14789, 43ifex 4535 . . . . . . . . . . . . . . . . . . . . . . . . 25 if(𝑥 = 𝐶, 1o, ∅) ∈ V
148146, 16, 147fvmpt 6950 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝐵 → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥) = if(𝑥 = 𝐶, 1o, ∅))
149144, 148syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥) = if(𝑥 = 𝐶, 1o, ∅))
150128, 143, 129syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → 𝑥 ∈ On)
151 eloni 6330 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ On → Ord 𝑥)
152150, 151syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → Ord 𝑥)
153 eloni 6330 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐵 ∈ On → Ord 𝐵)
154153ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → Ord 𝐵)
155 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → 𝐶 ∈ On)
156 ordeldifsucon 43221 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Ord 𝐵𝐶 ∈ On) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) ↔ (𝑥𝐵𝐶𝑥)))
157154, 155, 156syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) ↔ (𝑥𝐵𝐶𝑥)))
158157biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → (𝑥𝐵𝐶𝑥))
159 ordirr 6338 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Ord 𝑥 → ¬ 𝑥𝑥)
160 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = 𝐶 → (𝑥𝑥𝐶𝑥))
161160notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝐶 → (¬ 𝑥𝑥 ↔ ¬ 𝐶𝑥))
162159, 161syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Ord 𝑥 → (𝑥 = 𝐶 → ¬ 𝐶𝑥))
163162con2d 134 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Ord 𝑥 → (𝐶𝑥 → ¬ 𝑥 = 𝐶))
164163adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Ord 𝑥 → ((𝑥𝐵𝐶𝑥) → ¬ 𝑥 = 𝐶))
165152, 158, 164sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → ¬ 𝑥 = 𝐶)
166165iffalsed 4495 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → if(𝑥 = 𝐶, 1o, ∅) = ∅)
167149, 166eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥) = ∅)
168167eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → ((𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥) ↔ (𝐹𝑥) = ∅))
169168biimpd 229 . . . . . . . . . . . . . . . . . . . 20 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → ((𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥) → (𝐹𝑥) = ∅))
170169ex 412 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) → ((𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥) → (𝐹𝑥) = ∅)))
171170a2d 29 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → ((𝑥 ∈ (𝐵 ∖ suc 𝐶) → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) → (𝐹𝑥) = ∅)))
172123, 142, 1713syld 60 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → ((𝑥𝐵 → (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) → (𝐹𝑥) = ∅)))
173172ralimdv2 3142 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅))
174121, 173sylan 580 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅))
175174adantr 480 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅))
176 ralun 4157 . . . . . . . . . . . . . . . . 17 ((∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅ ∧ ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅) → ∀𝑥 ∈ ({𝐶} ∪ (𝐵 ∖ suc 𝐶))(𝐹𝑥) = ∅)
177176adantll 714 . . . . . . . . . . . . . . . 16 (((((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) ∧ ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅) → ∀𝑥 ∈ ({𝐶} ∪ (𝐵 ∖ suc 𝐶))(𝐹𝑥) = ∅)
178 undif3 4259 . . . . . . . . . . . . . . . . . . . . 21 ({𝐶} ∪ (𝐵 ∖ suc 𝐶)) = (({𝐶} ∪ 𝐵) ∖ (suc 𝐶 ∖ {𝐶}))
179 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐶 ∈ On ∧ 𝐶𝐵) → 𝐶𝐵)
180179snssd 4769 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ On ∧ 𝐶𝐵) → {𝐶} ⊆ 𝐵)
181 ssequn1 4145 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝐶} ⊆ 𝐵 ↔ ({𝐶} ∪ 𝐵) = 𝐵)
182180, 181sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ∈ On ∧ 𝐶𝐵) → ({𝐶} ∪ 𝐵) = 𝐵)
183 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐶 ∈ On ∧ 𝐶𝐵) → 𝐶 ∈ On)
184 eloni 6330 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐶 ∈ On → Ord 𝐶)
185 orddif 6418 . . . . . . . . . . . . . . . . . . . . . . . 24 (Ord 𝐶𝐶 = (suc 𝐶 ∖ {𝐶}))
186183, 184, 1853syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ On ∧ 𝐶𝐵) → 𝐶 = (suc 𝐶 ∖ {𝐶}))
187186eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ∈ On ∧ 𝐶𝐵) → (suc 𝐶 ∖ {𝐶}) = 𝐶)
188182, 187difeq12d 4086 . . . . . . . . . . . . . . . . . . . . 21 ((𝐶 ∈ On ∧ 𝐶𝐵) → (({𝐶} ∪ 𝐵) ∖ (suc 𝐶 ∖ {𝐶})) = (𝐵𝐶))
189178, 188eqtrid 2776 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ On ∧ 𝐶𝐵) → ({𝐶} ∪ (𝐵 ∖ suc 𝐶)) = (𝐵𝐶))
190189adantll 714 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → ({𝐶} ∪ (𝐵 ∖ suc 𝐶)) = (𝐵𝐶))
191190adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) → ({𝐶} ∪ (𝐵 ∖ suc 𝐶)) = (𝐵𝐶))
192191raleqdv 3296 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) → (∀𝑥 ∈ ({𝐶} ∪ (𝐵 ∖ suc 𝐶))(𝐹𝑥) = ∅ ↔ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
193192ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) ∧ ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅) → (∀𝑥 ∈ ({𝐶} ∪ (𝐵 ∖ suc 𝐶))(𝐹𝑥) = ∅ ↔ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
194177, 193mpbid 232 . . . . . . . . . . . . . . 15 (((((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) ∧ ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)
195194ex 412 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) → (∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅ → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
196175, 195syld 47 . . . . . . . . . . . . 13 ((((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
197196expl 457 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → ((𝑐 = 𝐶 ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)))
198114, 119, 1973syld 60 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → ((𝑐𝐵 ∧ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)))
199198expdimp 452 . . . . . . . . . 10 (((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐𝐵) → ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)))
200199impd 410 . . . . . . . . 9 (((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐𝐵) → (((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
201200rexlimdva 3134 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → (∃𝑐𝐵 ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
202201adantld 490 . . . . . . 7 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → (((𝐹 ∈ V ∧ (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ V) ∧ ∃𝑐𝐵 ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)))) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
20384, 202biimtrid 242 . . . . . 6 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
204203adantlrr 721 . . . . 5 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
20567, 204sylbid 240 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
206205ex 412 . . 3 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (𝐶𝐵 → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)))
207 ral0 4472 . . . . 5 𝑥 ∈ ∅ (𝐹𝑥) = ∅
208 ssdif0 4325 . . . . . . 7 (𝐵𝐶 ↔ (𝐵𝐶) = ∅)
209208biimpi 216 . . . . . 6 (𝐵𝐶 → (𝐵𝐶) = ∅)
210209raleqdv 3296 . . . . 5 (𝐵𝐶 → (∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅ ↔ ∀𝑥 ∈ ∅ (𝐹𝑥) = ∅))
211207, 210mpbiri 258 . . . 4 (𝐵𝐶 → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)
212211a1i13 27 . . 3 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (𝐵𝐶 → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)))
213184adantr 480 . . . 4 ((𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → Ord 𝐶)
214153adantl 481 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → Ord 𝐵)
215 ordtri2or 6420 . . . 4 ((Ord 𝐶 ∧ Ord 𝐵) → (𝐶𝐵𝐵𝐶))
216213, 214, 215syl2anr 597 . . 3 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (𝐶𝐵𝐵𝐶))
217206, 212, 216mpjaod 860 . 2 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
2183ad2antrr 726 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → 𝐴 ∈ On)
219 simpllr 775 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → 𝐵 ∈ On)
220 simplrr 777 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → 𝐹 ∈ dom (𝐴 CNF 𝐵))
22115ad2antrr 726 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → ∅ ∈ 𝐴)
222 simplrl 776 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → 𝐶 ∈ On)
2231, 3, 4cantnfs 9595 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐹 ∈ dom (𝐴 CNF 𝐵) ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
224223biimpd 229 . . . . . . . . 9 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐹 ∈ dom (𝐴 CNF 𝐵) → (𝐹:𝐵𝐴𝐹 finSupp ∅)))
225224adantld 490 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → ((𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → (𝐹:𝐵𝐴𝐹 finSupp ∅)))
226225imp 406 . . . . . . 7 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (𝐹:𝐵𝐴𝐹 finSupp ∅))
227226simpld 494 . . . . . 6 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → 𝐹:𝐵𝐴)
228227adantr 480 . . . . 5 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → 𝐹:𝐵𝐴)
229 fveqeq2 6849 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐹𝑥) = ∅ ↔ (𝐹𝑦) = ∅))
230229rspccv 3582 . . . . . . 7 (∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅ → (𝑦 ∈ (𝐵𝐶) → (𝐹𝑦) = ∅))
231230adantl 481 . . . . . 6 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → (𝑦 ∈ (𝐵𝐶) → (𝐹𝑦) = ∅))
232231imp 406 . . . . 5 (((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) ∧ 𝑦 ∈ (𝐵𝐶)) → (𝐹𝑦) = ∅)
233228, 232suppss 8150 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → (𝐹 supp ∅) ⊆ 𝐶)
2341, 218, 219, 220, 221, 222, 233cantnflt2 9602 . . 3 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶))
235234ex 412 . 2 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅ → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶)))
236217, 235impbid 212 1 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) ↔ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cdif 3908  cun 3909  wss 3911  c0 4292  ifcif 4484  {csn 4585   class class class wbr 5102  {copab 5164  cmpt 5183   E cep 5530   × cxp 5629  dom cdm 5631  Ord word 6319  Oncon0 6320  suc csuc 6322  wf 6495  cfv 6499   Isom wiso 6500  (class class class)co 7369   supp csupp 8116  1oc1o 8404  2oc2o 8405   +o coa 8408   ·o comu 8409  o coe 8410   finSupp cfsupp 9288   CNF ccnf 9590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-seqom 8393  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-oexp 8417  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-cnf 9591
This theorem is referenced by:  cantnf2  43287
  Copyright terms: Public domain W3C validator