Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnfresb Structured version   Visualization version   GIF version

Theorem cantnfresb 43348
Description: A Cantor normal form which sums to less than a certain power has only zeros for larger components. (Contributed by RP, 3-Feb-2025.)
Assertion
Ref Expression
cantnfresb (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) ↔ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹

Proof of Theorem cantnfresb
Dummy variables 𝑎 𝑏 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . . . . . . 11 dom (𝐴 CNF 𝐵) = dom (𝐴 CNF 𝐵)
2 eldifi 4106 . . . . . . . . . . . 12 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
32adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
4 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
5 eqid 2735 . . . . . . . . . . 11 {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))}
61, 3, 4, 5cantnf 9707 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐴 CNF 𝐵) Isom {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))}, E (dom (𝐴 CNF 𝐵), (𝐴o 𝐵)))
76adantr 480 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → (𝐴 CNF 𝐵) Isom {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))}, E (dom (𝐴 CNF 𝐵), (𝐴o 𝐵)))
8 simpr 484 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → 𝐹 ∈ dom (𝐴 CNF 𝐵))
9 ondif2 8514 . . . . . . . . . . . . . . 15 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
109simprbi 496 . . . . . . . . . . . . . 14 (𝐴 ∈ (On ∖ 2o) → 1o𝐴)
11 dif20el 8517 . . . . . . . . . . . . . 14 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
1210, 11ifcld 4547 . . . . . . . . . . . . 13 (𝐴 ∈ (On ∖ 2o) → if(𝑦 = 𝐶, 1o, ∅) ∈ 𝐴)
1312ad2antrr 726 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝑦𝐵) → if(𝑦 = 𝐶, 1o, ∅) ∈ 𝐴)
1413fmpttd 7105 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)):𝐵𝐴)
1511adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → ∅ ∈ 𝐴)
16 eqid 2735 . . . . . . . . . . . 12 (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))
174, 15, 16sniffsupp 9412 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) finSupp ∅)
181, 3, 4cantnfs 9680 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ dom (𝐴 CNF 𝐵) ↔ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)):𝐵𝐴 ∧ (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) finSupp ∅)))
1914, 17, 18mpbir2and 713 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ dom (𝐴 CNF 𝐵))
2019adantr 480 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ dom (𝐴 CNF 𝐵))
21 isorel 7319 . . . . . . . . 9 (((𝐴 CNF 𝐵) Isom {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))}, E (dom (𝐴 CNF 𝐵), (𝐴o 𝐵)) ∧ (𝐹 ∈ dom (𝐴 CNF 𝐵) ∧ (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ dom (𝐴 CNF 𝐵))) → (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ↔ ((𝐴 CNF 𝐵)‘𝐹) E ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)))))
227, 8, 20, 21syl12anc 836 . . . . . . . 8 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ↔ ((𝐴 CNF 𝐵)‘𝐹) E ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)))))
2322adantrl 716 . . . . . . 7 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ↔ ((𝐴 CNF 𝐵)‘𝐹) E ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)))))
2423adantr 480 . . . . . 6 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ↔ ((𝐴 CNF 𝐵)‘𝐹) E ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)))))
25 fvexd 6891 . . . . . . 7 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ∈ V)
26 epelg 5554 . . . . . . 7 (((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ∈ V → (((𝐴 CNF 𝐵)‘𝐹) E ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ↔ ((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)))))
2725, 26syl 17 . . . . . 6 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → (((𝐴 CNF 𝐵)‘𝐹) E ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ↔ ((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)))))
282ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → 𝐴 ∈ On)
29 simplr 768 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → 𝐵 ∈ On)
30 fconst6g 6767 . . . . . . . . . . . . . . . . . 18 (∅ ∈ 𝐴 → (𝐵 × {∅}):𝐵𝐴)
3111, 30syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (On ∖ 2o) → (𝐵 × {∅}):𝐵𝐴)
3231adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐵 × {∅}):𝐵𝐴)
334, 15fczfsuppd 9398 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐵 × {∅}) finSupp ∅)
341, 3, 4cantnfs 9680 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → ((𝐵 × {∅}) ∈ dom (𝐴 CNF 𝐵) ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
3532, 33, 34mpbir2and 713 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐵 × {∅}) ∈ dom (𝐴 CNF 𝐵))
3635adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → (𝐵 × {∅}) ∈ dom (𝐴 CNF 𝐵))
37 simpr 484 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → 𝐶𝐵)
3810ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → 1o𝐴)
39 fczsupp0 8192 . . . . . . . . . . . . . . . 16 ((𝐵 × {∅}) supp ∅) = ∅
40 0ss 4375 . . . . . . . . . . . . . . . 16 ∅ ⊆ 𝐶
4139, 40eqsstri 4005 . . . . . . . . . . . . . . 15 ((𝐵 × {∅}) supp ∅) ⊆ 𝐶
4241a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → ((𝐵 × {∅}) supp ∅) ⊆ 𝐶)
43 0ex 5277 . . . . . . . . . . . . . . . . . 18 ∅ ∈ V
4443fvconst2 7196 . . . . . . . . . . . . . . . . 17 (𝑦𝐵 → ((𝐵 × {∅})‘𝑦) = ∅)
4544ifeq2d 4521 . . . . . . . . . . . . . . . 16 (𝑦𝐵 → if(𝑦 = 𝐶, 1o, ((𝐵 × {∅})‘𝑦)) = if(𝑦 = 𝐶, 1o, ∅))
4645mpteq2ia 5216 . . . . . . . . . . . . . . 15 (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ((𝐵 × {∅})‘𝑦))) = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))
4746eqcomi 2744 . . . . . . . . . . . . . 14 (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ((𝐵 × {∅})‘𝑦)))
481, 28, 29, 36, 37, 38, 42, 47cantnfp1 9695 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ dom (𝐴 CNF 𝐵) ∧ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) = (((𝐴o 𝐶) ·o 1o) +o ((𝐴 CNF 𝐵)‘(𝐵 × {∅})))))
4948simprd 495 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶𝐵) → ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) = (((𝐴o 𝐶) ·o 1o) +o ((𝐴 CNF 𝐵)‘(𝐵 × {∅}))))
5049adantrl 716 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐶𝐵)) → ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) = (((𝐴o 𝐶) ·o 1o) +o ((𝐴 CNF 𝐵)‘(𝐵 × {∅}))))
51 oecl 8549 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
523, 51sylan 580 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
53 om1 8554 . . . . . . . . . . . . . . 15 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) ·o 1o) = (𝐴o 𝐶))
5452, 53syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ((𝐴o 𝐶) ·o 1o) = (𝐴o 𝐶))
551, 3, 4, 15cantnf0 9689 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)
5655adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)
5754, 56oveq12d 7423 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (((𝐴o 𝐶) ·o 1o) +o ((𝐴 CNF 𝐵)‘(𝐵 × {∅}))) = ((𝐴o 𝐶) +o ∅))
58 oa0 8528 . . . . . . . . . . . . . 14 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) +o ∅) = (𝐴o 𝐶))
5952, 58syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ((𝐴o 𝐶) +o ∅) = (𝐴o 𝐶))
6057, 59eqtrd 2770 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (((𝐴o 𝐶) ·o 1o) +o ((𝐴 CNF 𝐵)‘(𝐵 × {∅}))) = (𝐴o 𝐶))
6160adantrr 717 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐶𝐵)) → (((𝐴o 𝐶) ·o 1o) +o ((𝐴 CNF 𝐵)‘(𝐵 × {∅}))) = (𝐴o 𝐶))
6250, 61eqtrd 2770 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐶𝐵)) → ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) = (𝐴o 𝐶))
6362eleq2d 2820 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐶𝐵)) → (((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ↔ ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶)))
6463exp32 420 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐶 ∈ On → (𝐶𝐵 → (((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ↔ ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶)))))
6564adantrd 491 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → ((𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → (𝐶𝐵 → (((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ↔ ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶)))))
6665imp31 417 . . . . . 6 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → (((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))) ↔ ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶)))
6724, 27, 663bitrrd 306 . . . . 5 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) ↔ 𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))))
68 fveq1 6875 . . . . . . . . . . 11 (𝑎 = 𝐹 → (𝑎𝑐) = (𝐹𝑐))
6968eleq1d 2819 . . . . . . . . . 10 (𝑎 = 𝐹 → ((𝑎𝑐) ∈ (𝑏𝑐) ↔ (𝐹𝑐) ∈ (𝑏𝑐)))
70 fveq1 6875 . . . . . . . . . . . . 13 (𝑎 = 𝐹 → (𝑎𝑥) = (𝐹𝑥))
7170eqeq1d 2737 . . . . . . . . . . . 12 (𝑎 = 𝐹 → ((𝑎𝑥) = (𝑏𝑥) ↔ (𝐹𝑥) = (𝑏𝑥)))
7271imbi2d 340 . . . . . . . . . . 11 (𝑎 = 𝐹 → ((𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)) ↔ (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥))))
7372ralbidv 3163 . . . . . . . . . 10 (𝑎 = 𝐹 → (∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)) ↔ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥))))
7469, 73anbi12d 632 . . . . . . . . 9 (𝑎 = 𝐹 → (((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥))) ↔ ((𝐹𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥)))))
7574rexbidv 3164 . . . . . . . 8 (𝑎 = 𝐹 → (∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥))) ↔ ∃𝑐𝐵 ((𝐹𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥)))))
76 fveq1 6875 . . . . . . . . . . 11 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → (𝑏𝑐) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐))
7776eleq2d 2820 . . . . . . . . . 10 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → ((𝐹𝑐) ∈ (𝑏𝑐) ↔ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)))
78 fveq1 6875 . . . . . . . . . . . . 13 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → (𝑏𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))
7978eqeq2d 2746 . . . . . . . . . . . 12 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → ((𝐹𝑥) = (𝑏𝑥) ↔ (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)))
8079imbi2d 340 . . . . . . . . . . 11 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → ((𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥)) ↔ (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))))
8180ralbidv 3163 . . . . . . . . . 10 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥)) ↔ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))))
8277, 81anbi12d 632 . . . . . . . . 9 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → (((𝐹𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥))) ↔ ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)))))
8382rexbidv 3164 . . . . . . . 8 (𝑏 = (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → (∃𝑐𝐵 ((𝐹𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = (𝑏𝑥))) ↔ ∃𝑐𝐵 ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)))))
8475, 83, 5bropabg 43347 . . . . . . 7 (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ↔ ((𝐹 ∈ V ∧ (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ V) ∧ ∃𝑐𝐵 ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)))))
85 fveq2 6876 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝐶 → (𝐹𝑐) = (𝐹𝐶))
8685adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝐶𝑐𝐵) → (𝐹𝑐) = (𝐹𝐶))
87 eqeq1 2739 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑐 → (𝑦 = 𝐶𝑐 = 𝐶))
8887ifbid 4524 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑐 → if(𝑦 = 𝐶, 1o, ∅) = if(𝑐 = 𝐶, 1o, ∅))
89 1oex 8490 . . . . . . . . . . . . . . . . . . . 20 1o ∈ V
9089, 43ifex 4551 . . . . . . . . . . . . . . . . . . 19 if(𝑐 = 𝐶, 1o, ∅) ∈ V
9188, 16, 90fvmpt 6986 . . . . . . . . . . . . . . . . . 18 (𝑐𝐵 → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) = if(𝑐 = 𝐶, 1o, ∅))
92 iftrue 4506 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝐶 → if(𝑐 = 𝐶, 1o, ∅) = 1o)
9391, 92sylan9eqr 2792 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝐶𝑐𝐵) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) = 1o)
9486, 93eleq12d 2828 . . . . . . . . . . . . . . . 16 ((𝑐 = 𝐶𝑐𝐵) → ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ↔ (𝐹𝐶) ∈ 1o))
95 el1o 8507 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐶) ∈ 1o ↔ (𝐹𝐶) = ∅)
9695a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑐 = 𝐶𝑐𝐵) → ((𝐹𝐶) ∈ 1o ↔ (𝐹𝐶) = ∅))
9796biimpd 229 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝐶𝑐𝐵) → ((𝐹𝐶) ∈ 1o → (𝐹𝐶) = ∅))
98 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝐶𝑐𝐵) → 𝑐 = 𝐶)
9997, 98jctild 525 . . . . . . . . . . . . . . . 16 ((𝑐 = 𝐶𝑐𝐵) → ((𝐹𝐶) ∈ 1o → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅)))
10094, 99sylbid 240 . . . . . . . . . . . . . . 15 ((𝑐 = 𝐶𝑐𝐵) → ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅)))
101100expimpd 453 . . . . . . . . . . . . . 14 (𝑐 = 𝐶 → ((𝑐𝐵 ∧ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)) → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅)))
10291adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑐𝐶𝑐𝐵) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) = if(𝑐 = 𝐶, 1o, ∅))
103 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐𝐶𝑐𝐵) → 𝑐𝐶)
104103neneqd 2937 . . . . . . . . . . . . . . . . . . . 20 ((𝑐𝐶𝑐𝐵) → ¬ 𝑐 = 𝐶)
105104iffalsed 4511 . . . . . . . . . . . . . . . . . . 19 ((𝑐𝐶𝑐𝐵) → if(𝑐 = 𝐶, 1o, ∅) = ∅)
106102, 105eqtrd 2770 . . . . . . . . . . . . . . . . . 18 ((𝑐𝐶𝑐𝐵) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) = ∅)
107106eleq2d 2820 . . . . . . . . . . . . . . . . 17 ((𝑐𝐶𝑐𝐵) → ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ↔ (𝐹𝑐) ∈ ∅))
108107biimpd 229 . . . . . . . . . . . . . . . 16 ((𝑐𝐶𝑐𝐵) → ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) → (𝐹𝑐) ∈ ∅))
109108expimpd 453 . . . . . . . . . . . . . . 15 (𝑐𝐶 → ((𝑐𝐵 ∧ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)) → (𝐹𝑐) ∈ ∅))
110 noel 4313 . . . . . . . . . . . . . . . 16 ¬ (𝐹𝑐) ∈ ∅
111110pm2.21i 119 . . . . . . . . . . . . . . 15 ((𝐹𝑐) ∈ ∅ → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅))
112109, 111syl6 35 . . . . . . . . . . . . . 14 (𝑐𝐶 → ((𝑐𝐵 ∧ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)) → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅)))
113101, 112pm2.61ine 3015 . . . . . . . . . . . . 13 ((𝑐𝐵 ∧ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)) → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅))
114113a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → ((𝑐𝐵 ∧ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)) → (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅)))
115 fveqeq2 6885 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐶 → ((𝐹𝑥) = ∅ ↔ (𝐹𝐶) = ∅))
116115ralsng 4651 . . . . . . . . . . . . . . 15 (𝐶𝐵 → (∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅ ↔ (𝐹𝐶) = ∅))
117116anbi2d 630 . . . . . . . . . . . . . 14 (𝐶𝐵 → ((𝑐 = 𝐶 ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) ↔ (𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅)))
118117biimprd 248 . . . . . . . . . . . . 13 (𝐶𝐵 → ((𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅) → (𝑐 = 𝐶 ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅)))
119118adantl 481 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → ((𝑐 = 𝐶 ∧ (𝐹𝐶) = ∅) → (𝑐 = 𝐶 ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅)))
1204anim1i 615 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (𝐵 ∈ On ∧ 𝐶 ∈ On))
121120adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → (𝐵 ∈ On ∧ 𝐶 ∈ On))
122 pm3.31 449 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐵 → (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))) → ((𝑥𝐵𝑐𝑥) → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)))
123122a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → ((𝑥𝐵 → (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))) → ((𝑥𝐵𝑐𝑥) → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))))
124 eldif 3936 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐵 ∖ suc 𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥 ∈ suc 𝐶))
125 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → 𝑐 = 𝐶)
126125eleq1d 2819 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → (𝑐𝑥𝐶𝑥))
127 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐵 ∈ On)
128127adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → 𝐵 ∈ On)
129 onelon 6377 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
130128, 129sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → 𝑥 ∈ On)
131 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → 𝐶 ∈ On)
132 ontri1 6386 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ On ∧ 𝐶 ∈ On) → (𝑥𝐶 ↔ ¬ 𝐶𝑥))
133130, 131, 132syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → (𝑥𝐶 ↔ ¬ 𝐶𝑥))
134133con2bid 354 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → (𝐶𝑥 ↔ ¬ 𝑥𝐶))
135 onsssuc 6444 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ On ∧ 𝐶 ∈ On) → (𝑥𝐶𝑥 ∈ suc 𝐶))
136130, 131, 135syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → (𝑥𝐶𝑥 ∈ suc 𝐶))
137136notbid 318 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → (¬ 𝑥𝐶 ↔ ¬ 𝑥 ∈ suc 𝐶))
138126, 134, 1373bitrrd 306 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥𝐵) → (¬ 𝑥 ∈ suc 𝐶𝑐𝑥))
139138pm5.32da 579 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → ((𝑥𝐵 ∧ ¬ 𝑥 ∈ suc 𝐶) ↔ (𝑥𝐵𝑐𝑥)))
140124, 139bitrid 283 . . . . . . . . . . . . . . . . . . . 20 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) ↔ (𝑥𝐵𝑐𝑥)))
141140biimpd 229 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) → (𝑥𝐵𝑐𝑥)))
142141imim1d 82 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → (((𝑥𝐵𝑐𝑥) → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))))
143 eldifi 4106 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (𝐵 ∖ suc 𝐶) → 𝑥𝐵)
144143adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → 𝑥𝐵)
145 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑥 → (𝑦 = 𝐶𝑥 = 𝐶))
146145ifbid 4524 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑥 → if(𝑦 = 𝐶, 1o, ∅) = if(𝑥 = 𝐶, 1o, ∅))
14789, 43ifex 4551 . . . . . . . . . . . . . . . . . . . . . . . . 25 if(𝑥 = 𝐶, 1o, ∅) ∈ V
148146, 16, 147fvmpt 6986 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝐵 → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥) = if(𝑥 = 𝐶, 1o, ∅))
149144, 148syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥) = if(𝑥 = 𝐶, 1o, ∅))
150128, 143, 129syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → 𝑥 ∈ On)
151 eloni 6362 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ On → Ord 𝑥)
152150, 151syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → Ord 𝑥)
153 eloni 6362 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐵 ∈ On → Ord 𝐵)
154153ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → Ord 𝐵)
155 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → 𝐶 ∈ On)
156 ordeldifsucon 43283 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Ord 𝐵𝐶 ∈ On) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) ↔ (𝑥𝐵𝐶𝑥)))
157154, 155, 156syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) ↔ (𝑥𝐵𝐶𝑥)))
158157biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → (𝑥𝐵𝐶𝑥))
159 ordirr 6370 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Ord 𝑥 → ¬ 𝑥𝑥)
160 eleq1 2822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = 𝐶 → (𝑥𝑥𝐶𝑥))
161160notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝐶 → (¬ 𝑥𝑥 ↔ ¬ 𝐶𝑥))
162159, 161syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Ord 𝑥 → (𝑥 = 𝐶 → ¬ 𝐶𝑥))
163162con2d 134 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Ord 𝑥 → (𝐶𝑥 → ¬ 𝑥 = 𝐶))
164163adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Ord 𝑥 → ((𝑥𝐵𝐶𝑥) → ¬ 𝑥 = 𝐶))
165152, 158, 164sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → ¬ 𝑥 = 𝐶)
166165iffalsed 4511 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → if(𝑥 = 𝐶, 1o, ∅) = ∅)
167149, 166eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥) = ∅)
168167eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → ((𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥) ↔ (𝐹𝑥) = ∅))
169168biimpd 229 . . . . . . . . . . . . . . . . . . . 20 ((((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) ∧ 𝑥 ∈ (𝐵 ∖ suc 𝐶)) → ((𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥) → (𝐹𝑥) = ∅))
170169ex 412 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) → ((𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥) → (𝐹𝑥) = ∅)))
171170a2d 29 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → ((𝑥 ∈ (𝐵 ∖ suc 𝐶) → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) → (𝐹𝑥) = ∅)))
172123, 142, 1713syld 60 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → ((𝑥𝐵 → (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))) → (𝑥 ∈ (𝐵 ∖ suc 𝐶) → (𝐹𝑥) = ∅)))
173172ralimdv2 3149 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑐 = 𝐶) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅))
174121, 173sylan 580 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅))
175174adantr 480 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅))
176 ralun 4173 . . . . . . . . . . . . . . . . 17 ((∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅ ∧ ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅) → ∀𝑥 ∈ ({𝐶} ∪ (𝐵 ∖ suc 𝐶))(𝐹𝑥) = ∅)
177176adantll 714 . . . . . . . . . . . . . . . 16 (((((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) ∧ ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅) → ∀𝑥 ∈ ({𝐶} ∪ (𝐵 ∖ suc 𝐶))(𝐹𝑥) = ∅)
178 undif3 4275 . . . . . . . . . . . . . . . . . . . . 21 ({𝐶} ∪ (𝐵 ∖ suc 𝐶)) = (({𝐶} ∪ 𝐵) ∖ (suc 𝐶 ∖ {𝐶}))
179 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐶 ∈ On ∧ 𝐶𝐵) → 𝐶𝐵)
180179snssd 4785 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ On ∧ 𝐶𝐵) → {𝐶} ⊆ 𝐵)
181 ssequn1 4161 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝐶} ⊆ 𝐵 ↔ ({𝐶} ∪ 𝐵) = 𝐵)
182180, 181sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ∈ On ∧ 𝐶𝐵) → ({𝐶} ∪ 𝐵) = 𝐵)
183 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐶 ∈ On ∧ 𝐶𝐵) → 𝐶 ∈ On)
184 eloni 6362 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐶 ∈ On → Ord 𝐶)
185 orddif 6450 . . . . . . . . . . . . . . . . . . . . . . . 24 (Ord 𝐶𝐶 = (suc 𝐶 ∖ {𝐶}))
186183, 184, 1853syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ On ∧ 𝐶𝐵) → 𝐶 = (suc 𝐶 ∖ {𝐶}))
187186eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ∈ On ∧ 𝐶𝐵) → (suc 𝐶 ∖ {𝐶}) = 𝐶)
188182, 187difeq12d 4102 . . . . . . . . . . . . . . . . . . . . 21 ((𝐶 ∈ On ∧ 𝐶𝐵) → (({𝐶} ∪ 𝐵) ∖ (suc 𝐶 ∖ {𝐶})) = (𝐵𝐶))
189178, 188eqtrid 2782 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ On ∧ 𝐶𝐵) → ({𝐶} ∪ (𝐵 ∖ suc 𝐶)) = (𝐵𝐶))
190189adantll 714 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → ({𝐶} ∪ (𝐵 ∖ suc 𝐶)) = (𝐵𝐶))
191190adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) → ({𝐶} ∪ (𝐵 ∖ suc 𝐶)) = (𝐵𝐶))
192191raleqdv 3305 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) → (∀𝑥 ∈ ({𝐶} ∪ (𝐵 ∖ suc 𝐶))(𝐹𝑥) = ∅ ↔ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
193192ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) ∧ ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅) → (∀𝑥 ∈ ({𝐶} ∪ (𝐵 ∖ suc 𝐶))(𝐹𝑥) = ∅ ↔ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
194177, 193mpbid 232 . . . . . . . . . . . . . . 15 (((((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) ∧ ∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)
195194ex 412 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) → (∀𝑥 ∈ (𝐵 ∖ suc 𝐶)(𝐹𝑥) = ∅ → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
196175, 195syld 47 . . . . . . . . . . . . 13 ((((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐 = 𝐶) ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
197196expl 457 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → ((𝑐 = 𝐶 ∧ ∀𝑥 ∈ {𝐶} (𝐹𝑥) = ∅) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)))
198114, 119, 1973syld 60 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → ((𝑐𝐵 ∧ (𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐)) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)))
199198expdimp 452 . . . . . . . . . 10 (((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐𝐵) → ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) → (∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)))
200199impd 410 . . . . . . . . 9 (((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) ∧ 𝑐𝐵) → (((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
201200rexlimdva 3141 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → (∃𝑐𝐵 ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥))) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
202201adantld 490 . . . . . . 7 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → (((𝐹 ∈ V ∧ (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) ∈ V) ∧ ∃𝑐𝐵 ((𝐹𝑐) ∈ ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝐹𝑥) = ((𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅))‘𝑥)))) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
20384, 202biimtrid 242 . . . . . 6 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ∧ 𝐶𝐵) → (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
204203adantlrr 721 . . . . 5 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → (𝐹{⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝐵 ((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑥𝐵 (𝑐𝑥 → (𝑎𝑥) = (𝑏𝑥)))} (𝑦𝐵 ↦ if(𝑦 = 𝐶, 1o, ∅)) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
20567, 204sylbid 240 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ 𝐶𝐵) → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
206205ex 412 . . 3 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (𝐶𝐵 → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)))
207 ral0 4488 . . . . 5 𝑥 ∈ ∅ (𝐹𝑥) = ∅
208 ssdif0 4341 . . . . . . 7 (𝐵𝐶 ↔ (𝐵𝐶) = ∅)
209208biimpi 216 . . . . . 6 (𝐵𝐶 → (𝐵𝐶) = ∅)
210209raleqdv 3305 . . . . 5 (𝐵𝐶 → (∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅ ↔ ∀𝑥 ∈ ∅ (𝐹𝑥) = ∅))
211207, 210mpbiri 258 . . . 4 (𝐵𝐶 → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)
212211a1i13 27 . . 3 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (𝐵𝐶 → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅)))
213184adantr 480 . . . 4 ((𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → Ord 𝐶)
214153adantl 481 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → Ord 𝐵)
215 ordtri2or 6452 . . . 4 ((Ord 𝐶 ∧ Ord 𝐵) → (𝐶𝐵𝐵𝐶))
216213, 214, 215syl2anr 597 . . 3 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (𝐶𝐵𝐵𝐶))
217206, 212, 216mpjaod 860 . 2 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) → ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
2183ad2antrr 726 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → 𝐴 ∈ On)
219 simpllr 775 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → 𝐵 ∈ On)
220 simplrr 777 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → 𝐹 ∈ dom (𝐴 CNF 𝐵))
22115ad2antrr 726 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → ∅ ∈ 𝐴)
222 simplrl 776 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → 𝐶 ∈ On)
2231, 3, 4cantnfs 9680 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐹 ∈ dom (𝐴 CNF 𝐵) ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
224223biimpd 229 . . . . . . . . 9 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐹 ∈ dom (𝐴 CNF 𝐵) → (𝐹:𝐵𝐴𝐹 finSupp ∅)))
225224adantld 490 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → ((𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵)) → (𝐹:𝐵𝐴𝐹 finSupp ∅)))
226225imp 406 . . . . . . 7 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (𝐹:𝐵𝐴𝐹 finSupp ∅))
227226simpld 494 . . . . . 6 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → 𝐹:𝐵𝐴)
228227adantr 480 . . . . 5 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → 𝐹:𝐵𝐴)
229 fveqeq2 6885 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐹𝑥) = ∅ ↔ (𝐹𝑦) = ∅))
230229rspccv 3598 . . . . . . 7 (∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅ → (𝑦 ∈ (𝐵𝐶) → (𝐹𝑦) = ∅))
231230adantl 481 . . . . . 6 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → (𝑦 ∈ (𝐵𝐶) → (𝐹𝑦) = ∅))
232231imp 406 . . . . 5 (((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) ∧ 𝑦 ∈ (𝐵𝐶)) → (𝐹𝑦) = ∅)
233228, 232suppss 8193 . . . 4 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → (𝐹 supp ∅) ⊆ 𝐶)
2341, 218, 219, 220, 221, 222, 233cantnflt2 9687 . . 3 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) ∧ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅) → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶))
235234ex 412 . 2 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅ → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶)))
236217, 235impbid 212 1 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶) ↔ ∀𝑥 ∈ (𝐵𝐶)(𝐹𝑥) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  cdif 3923  cun 3924  wss 3926  c0 4308  ifcif 4500  {csn 4601   class class class wbr 5119  {copab 5181  cmpt 5201   E cep 5552   × cxp 5652  dom cdm 5654  Ord word 6351  Oncon0 6352  suc csuc 6354  wf 6527  cfv 6531   Isom wiso 6532  (class class class)co 7405   supp csupp 8159  1oc1o 8473  2oc2o 8474   +o coa 8477   ·o comu 8478  o coe 8479   finSupp cfsupp 9373   CNF ccnf 9675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-seqom 8462  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-oexp 8486  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-oi 9524  df-cnf 9676
This theorem is referenced by:  cantnf2  43349
  Copyright terms: Public domain W3C validator