| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | id 22 | . . 3
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | 
| 2 |  | filunibas 23890 | . . . 4
⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 =
𝑋) | 
| 3 | 2 | fveq2d 6909 | . . 3
⊢ (𝐹 ∈ (Fil‘𝑋) → (Fil‘∪ 𝐹) =
(Fil‘𝑋)) | 
| 4 | 1, 3 | eleqtrrd 2843 | . 2
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (Fil‘∪ 𝐹)) | 
| 5 |  | nss 4047 | . . . . . . . 8
⊢ (¬
𝑥 ⊆ {∅} ↔
∃𝑦(𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ {∅})) | 
| 6 |  | simpll 766 | . . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝐹 ∈ (Fil‘∪ 𝐹)) | 
| 7 |  | ssel2 3977 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ⊆ (𝐹 ∪ {∅}) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ (𝐹 ∪ {∅})) | 
| 8 | 7 | adantll 714 | . . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ (𝐹 ∪ {∅})) | 
| 9 |  | elun 4152 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (𝐹 ∪ {∅}) ↔ (𝑦 ∈ 𝐹 ∨ 𝑦 ∈ {∅})) | 
| 10 | 8, 9 | sylib 218 | . . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ 𝑦 ∈ 𝑥) → (𝑦 ∈ 𝐹 ∨ 𝑦 ∈ {∅})) | 
| 11 | 10 | orcomd 871 | . . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ 𝑦 ∈ 𝑥) → (𝑦 ∈ {∅} ∨ 𝑦 ∈ 𝐹)) | 
| 12 | 11 | ord 864 | . . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ 𝑦 ∈ 𝑥) → (¬ 𝑦 ∈ {∅} → 𝑦 ∈ 𝐹)) | 
| 13 | 12 | impr 454 | . . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑦 ∈ 𝐹) | 
| 14 |  | uniss 4914 | . . . . . . . . . . . . . 14
⊢ (𝑥 ⊆ (𝐹 ∪ {∅}) → ∪ 𝑥
⊆ ∪ (𝐹 ∪ {∅})) | 
| 15 | 14 | ad2antlr 727 | . . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ {∅})) → ∪ 𝑥
⊆ ∪ (𝐹 ∪ {∅})) | 
| 16 |  | uniun 4929 | . . . . . . . . . . . . . 14
⊢ ∪ (𝐹
∪ {∅}) = (∪ 𝐹 ∪ ∪
{∅}) | 
| 17 |  | 0ex 5306 | . . . . . . . . . . . . . . . 16
⊢ ∅
∈ V | 
| 18 | 17 | unisn 4925 | . . . . . . . . . . . . . . 15
⊢ ∪ {∅} = ∅ | 
| 19 | 18 | uneq2i 4164 | . . . . . . . . . . . . . 14
⊢ (∪ 𝐹
∪ ∪ {∅}) = (∪
𝐹 ∪
∅) | 
| 20 |  | un0 4393 | . . . . . . . . . . . . . 14
⊢ (∪ 𝐹
∪ ∅) = ∪ 𝐹 | 
| 21 | 16, 19, 20 | 3eqtrri 2769 | . . . . . . . . . . . . 13
⊢ ∪ 𝐹 =
∪ (𝐹 ∪ {∅}) | 
| 22 | 15, 21 | sseqtrrdi 4024 | . . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ {∅})) → ∪ 𝑥
⊆ ∪ 𝐹) | 
| 23 |  | elssuni 4936 | . . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝑥 → 𝑦 ⊆ ∪ 𝑥) | 
| 24 | 23 | ad2antrl 728 | . . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑦 ⊆ ∪ 𝑥) | 
| 25 |  | filss 23862 | . . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Fil‘∪ 𝐹)
∧ (𝑦 ∈ 𝐹 ∧ ∪ 𝑥
⊆ ∪ 𝐹 ∧ 𝑦 ⊆ ∪ 𝑥)) → ∪ 𝑥
∈ 𝐹) | 
| 26 | 6, 13, 22, 24, 25 | syl13anc 1373 | . . . . . . . . . . 11
⊢ (((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ {∅})) → ∪ 𝑥
∈ 𝐹) | 
| 27 |  | elun1 4181 | . . . . . . . . . . 11
⊢ (∪ 𝑥
∈ 𝐹 → ∪ 𝑥
∈ (𝐹 ∪
{∅})) | 
| 28 | 26, 27 | syl 17 | . . . . . . . . . 10
⊢ (((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ {∅})) → ∪ 𝑥
∈ (𝐹 ∪
{∅})) | 
| 29 | 28 | ex 412 | . . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ⊆ (𝐹 ∪ {∅})) →
((𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ {∅}) → ∪ 𝑥
∈ (𝐹 ∪
{∅}))) | 
| 30 | 29 | exlimdv 1932 | . . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ⊆ (𝐹 ∪ {∅})) →
(∃𝑦(𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ {∅}) → ∪ 𝑥
∈ (𝐹 ∪
{∅}))) | 
| 31 | 5, 30 | biimtrid 242 | . . . . . . 7
⊢ ((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ⊆ (𝐹 ∪ {∅})) → (¬
𝑥 ⊆ {∅} →
∪ 𝑥 ∈ (𝐹 ∪ {∅}))) | 
| 32 |  | uni0b 4932 | . . . . . . . 8
⊢ (∪ 𝑥 =
∅ ↔ 𝑥 ⊆
{∅}) | 
| 33 |  | ssun2 4178 | . . . . . . . . . 10
⊢ {∅}
⊆ (𝐹 ∪
{∅}) | 
| 34 | 17 | snid 4661 | . . . . . . . . . 10
⊢ ∅
∈ {∅} | 
| 35 | 33, 34 | sselii 3979 | . . . . . . . . 9
⊢ ∅
∈ (𝐹 ∪
{∅}) | 
| 36 |  | eleq1 2828 | . . . . . . . . 9
⊢ (∪ 𝑥 =
∅ → (∪ 𝑥 ∈ (𝐹 ∪ {∅}) ↔ ∅ ∈
(𝐹 ∪
{∅}))) | 
| 37 | 35, 36 | mpbiri 258 | . . . . . . . 8
⊢ (∪ 𝑥 =
∅ → ∪ 𝑥 ∈ (𝐹 ∪ {∅})) | 
| 38 | 32, 37 | sylbir 235 | . . . . . . 7
⊢ (𝑥 ⊆ {∅} → ∪ 𝑥
∈ (𝐹 ∪
{∅})) | 
| 39 | 31, 38 | pm2.61d2 181 | . . . . . 6
⊢ ((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ⊆ (𝐹 ∪ {∅})) → ∪ 𝑥
∈ (𝐹 ∪
{∅})) | 
| 40 | 39 | ex 412 | . . . . 5
⊢ (𝐹 ∈ (Fil‘∪ 𝐹)
→ (𝑥 ⊆ (𝐹 ∪ {∅}) → ∪ 𝑥
∈ (𝐹 ∪
{∅}))) | 
| 41 | 40 | alrimiv 1926 | . . . 4
⊢ (𝐹 ∈ (Fil‘∪ 𝐹)
→ ∀𝑥(𝑥 ⊆ (𝐹 ∪ {∅}) → ∪ 𝑥
∈ (𝐹 ∪
{∅}))) | 
| 42 |  | filin 23863 | . . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 ∩ 𝑦) ∈ 𝐹) | 
| 43 |  | elun1 4181 | . . . . . . . . . 10
⊢ ((𝑥 ∩ 𝑦) ∈ 𝐹 → (𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅})) | 
| 44 | 42, 43 | syl 17 | . . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅})) | 
| 45 | 44 | 3expa 1118 | . . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ∈ 𝐹) ∧ 𝑦 ∈ 𝐹) → (𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅})) | 
| 46 | 45 | ralrimiva 3145 | . . . . . . 7
⊢ ((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ∈ 𝐹) → ∀𝑦 ∈ 𝐹 (𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅})) | 
| 47 |  | elsni 4642 | . . . . . . . . 9
⊢ (𝑦 ∈ {∅} → 𝑦 = ∅) | 
| 48 |  | ineq2 4213 | . . . . . . . . . . 11
⊢ (𝑦 = ∅ → (𝑥 ∩ 𝑦) = (𝑥 ∩ ∅)) | 
| 49 |  | in0 4394 | . . . . . . . . . . 11
⊢ (𝑥 ∩ ∅) =
∅ | 
| 50 | 48, 49 | eqtrdi 2792 | . . . . . . . . . 10
⊢ (𝑦 = ∅ → (𝑥 ∩ 𝑦) = ∅) | 
| 51 | 50, 35 | eqeltrdi 2848 | . . . . . . . . 9
⊢ (𝑦 = ∅ → (𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅})) | 
| 52 | 47, 51 | syl 17 | . . . . . . . 8
⊢ (𝑦 ∈ {∅} → (𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅})) | 
| 53 | 52 | rgen 3062 | . . . . . . 7
⊢
∀𝑦 ∈
{∅} (𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅}) | 
| 54 |  | ralun 4197 | . . . . . . 7
⊢
((∀𝑦 ∈
𝐹 (𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅}) ∧ ∀𝑦 ∈ {∅} (𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅})) → ∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅})) | 
| 55 | 46, 53, 54 | sylancl 586 | . . . . . 6
⊢ ((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ∈ 𝐹) → ∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅})) | 
| 56 | 55 | ralrimiva 3145 | . . . . 5
⊢ (𝐹 ∈ (Fil‘∪ 𝐹)
→ ∀𝑥 ∈
𝐹 ∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅})) | 
| 57 |  | elsni 4642 | . . . . . . 7
⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) | 
| 58 |  | ineq1 4212 | . . . . . . . . . 10
⊢ (𝑥 = ∅ → (𝑥 ∩ 𝑦) = (∅ ∩ 𝑦)) | 
| 59 |  | 0in 4396 | . . . . . . . . . 10
⊢ (∅
∩ 𝑦) =
∅ | 
| 60 | 58, 59 | eqtrdi 2792 | . . . . . . . . 9
⊢ (𝑥 = ∅ → (𝑥 ∩ 𝑦) = ∅) | 
| 61 | 60, 35 | eqeltrdi 2848 | . . . . . . . 8
⊢ (𝑥 = ∅ → (𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅})) | 
| 62 | 61 | ralrimivw 3149 | . . . . . . 7
⊢ (𝑥 = ∅ → ∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅})) | 
| 63 | 57, 62 | syl 17 | . . . . . 6
⊢ (𝑥 ∈ {∅} →
∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅})) | 
| 64 | 63 | rgen 3062 | . . . . 5
⊢
∀𝑥 ∈
{∅}∀𝑦 ∈
(𝐹 ∪ {∅})(𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅}) | 
| 65 |  | ralun 4197 | . . . . 5
⊢
((∀𝑥 ∈
𝐹 ∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅}) ∧ ∀𝑥 ∈ {∅}∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅})) → ∀𝑥 ∈ (𝐹 ∪ {∅})∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅})) | 
| 66 | 56, 64, 65 | sylancl 586 | . . . 4
⊢ (𝐹 ∈ (Fil‘∪ 𝐹)
→ ∀𝑥 ∈
(𝐹 ∪
{∅})∀𝑦 ∈
(𝐹 ∪ {∅})(𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅})) | 
| 67 |  | p0ex 5383 | . . . . . 6
⊢ {∅}
∈ V | 
| 68 |  | unexg 7764 | . . . . . 6
⊢ ((𝐹 ∈ (Fil‘∪ 𝐹)
∧ {∅} ∈ V) → (𝐹 ∪ {∅}) ∈ V) | 
| 69 | 67, 68 | mpan2 691 | . . . . 5
⊢ (𝐹 ∈ (Fil‘∪ 𝐹)
→ (𝐹 ∪ {∅})
∈ V) | 
| 70 |  | istopg 22902 | . . . . 5
⊢ ((𝐹 ∪ {∅}) ∈ V
→ ((𝐹 ∪ {∅})
∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝐹 ∪ {∅}) → ∪ 𝑥
∈ (𝐹 ∪ {∅}))
∧ ∀𝑥 ∈
(𝐹 ∪
{∅})∀𝑦 ∈
(𝐹 ∪ {∅})(𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅})))) | 
| 71 | 69, 70 | syl 17 | . . . 4
⊢ (𝐹 ∈ (Fil‘∪ 𝐹)
→ ((𝐹 ∪ {∅})
∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝐹 ∪ {∅}) → ∪ 𝑥
∈ (𝐹 ∪ {∅}))
∧ ∀𝑥 ∈
(𝐹 ∪
{∅})∀𝑦 ∈
(𝐹 ∪ {∅})(𝑥 ∩ 𝑦) ∈ (𝐹 ∪ {∅})))) | 
| 72 | 41, 66, 71 | mpbir2and 713 | . . 3
⊢ (𝐹 ∈ (Fil‘∪ 𝐹)
→ (𝐹 ∪ {∅})
∈ Top) | 
| 73 | 21 | cldopn 23040 | . . . . . . . 8
⊢ (𝑥 ∈ (Clsd‘(𝐹 ∪ {∅})) → (∪ 𝐹
∖ 𝑥) ∈ (𝐹 ∪
{∅})) | 
| 74 |  | elun 4152 | . . . . . . . 8
⊢ ((∪ 𝐹
∖ 𝑥) ∈ (𝐹 ∪ {∅}) ↔ ((∪ 𝐹
∖ 𝑥) ∈ 𝐹 ∨ (∪ 𝐹
∖ 𝑥) ∈
{∅})) | 
| 75 | 73, 74 | sylib 218 | . . . . . . 7
⊢ (𝑥 ∈ (Clsd‘(𝐹 ∪ {∅})) →
((∪ 𝐹 ∖ 𝑥) ∈ 𝐹 ∨ (∪ 𝐹 ∖ 𝑥) ∈ {∅})) | 
| 76 |  | elun 4152 | . . . . . . . . . 10
⊢ (𝑥 ∈ (𝐹 ∪ {∅}) ↔ (𝑥 ∈ 𝐹 ∨ 𝑥 ∈ {∅})) | 
| 77 |  | filfbas 23857 | . . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (Fil‘∪ 𝐹)
→ 𝐹 ∈
(fBas‘∪ 𝐹)) | 
| 78 |  | fbncp 23848 | . . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ (fBas‘∪ 𝐹)
∧ 𝑥 ∈ 𝐹) → ¬ (∪ 𝐹
∖ 𝑥) ∈ 𝐹) | 
| 79 | 77, 78 | sylan 580 | . . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ∈ 𝐹) → ¬ (∪ 𝐹
∖ 𝑥) ∈ 𝐹) | 
| 80 | 79 | pm2.21d 121 | . . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ∈ 𝐹) → ((∪ 𝐹
∖ 𝑥) ∈ 𝐹 → 𝑥 = ∅)) | 
| 81 | 80 | ex 412 | . . . . . . . . . . 11
⊢ (𝐹 ∈ (Fil‘∪ 𝐹)
→ (𝑥 ∈ 𝐹 → ((∪ 𝐹
∖ 𝑥) ∈ 𝐹 → 𝑥 = ∅))) | 
| 82 | 57 | a1i13 27 | . . . . . . . . . . 11
⊢ (𝐹 ∈ (Fil‘∪ 𝐹)
→ (𝑥 ∈ {∅}
→ ((∪ 𝐹 ∖ 𝑥) ∈ 𝐹 → 𝑥 = ∅))) | 
| 83 | 81, 82 | jaod 859 | . . . . . . . . . 10
⊢ (𝐹 ∈ (Fil‘∪ 𝐹)
→ ((𝑥 ∈ 𝐹 ∨ 𝑥 ∈ {∅}) → ((∪ 𝐹
∖ 𝑥) ∈ 𝐹 → 𝑥 = ∅))) | 
| 84 | 76, 83 | biimtrid 242 | . . . . . . . . 9
⊢ (𝐹 ∈ (Fil‘∪ 𝐹)
→ (𝑥 ∈ (𝐹 ∪ {∅}) → ((∪ 𝐹
∖ 𝑥) ∈ 𝐹 → 𝑥 = ∅))) | 
| 85 | 84 | imp 406 | . . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ∈ (𝐹 ∪ {∅})) →
((∪ 𝐹 ∖ 𝑥) ∈ 𝐹 → 𝑥 = ∅)) | 
| 86 |  | elsni 4642 | . . . . . . . . 9
⊢ ((∪ 𝐹
∖ 𝑥) ∈ {∅}
→ (∪ 𝐹 ∖ 𝑥) = ∅) | 
| 87 |  | elssuni 4936 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝐹 ∪ {∅}) → 𝑥 ⊆ ∪ (𝐹 ∪
{∅})) | 
| 88 | 87, 21 | sseqtrrdi 4024 | . . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐹 ∪ {∅}) → 𝑥 ⊆ ∪ 𝐹) | 
| 89 | 88 | adantl 481 | . . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ∈ (𝐹 ∪ {∅})) → 𝑥 ⊆ ∪ 𝐹) | 
| 90 |  | ssdif0 4365 | . . . . . . . . . . 11
⊢ (∪ 𝐹
⊆ 𝑥 ↔ (∪ 𝐹
∖ 𝑥) =
∅) | 
| 91 | 90 | biimpri 228 | . . . . . . . . . 10
⊢ ((∪ 𝐹
∖ 𝑥) = ∅ →
∪ 𝐹 ⊆ 𝑥) | 
| 92 |  | eqss 3998 | . . . . . . . . . . 11
⊢ (𝑥 = ∪
𝐹 ↔ (𝑥 ⊆ ∪ 𝐹
∧ ∪ 𝐹 ⊆ 𝑥)) | 
| 93 | 92 | simplbi2 500 | . . . . . . . . . 10
⊢ (𝑥 ⊆ ∪ 𝐹
→ (∪ 𝐹 ⊆ 𝑥 → 𝑥 = ∪ 𝐹)) | 
| 94 | 89, 91, 93 | syl2im 40 | . . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ∈ (𝐹 ∪ {∅})) →
((∪ 𝐹 ∖ 𝑥) = ∅ → 𝑥 = ∪ 𝐹)) | 
| 95 | 86, 94 | syl5 34 | . . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ∈ (𝐹 ∪ {∅})) →
((∪ 𝐹 ∖ 𝑥) ∈ {∅} → 𝑥 = ∪ 𝐹)) | 
| 96 | 85, 95 | orim12d 966 | . . . . . . 7
⊢ ((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ∈ (𝐹 ∪ {∅})) →
(((∪ 𝐹 ∖ 𝑥) ∈ 𝐹 ∨ (∪ 𝐹 ∖ 𝑥) ∈ {∅}) → (𝑥 = ∅ ∨ 𝑥 = ∪
𝐹))) | 
| 97 | 75, 96 | syl5 34 | . . . . . 6
⊢ ((𝐹 ∈ (Fil‘∪ 𝐹)
∧ 𝑥 ∈ (𝐹 ∪ {∅})) → (𝑥 ∈ (Clsd‘(𝐹 ∪ {∅})) → (𝑥 = ∅ ∨ 𝑥 = ∪
𝐹))) | 
| 98 | 97 | expimpd 453 | . . . . 5
⊢ (𝐹 ∈ (Fil‘∪ 𝐹)
→ ((𝑥 ∈ (𝐹 ∪ {∅}) ∧ 𝑥 ∈ (Clsd‘(𝐹 ∪ {∅}))) →
(𝑥 = ∅ ∨ 𝑥 = ∪
𝐹))) | 
| 99 |  | elin 3966 | . . . . 5
⊢ (𝑥 ∈ ((𝐹 ∪ {∅}) ∩ (Clsd‘(𝐹 ∪ {∅}))) ↔
(𝑥 ∈ (𝐹 ∪ {∅}) ∧ 𝑥 ∈ (Clsd‘(𝐹 ∪
{∅})))) | 
| 100 |  | vex 3483 | . . . . . 6
⊢ 𝑥 ∈ V | 
| 101 | 100 | elpr 4649 | . . . . 5
⊢ (𝑥 ∈ {∅, ∪ 𝐹}
↔ (𝑥 = ∅ ∨
𝑥 = ∪ 𝐹)) | 
| 102 | 98, 99, 101 | 3imtr4g 296 | . . . 4
⊢ (𝐹 ∈ (Fil‘∪ 𝐹)
→ (𝑥 ∈ ((𝐹 ∪ {∅}) ∩
(Clsd‘(𝐹 ∪
{∅}))) → 𝑥
∈ {∅, ∪ 𝐹})) | 
| 103 | 102 | ssrdv 3988 | . . 3
⊢ (𝐹 ∈ (Fil‘∪ 𝐹)
→ ((𝐹 ∪ {∅})
∩ (Clsd‘(𝐹 ∪
{∅}))) ⊆ {∅, ∪ 𝐹}) | 
| 104 | 21 | isconn2 23423 | . . 3
⊢ ((𝐹 ∪ {∅}) ∈ Conn
↔ ((𝐹 ∪ {∅})
∈ Top ∧ ((𝐹 ∪
{∅}) ∩ (Clsd‘(𝐹 ∪ {∅}))) ⊆ {∅, ∪ 𝐹})) | 
| 105 | 72, 103, 104 | sylanbrc 583 | . 2
⊢ (𝐹 ∈ (Fil‘∪ 𝐹)
→ (𝐹 ∪ {∅})
∈ Conn) | 
| 106 | 4, 105 | syl 17 | 1
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {∅}) ∈
Conn) |