MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filconn Structured version   Visualization version   GIF version

Theorem filconn 23912
Description: A filter gives rise to a connected topology. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filconn (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {∅}) ∈ Conn)

Proof of Theorem filconn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
2 filunibas 23910 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
32fveq2d 6924 . . 3 (𝐹 ∈ (Fil‘𝑋) → (Fil‘ 𝐹) = (Fil‘𝑋))
41, 3eleqtrrd 2847 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (Fil‘ 𝐹))
5 nss 4073 . . . . . . . 8 𝑥 ⊆ {∅} ↔ ∃𝑦(𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅}))
6 simpll 766 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝐹 ∈ (Fil‘ 𝐹))
7 ssel2 4003 . . . . . . . . . . . . . . . . 17 ((𝑥 ⊆ (𝐹 ∪ {∅}) ∧ 𝑦𝑥) → 𝑦 ∈ (𝐹 ∪ {∅}))
87adantll 713 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ 𝑦𝑥) → 𝑦 ∈ (𝐹 ∪ {∅}))
9 elun 4176 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝐹 ∪ {∅}) ↔ (𝑦𝐹𝑦 ∈ {∅}))
108, 9sylib 218 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ 𝑦𝑥) → (𝑦𝐹𝑦 ∈ {∅}))
1110orcomd 870 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ 𝑦𝑥) → (𝑦 ∈ {∅} ∨ 𝑦𝐹))
1211ord 863 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ 𝑦𝑥) → (¬ 𝑦 ∈ {∅} → 𝑦𝐹))
1312impr 454 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑦𝐹)
14 uniss 4939 . . . . . . . . . . . . . 14 (𝑥 ⊆ (𝐹 ∪ {∅}) → 𝑥 (𝐹 ∪ {∅}))
1514ad2antlr 726 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑥 (𝐹 ∪ {∅}))
16 uniun 4954 . . . . . . . . . . . . . 14 (𝐹 ∪ {∅}) = ( 𝐹 {∅})
17 0ex 5325 . . . . . . . . . . . . . . . 16 ∅ ∈ V
1817unisn 4950 . . . . . . . . . . . . . . 15 {∅} = ∅
1918uneq2i 4188 . . . . . . . . . . . . . 14 ( 𝐹 {∅}) = ( 𝐹 ∪ ∅)
20 un0 4417 . . . . . . . . . . . . . 14 ( 𝐹 ∪ ∅) = 𝐹
2116, 19, 203eqtrri 2773 . . . . . . . . . . . . 13 𝐹 = (𝐹 ∪ {∅})
2215, 21sseqtrrdi 4060 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑥 𝐹)
23 elssuni 4961 . . . . . . . . . . . . 13 (𝑦𝑥𝑦 𝑥)
2423ad2antrl 727 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑦 𝑥)
25 filss 23882 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘ 𝐹) ∧ (𝑦𝐹 𝑥 𝐹𝑦 𝑥)) → 𝑥𝐹)
266, 13, 22, 24, 25syl13anc 1372 . . . . . . . . . . 11 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑥𝐹)
27 elun1 4205 . . . . . . . . . . 11 ( 𝑥𝐹 𝑥 ∈ (𝐹 ∪ {∅}))
2826, 27syl 17 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑥 ∈ (𝐹 ∪ {∅}))
2928ex 412 . . . . . . . . 9 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) → ((𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅}) → 𝑥 ∈ (𝐹 ∪ {∅})))
3029exlimdv 1932 . . . . . . . 8 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) → (∃𝑦(𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅}) → 𝑥 ∈ (𝐹 ∪ {∅})))
315, 30biimtrid 242 . . . . . . 7 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) → (¬ 𝑥 ⊆ {∅} → 𝑥 ∈ (𝐹 ∪ {∅})))
32 uni0b 4957 . . . . . . . 8 ( 𝑥 = ∅ ↔ 𝑥 ⊆ {∅})
33 ssun2 4202 . . . . . . . . . 10 {∅} ⊆ (𝐹 ∪ {∅})
3417snid 4684 . . . . . . . . . 10 ∅ ∈ {∅}
3533, 34sselii 4005 . . . . . . . . 9 ∅ ∈ (𝐹 ∪ {∅})
36 eleq1 2832 . . . . . . . . 9 ( 𝑥 = ∅ → ( 𝑥 ∈ (𝐹 ∪ {∅}) ↔ ∅ ∈ (𝐹 ∪ {∅})))
3735, 36mpbiri 258 . . . . . . . 8 ( 𝑥 = ∅ → 𝑥 ∈ (𝐹 ∪ {∅}))
3832, 37sylbir 235 . . . . . . 7 (𝑥 ⊆ {∅} → 𝑥 ∈ (𝐹 ∪ {∅}))
3931, 38pm2.61d2 181 . . . . . 6 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) → 𝑥 ∈ (𝐹 ∪ {∅}))
4039ex 412 . . . . 5 (𝐹 ∈ (Fil‘ 𝐹) → (𝑥 ⊆ (𝐹 ∪ {∅}) → 𝑥 ∈ (𝐹 ∪ {∅})))
4140alrimiv 1926 . . . 4 (𝐹 ∈ (Fil‘ 𝐹) → ∀𝑥(𝑥 ⊆ (𝐹 ∪ {∅}) → 𝑥 ∈ (𝐹 ∪ {∅})))
42 filin 23883 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹𝑦𝐹) → (𝑥𝑦) ∈ 𝐹)
43 elun1 4205 . . . . . . . . . 10 ((𝑥𝑦) ∈ 𝐹 → (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
4442, 43syl 17 . . . . . . . . 9 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹𝑦𝐹) → (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
45443expa 1118 . . . . . . . 8 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹) ∧ 𝑦𝐹) → (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
4645ralrimiva 3152 . . . . . . 7 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹) → ∀𝑦𝐹 (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
47 elsni 4665 . . . . . . . . 9 (𝑦 ∈ {∅} → 𝑦 = ∅)
48 ineq2 4235 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑥𝑦) = (𝑥 ∩ ∅))
49 in0 4418 . . . . . . . . . . 11 (𝑥 ∩ ∅) = ∅
5048, 49eqtrdi 2796 . . . . . . . . . 10 (𝑦 = ∅ → (𝑥𝑦) = ∅)
5150, 35eqeltrdi 2852 . . . . . . . . 9 (𝑦 = ∅ → (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
5247, 51syl 17 . . . . . . . 8 (𝑦 ∈ {∅} → (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
5352rgen 3069 . . . . . . 7 𝑦 ∈ {∅} (𝑥𝑦) ∈ (𝐹 ∪ {∅})
54 ralun 4221 . . . . . . 7 ((∀𝑦𝐹 (𝑥𝑦) ∈ (𝐹 ∪ {∅}) ∧ ∀𝑦 ∈ {∅} (𝑥𝑦) ∈ (𝐹 ∪ {∅})) → ∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
5546, 53, 54sylancl 585 . . . . . 6 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹) → ∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
5655ralrimiva 3152 . . . . 5 (𝐹 ∈ (Fil‘ 𝐹) → ∀𝑥𝐹𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
57 elsni 4665 . . . . . . 7 (𝑥 ∈ {∅} → 𝑥 = ∅)
58 ineq1 4234 . . . . . . . . . 10 (𝑥 = ∅ → (𝑥𝑦) = (∅ ∩ 𝑦))
59 0in 4420 . . . . . . . . . 10 (∅ ∩ 𝑦) = ∅
6058, 59eqtrdi 2796 . . . . . . . . 9 (𝑥 = ∅ → (𝑥𝑦) = ∅)
6160, 35eqeltrdi 2852 . . . . . . . 8 (𝑥 = ∅ → (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
6261ralrimivw 3156 . . . . . . 7 (𝑥 = ∅ → ∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
6357, 62syl 17 . . . . . 6 (𝑥 ∈ {∅} → ∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
6463rgen 3069 . . . . 5 𝑥 ∈ {∅}∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅})
65 ralun 4221 . . . . 5 ((∀𝑥𝐹𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}) ∧ ∀𝑥 ∈ {∅}∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅})) → ∀𝑥 ∈ (𝐹 ∪ {∅})∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
6656, 64, 65sylancl 585 . . . 4 (𝐹 ∈ (Fil‘ 𝐹) → ∀𝑥 ∈ (𝐹 ∪ {∅})∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
67 p0ex 5402 . . . . . 6 {∅} ∈ V
68 unexg 7778 . . . . . 6 ((𝐹 ∈ (Fil‘ 𝐹) ∧ {∅} ∈ V) → (𝐹 ∪ {∅}) ∈ V)
6967, 68mpan2 690 . . . . 5 (𝐹 ∈ (Fil‘ 𝐹) → (𝐹 ∪ {∅}) ∈ V)
70 istopg 22922 . . . . 5 ((𝐹 ∪ {∅}) ∈ V → ((𝐹 ∪ {∅}) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝐹 ∪ {∅}) → 𝑥 ∈ (𝐹 ∪ {∅})) ∧ ∀𝑥 ∈ (𝐹 ∪ {∅})∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))))
7169, 70syl 17 . . . 4 (𝐹 ∈ (Fil‘ 𝐹) → ((𝐹 ∪ {∅}) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝐹 ∪ {∅}) → 𝑥 ∈ (𝐹 ∪ {∅})) ∧ ∀𝑥 ∈ (𝐹 ∪ {∅})∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))))
7241, 66, 71mpbir2and 712 . . 3 (𝐹 ∈ (Fil‘ 𝐹) → (𝐹 ∪ {∅}) ∈ Top)
7321cldopn 23060 . . . . . . . 8 (𝑥 ∈ (Clsd‘(𝐹 ∪ {∅})) → ( 𝐹𝑥) ∈ (𝐹 ∪ {∅}))
74 elun 4176 . . . . . . . 8 (( 𝐹𝑥) ∈ (𝐹 ∪ {∅}) ↔ (( 𝐹𝑥) ∈ 𝐹 ∨ ( 𝐹𝑥) ∈ {∅}))
7573, 74sylib 218 . . . . . . 7 (𝑥 ∈ (Clsd‘(𝐹 ∪ {∅})) → (( 𝐹𝑥) ∈ 𝐹 ∨ ( 𝐹𝑥) ∈ {∅}))
76 elun 4176 . . . . . . . . . 10 (𝑥 ∈ (𝐹 ∪ {∅}) ↔ (𝑥𝐹𝑥 ∈ {∅}))
77 filfbas 23877 . . . . . . . . . . . . . 14 (𝐹 ∈ (Fil‘ 𝐹) → 𝐹 ∈ (fBas‘ 𝐹))
78 fbncp 23868 . . . . . . . . . . . . . 14 ((𝐹 ∈ (fBas‘ 𝐹) ∧ 𝑥𝐹) → ¬ ( 𝐹𝑥) ∈ 𝐹)
7977, 78sylan 579 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹) → ¬ ( 𝐹𝑥) ∈ 𝐹)
8079pm2.21d 121 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹) → (( 𝐹𝑥) ∈ 𝐹𝑥 = ∅))
8180ex 412 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘ 𝐹) → (𝑥𝐹 → (( 𝐹𝑥) ∈ 𝐹𝑥 = ∅)))
8257a1i13 27 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘ 𝐹) → (𝑥 ∈ {∅} → (( 𝐹𝑥) ∈ 𝐹𝑥 = ∅)))
8381, 82jaod 858 . . . . . . . . . 10 (𝐹 ∈ (Fil‘ 𝐹) → ((𝑥𝐹𝑥 ∈ {∅}) → (( 𝐹𝑥) ∈ 𝐹𝑥 = ∅)))
8476, 83biimtrid 242 . . . . . . . . 9 (𝐹 ∈ (Fil‘ 𝐹) → (𝑥 ∈ (𝐹 ∪ {∅}) → (( 𝐹𝑥) ∈ 𝐹𝑥 = ∅)))
8584imp 406 . . . . . . . 8 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ∈ (𝐹 ∪ {∅})) → (( 𝐹𝑥) ∈ 𝐹𝑥 = ∅))
86 elsni 4665 . . . . . . . . 9 (( 𝐹𝑥) ∈ {∅} → ( 𝐹𝑥) = ∅)
87 elssuni 4961 . . . . . . . . . . . 12 (𝑥 ∈ (𝐹 ∪ {∅}) → 𝑥 (𝐹 ∪ {∅}))
8887, 21sseqtrrdi 4060 . . . . . . . . . . 11 (𝑥 ∈ (𝐹 ∪ {∅}) → 𝑥 𝐹)
8988adantl 481 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ∈ (𝐹 ∪ {∅})) → 𝑥 𝐹)
90 ssdif0 4389 . . . . . . . . . . 11 ( 𝐹𝑥 ↔ ( 𝐹𝑥) = ∅)
9190biimpri 228 . . . . . . . . . 10 (( 𝐹𝑥) = ∅ → 𝐹𝑥)
92 eqss 4024 . . . . . . . . . . 11 (𝑥 = 𝐹 ↔ (𝑥 𝐹 𝐹𝑥))
9392simplbi2 500 . . . . . . . . . 10 (𝑥 𝐹 → ( 𝐹𝑥𝑥 = 𝐹))
9489, 91, 93syl2im 40 . . . . . . . . 9 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ∈ (𝐹 ∪ {∅})) → (( 𝐹𝑥) = ∅ → 𝑥 = 𝐹))
9586, 94syl5 34 . . . . . . . 8 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ∈ (𝐹 ∪ {∅})) → (( 𝐹𝑥) ∈ {∅} → 𝑥 = 𝐹))
9685, 95orim12d 965 . . . . . . 7 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ∈ (𝐹 ∪ {∅})) → ((( 𝐹𝑥) ∈ 𝐹 ∨ ( 𝐹𝑥) ∈ {∅}) → (𝑥 = ∅ ∨ 𝑥 = 𝐹)))
9775, 96syl5 34 . . . . . 6 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ∈ (𝐹 ∪ {∅})) → (𝑥 ∈ (Clsd‘(𝐹 ∪ {∅})) → (𝑥 = ∅ ∨ 𝑥 = 𝐹)))
9897expimpd 453 . . . . 5 (𝐹 ∈ (Fil‘ 𝐹) → ((𝑥 ∈ (𝐹 ∪ {∅}) ∧ 𝑥 ∈ (Clsd‘(𝐹 ∪ {∅}))) → (𝑥 = ∅ ∨ 𝑥 = 𝐹)))
99 elin 3992 . . . . 5 (𝑥 ∈ ((𝐹 ∪ {∅}) ∩ (Clsd‘(𝐹 ∪ {∅}))) ↔ (𝑥 ∈ (𝐹 ∪ {∅}) ∧ 𝑥 ∈ (Clsd‘(𝐹 ∪ {∅}))))
100 vex 3492 . . . . . 6 𝑥 ∈ V
101100elpr 4672 . . . . 5 (𝑥 ∈ {∅, 𝐹} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐹))
10298, 99, 1013imtr4g 296 . . . 4 (𝐹 ∈ (Fil‘ 𝐹) → (𝑥 ∈ ((𝐹 ∪ {∅}) ∩ (Clsd‘(𝐹 ∪ {∅}))) → 𝑥 ∈ {∅, 𝐹}))
103102ssrdv 4014 . . 3 (𝐹 ∈ (Fil‘ 𝐹) → ((𝐹 ∪ {∅}) ∩ (Clsd‘(𝐹 ∪ {∅}))) ⊆ {∅, 𝐹})
10421isconn2 23443 . . 3 ((𝐹 ∪ {∅}) ∈ Conn ↔ ((𝐹 ∪ {∅}) ∈ Top ∧ ((𝐹 ∪ {∅}) ∩ (Clsd‘(𝐹 ∪ {∅}))) ⊆ {∅, 𝐹}))
10572, 103, 104sylanbrc 582 . 2 (𝐹 ∈ (Fil‘ 𝐹) → (𝐹 ∪ {∅}) ∈ Conn)
1064, 105syl 17 1 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {∅}) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087  wal 1535   = wceq 1537  wex 1777  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648  {cpr 4650   cuni 4931  cfv 6573  fBascfbas 21375  Topctop 22920  Clsdccld 23045  Conncconn 23440  Filcfil 23874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-fbas 21384  df-top 22921  df-cld 23048  df-conn 23441  df-fil 23875
This theorem is referenced by:  ufildr  23960
  Copyright terms: Public domain W3C validator