MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqsplit Structured version   Visualization version   GIF version

Theorem seqsplit 14058
Description: Split a sequence into two sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqsplit.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqsplit.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
seqsplit.3 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
seqsplit.4 (𝜑𝑀 ∈ (ℤ𝐾))
seqsplit.5 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝐹𝑥) ∈ 𝑆)
Assertion
Ref Expression
seqsplit (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐾,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem seqsplit
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 seqsplit.3 . . 3 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
2 eluzfz2 13554 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → 𝑁 ∈ ((𝑀 + 1)...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ ((𝑀 + 1)...𝑁))
4 eleq1 2823 . . . . . 6 (𝑥 = (𝑀 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...𝑁)))
5 fveq2 6881 . . . . . . 7 (𝑥 = (𝑀 + 1) → (seq𝐾( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐹)‘(𝑀 + 1)))
6 fveq2 6881 . . . . . . . 8 (𝑥 = (𝑀 + 1) → (seq(𝑀 + 1)( + , 𝐹)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)))
76oveq2d 7426 . . . . . . 7 (𝑥 = (𝑀 + 1) → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))))
85, 7eqeq12d 2752 . . . . . 6 (𝑥 = (𝑀 + 1) → ((seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) ↔ (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)))))
94, 8imbi12d 344 . . . . 5 (𝑥 = (𝑀 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥))) ↔ ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))))))
109imbi2d 340 . . . 4 (𝑥 = (𝑀 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)))) ↔ (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)))))))
11 eleq1 2823 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑛 ∈ ((𝑀 + 1)...𝑁)))
12 fveq2 6881 . . . . . . 7 (𝑥 = 𝑛 → (seq𝐾( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐹)‘𝑛))
13 fveq2 6881 . . . . . . . 8 (𝑥 = 𝑛 → (seq(𝑀 + 1)( + , 𝐹)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹)‘𝑛))
1413oveq2d 7426 . . . . . . 7 (𝑥 = 𝑛 → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)))
1512, 14eqeq12d 2752 . . . . . 6 (𝑥 = 𝑛 → ((seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) ↔ (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛))))
1611, 15imbi12d 344 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥))) ↔ (𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)))))
1716imbi2d 340 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)))) ↔ (𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛))))))
18 eleq1 2823 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)))
19 fveq2 6881 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝐾( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐹)‘(𝑛 + 1)))
20 fveq2 6881 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (seq(𝑀 + 1)( + , 𝐹)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)))
2120oveq2d 7426 . . . . . . 7 (𝑥 = (𝑛 + 1) → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))))
2219, 21eqeq12d 2752 . . . . . 6 (𝑥 = (𝑛 + 1) → ((seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) ↔ (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)))))
2318, 22imbi12d 344 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥))) ↔ ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))))))
2423imbi2d 340 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)))) ↔ (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)))))))
25 eleq1 2823 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑁 ∈ ((𝑀 + 1)...𝑁)))
26 fveq2 6881 . . . . . . 7 (𝑥 = 𝑁 → (seq𝐾( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐹)‘𝑁))
27 fveq2 6881 . . . . . . . 8 (𝑥 = 𝑁 → (seq(𝑀 + 1)( + , 𝐹)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹)‘𝑁))
2827oveq2d 7426 . . . . . . 7 (𝑥 = 𝑁 → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
2926, 28eqeq12d 2752 . . . . . 6 (𝑥 = 𝑁 → ((seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) ↔ (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))))
3025, 29imbi12d 344 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥))) ↔ (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))))
3130imbi2d 340 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)))) ↔ (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))))))
32 seqsplit.4 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝐾))
33 seqp1 14039 . . . . . . 7 (𝑀 ∈ (ℤ𝐾) → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))))
3432, 33syl 17 . . . . . 6 (𝜑 → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))))
35 eluzel2 12862 . . . . . . . 8 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑀 + 1) ∈ ℤ)
36 seq1 14037 . . . . . . . 8 ((𝑀 + 1) ∈ ℤ → (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)) = (𝐹‘(𝑀 + 1)))
371, 35, 363syl 18 . . . . . . 7 (𝜑 → (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)) = (𝐹‘(𝑀 + 1)))
3837oveq2d 7426 . . . . . 6 (𝜑 → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))) = ((seq𝐾( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))))
3934, 38eqtr4d 2774 . . . . 5 (𝜑 → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))))
4039a1i13 27 . . . 4 ((𝑀 + 1) ∈ ℤ → (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))))))
41 peano2fzr 13559 . . . . . . . 8 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ((𝑀 + 1)...𝑁))
4241adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ ((𝑀 + 1)...𝑁))
4342expr 456 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → 𝑛 ∈ ((𝑀 + 1)...𝑁)))
4443imim1d 82 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)))))
45 oveq1 7417 . . . . . 6 ((seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) → ((seq𝐾( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1))))
46 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (ℤ‘(𝑀 + 1)))
47 peano2uz 12922 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝐾) → (𝑀 + 1) ∈ (ℤ𝐾))
4832, 47syl 17 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ (ℤ𝐾))
4948adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑀 + 1) ∈ (ℤ𝐾))
50 uztrn 12875 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑀 + 1) ∈ (ℤ𝐾)) → 𝑛 ∈ (ℤ𝐾))
5146, 49, 50syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (ℤ𝐾))
52 seqp1 14039 . . . . . . . 8 (𝑛 ∈ (ℤ𝐾) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5351, 52syl 17 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
54 seqp1 14039 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)) = ((seq(𝑀 + 1)( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5546, 54syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)) = ((seq(𝑀 + 1)( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5655oveq2d 7426 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))) = ((seq𝐾( + , 𝐹)‘𝑀) + ((seq(𝑀 + 1)( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
57 simpl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝜑)
58 eluzelz 12867 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (ℤ𝐾) → 𝑀 ∈ ℤ)
5932, 58syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℤ)
60 peano2uzr 12924 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ (ℤ𝑀))
6159, 1, 60syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ𝑀))
62 fzss2 13586 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → (𝐾...𝑀) ⊆ (𝐾...𝑁))
6361, 62syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐾...𝑀) ⊆ (𝐾...𝑁))
6463sselda 3963 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐾...𝑀)) → 𝑥 ∈ (𝐾...𝑁))
65 seqsplit.5 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝐹𝑥) ∈ 𝑆)
6664, 65syldan 591 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐾...𝑀)) → (𝐹𝑥) ∈ 𝑆)
67 seqsplit.1 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6832, 66, 67seqcl 14045 . . . . . . . . . 10 (𝜑 → (seq𝐾( + , 𝐹)‘𝑀) ∈ 𝑆)
6968adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq𝐾( + , 𝐹)‘𝑀) ∈ 𝑆)
70 elfzuz3 13543 . . . . . . . . . . . . . 14 (𝑛 ∈ ((𝑀 + 1)...𝑁) → 𝑁 ∈ (ℤ𝑛))
71 fzss2 13586 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑛) → ((𝑀 + 1)...𝑛) ⊆ ((𝑀 + 1)...𝑁))
7242, 70, 713syl 18 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((𝑀 + 1)...𝑛) ⊆ ((𝑀 + 1)...𝑁))
73 fzss1 13585 . . . . . . . . . . . . . . 15 ((𝑀 + 1) ∈ (ℤ𝐾) → ((𝑀 + 1)...𝑁) ⊆ (𝐾...𝑁))
7432, 47, 733syl 18 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝐾...𝑁))
7574adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((𝑀 + 1)...𝑁) ⊆ (𝐾...𝑁))
7672, 75sstrd 3974 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((𝑀 + 1)...𝑛) ⊆ (𝐾...𝑁))
7776sselda 3963 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑛)) → 𝑥 ∈ (𝐾...𝑁))
7865adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝐹𝑥) ∈ 𝑆)
7977, 78syldan 591 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑛)) → (𝐹𝑥) ∈ 𝑆)
8067adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8146, 79, 80seqcl 14045 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq(𝑀 + 1)( + , 𝐹)‘𝑛) ∈ 𝑆)
82 fveq2 6881 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
8382eleq1d 2820 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆))
8465ralrimiva 3133 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (𝐾...𝑁)(𝐹𝑥) ∈ 𝑆)
8584adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ∀𝑥 ∈ (𝐾...𝑁)(𝐹𝑥) ∈ 𝑆)
86 simpr 484 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))
87 ssel2 3958 . . . . . . . . . . 11 ((((𝑀 + 1)...𝑁) ⊆ (𝐾...𝑁) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝑛 + 1) ∈ (𝐾...𝑁))
8874, 86, 87syl2an 596 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑛 + 1) ∈ (𝐾...𝑁))
8983, 85, 88rspcdva 3607 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ 𝑆)
90 seqsplit.2 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
9190caovassg 7610 . . . . . . . . 9 ((𝜑 ∧ ((seq𝐾( + , 𝐹)‘𝑀) ∈ 𝑆 ∧ (seq(𝑀 + 1)( + , 𝐹)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆)) → (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐹)‘𝑀) + ((seq(𝑀 + 1)( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
9257, 69, 81, 89, 91syl13anc 1374 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐹)‘𝑀) + ((seq(𝑀 + 1)( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
9356, 92eqtr4d 2774 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))) = (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1))))
9453, 93eqeq12d 2752 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))) ↔ ((seq𝐾( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1)))))
9545, 94imbitrrid 246 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)))))
9644, 95animpimp2impd 846 . . . 4 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → ((𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)))) → (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)))))))
9710, 17, 24, 31, 40, 96uzind4 12927 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))))
981, 97mpcom 38 . 2 (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))))
993, 98mpd 15 1 (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wss 3931  cfv 6536  (class class class)co 7410  1c1 11135   + caddc 11137  cz 12593  cuz 12857  ...cfz 13529  seqcseq 14024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-seq 14025
This theorem is referenced by:  seq1p  14059  seqf1olem2  14065  bcval5  14341  clim2ser  15676  clim2ser2  15677  isumsplit  15861  clim2div  15910  gsumsgrpccat  18823  mulgnndir  19091  mblfinlem2  37687  fmul01lt1lem1  45580  fmul01lt1lem2  45581
  Copyright terms: Public domain W3C validator