Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elwspths2on | Structured version Visualization version GIF version |
Description: A simple path of length 2 between two vertices (in a graph) as length 3 string. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 12-May-2021.) (Proof shortened by AV, 16-Mar-2022.) |
Ref | Expression |
---|---|
elwwlks2on.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
elwspths2on | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wspthnon 28202 | . . . 4 ⊢ (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊)) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊)) |
3 | elwwlks2on.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | elwwlks2on 28303 | . . . . . 6 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)))) |
5 | simpl 482 | . . . . . . . . . . . . 13 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 = 〈“𝐴𝑏𝐶”〉) | |
6 | eleq1 2827 | . . . . . . . . . . . . . 14 ⊢ (𝑊 = 〈“𝐴𝑏𝐶”〉 → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) | |
7 | 6 | biimpa 476 | . . . . . . . . . . . . 13 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) |
8 | 5, 7 | jca 511 | . . . . . . . . . . . 12 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) |
9 | 8 | ex 412 | . . . . . . . . . . 11 ⊢ (𝑊 = 〈“𝐴𝑏𝐶”〉 → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
10 | 9 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
11 | 10 | com12 32 | . . . . . . . . 9 ⊢ (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
12 | 11 | reximdv 3203 | . . . . . . . 8 ⊢ (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
13 | 12 | a1i13 27 | . . . . . . 7 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊 → (∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))))) |
14 | 13 | com24 95 | . . . . . 6 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊 → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))))) |
15 | 4, 14 | sylbid 239 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊 → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))))) |
16 | 15 | impd 410 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))) |
17 | 16 | com23 86 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))) |
18 | 2, 17 | mpdi 45 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
19 | 6 | biimpar 477 | . . . 4 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) |
20 | 19 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) |
21 | 20 | rexlimdva 3214 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) |
22 | 18, 21 | impbid 211 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∃wex 1785 ∈ wcel 2109 ∃wrex 3066 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 2c2 12011 ♯chash 14025 〈“cs3 14536 Vtxcvtx 27347 UPGraphcupgr 27431 Walkscwlks 27944 SPathsOncspthson 28062 WWalksNOn cwwlksnon 28171 WSPathsNOn cwwspthsnon 28173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-ac2 10203 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-oadd 8285 df-er 8472 df-map 8591 df-pm 8592 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-dju 9643 df-card 9681 df-ac 9856 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-xnn0 12289 df-z 12303 df-uz 12565 df-fz 13222 df-fzo 13365 df-hash 14026 df-word 14199 df-concat 14255 df-s1 14282 df-s2 14542 df-s3 14543 df-edg 27399 df-uhgr 27409 df-upgr 27433 df-wlks 27947 df-wwlks 28174 df-wwlksn 28175 df-wwlksnon 28176 df-wspthsnon 28178 |
This theorem is referenced by: usgr2wspthon 28309 elwspths2spth 28311 |
Copyright terms: Public domain | W3C validator |