MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwspths2on Structured version   Visualization version   GIF version

Theorem elwspths2on 29897
Description: A simple path of length 2 between two vertices (in a graph) as length 3 string. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 12-May-2021.) (Proof shortened by AV, 16-Mar-2022.)
Hypothesis
Ref Expression
elwwlks2on.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwspths2on ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
Distinct variable groups:   𝐴,𝑏   𝐶,𝑏   𝐺,𝑏   𝑉,𝑏   𝑊,𝑏

Proof of Theorem elwspths2on
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 wspthnon 29795 . . . 4 (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊))
21biimpi 216 . . 3 (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊))
3 elwwlks2on.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
43elwwlks2on 29896 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2))))
5 simpl 482 . . . . . . . . . . . . 13 ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 = ⟨“𝐴𝑏𝐶”⟩)
6 eleq1 2817 . . . . . . . . . . . . . 14 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))
76biimpa 476 . . . . . . . . . . . . 13 ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))
85, 7jca 511 . . . . . . . . . . . 12 ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))
98ex 412 . . . . . . . . . . 11 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
109adantr 480 . . . . . . . . . 10 ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
1110com12 32 . . . . . . . . 9 (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
1211reximdv 3149 . . . . . . . 8 (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
1312a1i13 27 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊 → (∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))))
1413com24 95 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊 → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))))
154, 14sylbid 240 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊 → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))))
1615impd 410 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))))
1716com23 86 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))))
182, 17mpdi 45 . 2 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
196biimpar 477 . . . 4 ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))
2019a1i 11 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) ∧ 𝑏𝑉) → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))
2120rexlimdva 3135 . 2 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))
2218, 21impbid 212 1 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  2c2 12248  chash 14302  ⟨“cs3 14815  Vtxcvtx 28930  UPGraphcupgr 29014  Walkscwlks 29531  SPathsOncspthson 29650   WWalksNOn cwwlksnon 29764   WSPathsNOn cwwspthsnon 29766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822  df-edg 28982  df-uhgr 28992  df-upgr 29016  df-wlks 29534  df-wwlks 29767  df-wwlksn 29768  df-wwlksnon 29769  df-wspthsnon 29771
This theorem is referenced by:  usgr2wspthon  29902  elwspths2spth  29904
  Copyright terms: Public domain W3C validator