Step | Hyp | Ref
| Expression |
1 | | wspthnon 29101 |
. . . 4
β’ (π β (π΄(2 WSPathsNOn πΊ)πΆ) β (π β (π΄(2 WWalksNOn πΊ)πΆ) β§ βπ π(π΄(SPathsOnβπΊ)πΆ)π)) |
2 | 1 | biimpi 215 |
. . 3
β’ (π β (π΄(2 WSPathsNOn πΊ)πΆ) β (π β (π΄(2 WWalksNOn πΊ)πΆ) β§ βπ π(π΄(SPathsOnβπΊ)πΆ)π)) |
3 | | elwwlks2on.v |
. . . . . . 7
β’ π = (VtxβπΊ) |
4 | 3 | elwwlks2on 29202 |
. . . . . 6
β’ ((πΊ β UPGraph β§ π΄ β π β§ πΆ β π) β (π β (π΄(2 WWalksNOn πΊ)πΆ) β βπ β π (π = β¨βπ΄ππΆββ© β§ βπ(π(WalksβπΊ)π β§ (β―βπ) = 2)))) |
5 | | simpl 483 |
. . . . . . . . . . . . 13
β’ ((π = β¨βπ΄ππΆββ© β§ π β (π΄(2 WSPathsNOn πΊ)πΆ)) β π = β¨βπ΄ππΆββ©) |
6 | | eleq1 2821 |
. . . . . . . . . . . . . 14
β’ (π = β¨βπ΄ππΆββ© β (π β (π΄(2 WSPathsNOn πΊ)πΆ) β β¨βπ΄ππΆββ© β (π΄(2 WSPathsNOn πΊ)πΆ))) |
7 | 6 | biimpa 477 |
. . . . . . . . . . . . 13
β’ ((π = β¨βπ΄ππΆββ© β§ π β (π΄(2 WSPathsNOn πΊ)πΆ)) β β¨βπ΄ππΆββ© β (π΄(2 WSPathsNOn πΊ)πΆ)) |
8 | 5, 7 | jca 512 |
. . . . . . . . . . . 12
β’ ((π = β¨βπ΄ππΆββ© β§ π β (π΄(2 WSPathsNOn πΊ)πΆ)) β (π = β¨βπ΄ππΆββ© β§ β¨βπ΄ππΆββ© β (π΄(2 WSPathsNOn πΊ)πΆ))) |
9 | 8 | ex 413 |
. . . . . . . . . . 11
β’ (π = β¨βπ΄ππΆββ© β (π β (π΄(2 WSPathsNOn πΊ)πΆ) β (π = β¨βπ΄ππΆββ© β§ β¨βπ΄ππΆββ© β (π΄(2 WSPathsNOn πΊ)πΆ)))) |
10 | 9 | adantr 481 |
. . . . . . . . . 10
β’ ((π = β¨βπ΄ππΆββ© β§ βπ(π(WalksβπΊ)π β§ (β―βπ) = 2)) β (π β (π΄(2 WSPathsNOn πΊ)πΆ) β (π = β¨βπ΄ππΆββ© β§ β¨βπ΄ππΆββ© β (π΄(2 WSPathsNOn πΊ)πΆ)))) |
11 | 10 | com12 32 |
. . . . . . . . 9
β’ (π β (π΄(2 WSPathsNOn πΊ)πΆ) β ((π = β¨βπ΄ππΆββ© β§ βπ(π(WalksβπΊ)π β§ (β―βπ) = 2)) β (π = β¨βπ΄ππΆββ© β§ β¨βπ΄ππΆββ© β (π΄(2 WSPathsNOn πΊ)πΆ)))) |
12 | 11 | reximdv 3170 |
. . . . . . . 8
β’ (π β (π΄(2 WSPathsNOn πΊ)πΆ) β (βπ β π (π = β¨βπ΄ππΆββ© β§ βπ(π(WalksβπΊ)π β§ (β―βπ) = 2)) β βπ β π (π = β¨βπ΄ππΆββ© β§ β¨βπ΄ππΆββ© β (π΄(2 WSPathsNOn πΊ)πΆ)))) |
13 | 12 | a1i13 27 |
. . . . . . 7
β’ ((πΊ β UPGraph β§ π΄ β π β§ πΆ β π) β (π β (π΄(2 WSPathsNOn πΊ)πΆ) β (βπ π(π΄(SPathsOnβπΊ)πΆ)π β (βπ β π (π = β¨βπ΄ππΆββ© β§ βπ(π(WalksβπΊ)π β§ (β―βπ) = 2)) β βπ β π (π = β¨βπ΄ππΆββ© β§ β¨βπ΄ππΆββ© β (π΄(2 WSPathsNOn πΊ)πΆ)))))) |
14 | 13 | com24 95 |
. . . . . 6
β’ ((πΊ β UPGraph β§ π΄ β π β§ πΆ β π) β (βπ β π (π = β¨βπ΄ππΆββ© β§ βπ(π(WalksβπΊ)π β§ (β―βπ) = 2)) β (βπ π(π΄(SPathsOnβπΊ)πΆ)π β (π β (π΄(2 WSPathsNOn πΊ)πΆ) β βπ β π (π = β¨βπ΄ππΆββ© β§ β¨βπ΄ππΆββ© β (π΄(2 WSPathsNOn πΊ)πΆ)))))) |
15 | 4, 14 | sylbid 239 |
. . . . 5
β’ ((πΊ β UPGraph β§ π΄ β π β§ πΆ β π) β (π β (π΄(2 WWalksNOn πΊ)πΆ) β (βπ π(π΄(SPathsOnβπΊ)πΆ)π β (π β (π΄(2 WSPathsNOn πΊ)πΆ) β βπ β π (π = β¨βπ΄ππΆββ© β§ β¨βπ΄ππΆββ© β (π΄(2 WSPathsNOn πΊ)πΆ)))))) |
16 | 15 | impd 411 |
. . . 4
β’ ((πΊ β UPGraph β§ π΄ β π β§ πΆ β π) β ((π β (π΄(2 WWalksNOn πΊ)πΆ) β§ βπ π(π΄(SPathsOnβπΊ)πΆ)π) β (π β (π΄(2 WSPathsNOn πΊ)πΆ) β βπ β π (π = β¨βπ΄ππΆββ© β§ β¨βπ΄ππΆββ© β (π΄(2 WSPathsNOn πΊ)πΆ))))) |
17 | 16 | com23 86 |
. . 3
β’ ((πΊ β UPGraph β§ π΄ β π β§ πΆ β π) β (π β (π΄(2 WSPathsNOn πΊ)πΆ) β ((π β (π΄(2 WWalksNOn πΊ)πΆ) β§ βπ π(π΄(SPathsOnβπΊ)πΆ)π) β βπ β π (π = β¨βπ΄ππΆββ© β§ β¨βπ΄ππΆββ© β (π΄(2 WSPathsNOn πΊ)πΆ))))) |
18 | 2, 17 | mpdi 45 |
. 2
β’ ((πΊ β UPGraph β§ π΄ β π β§ πΆ β π) β (π β (π΄(2 WSPathsNOn πΊ)πΆ) β βπ β π (π = β¨βπ΄ππΆββ© β§ β¨βπ΄ππΆββ© β (π΄(2 WSPathsNOn πΊ)πΆ)))) |
19 | 6 | biimpar 478 |
. . . 4
β’ ((π = β¨βπ΄ππΆββ© β§ β¨βπ΄ππΆββ© β (π΄(2 WSPathsNOn πΊ)πΆ)) β π β (π΄(2 WSPathsNOn πΊ)πΆ)) |
20 | 19 | a1i 11 |
. . 3
β’ (((πΊ β UPGraph β§ π΄ β π β§ πΆ β π) β§ π β π) β ((π = β¨βπ΄ππΆββ© β§ β¨βπ΄ππΆββ© β (π΄(2 WSPathsNOn πΊ)πΆ)) β π β (π΄(2 WSPathsNOn πΊ)πΆ))) |
21 | 20 | rexlimdva 3155 |
. 2
β’ ((πΊ β UPGraph β§ π΄ β π β§ πΆ β π) β (βπ β π (π = β¨βπ΄ππΆββ© β§ β¨βπ΄ππΆββ© β (π΄(2 WSPathsNOn πΊ)πΆ)) β π β (π΄(2 WSPathsNOn πΊ)πΆ))) |
22 | 18, 21 | impbid 211 |
1
β’ ((πΊ β UPGraph β§ π΄ β π β§ πΆ β π) β (π β (π΄(2 WSPathsNOn πΊ)πΆ) β βπ β π (π = β¨βπ΄ππΆββ© β§ β¨βπ΄ππΆββ© β (π΄(2 WSPathsNOn πΊ)πΆ)))) |