Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elwspths2on | Structured version Visualization version GIF version |
Description: A simple path of length 2 between two vertices (in a graph) as length 3 string. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 12-May-2021.) (Proof shortened by AV, 16-Mar-2022.) |
Ref | Expression |
---|---|
elwwlks2on.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
elwspths2on | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wspthnon 28268 | . . . 4 ⊢ (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊)) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊)) |
3 | elwwlks2on.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | elwwlks2on 28369 | . . . . . 6 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)))) |
5 | simpl 484 | . . . . . . . . . . . . 13 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 = 〈“𝐴𝑏𝐶”〉) | |
6 | eleq1 2824 | . . . . . . . . . . . . . 14 ⊢ (𝑊 = 〈“𝐴𝑏𝐶”〉 → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) | |
7 | 6 | biimpa 478 | . . . . . . . . . . . . 13 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) |
8 | 5, 7 | jca 513 | . . . . . . . . . . . 12 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) |
9 | 8 | ex 414 | . . . . . . . . . . 11 ⊢ (𝑊 = 〈“𝐴𝑏𝐶”〉 → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
10 | 9 | adantr 482 | . . . . . . . . . 10 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
11 | 10 | com12 32 | . . . . . . . . 9 ⊢ (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
12 | 11 | reximdv 3164 | . . . . . . . 8 ⊢ (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
13 | 12 | a1i13 27 | . . . . . . 7 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊 → (∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))))) |
14 | 13 | com24 95 | . . . . . 6 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊 → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))))) |
15 | 4, 14 | sylbid 239 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊 → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))))) |
16 | 15 | impd 412 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))) |
17 | 16 | com23 86 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))) |
18 | 2, 17 | mpdi 45 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
19 | 6 | biimpar 479 | . . . 4 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) |
20 | 19 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) |
21 | 20 | rexlimdva 3149 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) |
22 | 18, 21 | impbid 211 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ∃wrex 3071 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 2c2 12074 ♯chash 14090 〈“cs3 14600 Vtxcvtx 27411 UPGraphcupgr 27495 Walkscwlks 28008 SPathsOncspthson 28128 WWalksNOn cwwlksnon 28237 WSPathsNOn cwwspthsnon 28239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-ac2 10265 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-ifp 1062 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-oadd 8332 df-er 8529 df-map 8648 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-dju 9703 df-card 9741 df-ac 9918 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-n0 12280 df-xnn0 12352 df-z 12366 df-uz 12629 df-fz 13286 df-fzo 13429 df-hash 14091 df-word 14263 df-concat 14319 df-s1 14346 df-s2 14606 df-s3 14607 df-edg 27463 df-uhgr 27473 df-upgr 27497 df-wlks 28011 df-wwlks 28240 df-wwlksn 28241 df-wwlksnon 28242 df-wspthsnon 28244 |
This theorem is referenced by: usgr2wspthon 28375 elwspths2spth 28377 |
Copyright terms: Public domain | W3C validator |