Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elwspths2on | Structured version Visualization version GIF version |
Description: A simple path of length 2 between two vertices (in a graph) as length 3 string. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 12-May-2021.) (Proof shortened by AV, 16-Mar-2022.) |
Ref | Expression |
---|---|
elwwlks2on.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
elwspths2on | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wspthnon 27942 | . . . 4 ⊢ (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊)) | |
2 | 1 | biimpi 219 | . . 3 ⊢ (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊)) |
3 | elwwlks2on.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | elwwlks2on 28043 | . . . . . 6 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)))) |
5 | simpl 486 | . . . . . . . . . . . . 13 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 = 〈“𝐴𝑏𝐶”〉) | |
6 | eleq1 2825 | . . . . . . . . . . . . . 14 ⊢ (𝑊 = 〈“𝐴𝑏𝐶”〉 → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) | |
7 | 6 | biimpa 480 | . . . . . . . . . . . . 13 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) |
8 | 5, 7 | jca 515 | . . . . . . . . . . . 12 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) |
9 | 8 | ex 416 | . . . . . . . . . . 11 ⊢ (𝑊 = 〈“𝐴𝑏𝐶”〉 → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
10 | 9 | adantr 484 | . . . . . . . . . 10 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
11 | 10 | com12 32 | . . . . . . . . 9 ⊢ (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
12 | 11 | reximdv 3192 | . . . . . . . 8 ⊢ (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
13 | 12 | a1i13 27 | . . . . . . 7 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊 → (∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))))) |
14 | 13 | com24 95 | . . . . . 6 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊 → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))))) |
15 | 4, 14 | sylbid 243 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊 → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))))) |
16 | 15 | impd 414 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))) |
17 | 16 | com23 86 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))) |
18 | 2, 17 | mpdi 45 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
19 | 6 | biimpar 481 | . . . 4 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) |
20 | 19 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) |
21 | 20 | rexlimdva 3203 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) |
22 | 18, 21 | impbid 215 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∃wex 1787 ∈ wcel 2110 ∃wrex 3062 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 2c2 11885 ♯chash 13896 〈“cs3 14407 Vtxcvtx 27087 UPGraphcupgr 27171 Walkscwlks 27684 SPathsOncspthson 27802 WWalksNOn cwwlksnon 27911 WSPathsNOn cwwspthsnon 27913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-ac2 10077 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ifp 1064 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-oadd 8206 df-er 8391 df-map 8510 df-pm 8511 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-dju 9517 df-card 9555 df-ac 9730 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-xnn0 12163 df-z 12177 df-uz 12439 df-fz 13096 df-fzo 13239 df-hash 13897 df-word 14070 df-concat 14126 df-s1 14153 df-s2 14413 df-s3 14414 df-edg 27139 df-uhgr 27149 df-upgr 27173 df-wlks 27687 df-wwlks 27914 df-wwlksn 27915 df-wwlksnon 27916 df-wspthsnon 27918 |
This theorem is referenced by: usgr2wspthon 28049 elwspths2spth 28051 |
Copyright terms: Public domain | W3C validator |