Proof of Theorem frgr3vlem1
Step | Hyp | Ref
| Expression |
1 | | vex 3426 |
. . . . . 6
⊢ 𝑥 ∈ V |
2 | 1 | eltp 4621 |
. . . . 5
⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)) |
3 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
4 | 3 | eltp 4621 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶)) |
5 | | eqidd 2739 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴) |
6 | 5 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴)) |
7 | 6 | a1i13 27 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴)))) |
8 | | preq1 4666 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐴 → {𝑦, 𝐴} = {𝐴, 𝐴}) |
9 | | preq1 4666 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐴 → {𝑦, 𝐵} = {𝐴, 𝐵}) |
10 | 8, 9 | preq12d 4674 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐴 → {{𝑦, 𝐴}, {𝑦, 𝐵}} = {{𝐴, 𝐴}, {𝐴, 𝐵}}) |
11 | 10 | sseq1d 3948 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸)) |
12 | | eqeq2 2750 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐴 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐴)) |
13 | 12 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐴 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦) ↔ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴))) |
14 | 13 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴)))) |
15 | 7, 11, 14 | 3imtr4d 293 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)))) |
16 | | prex 5350 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝐴, 𝐴} ∈ V |
17 | | prex 5350 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝐴, 𝐵} ∈ V |
18 | 16, 17 | prss 4750 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸) |
19 | | frgr3v.e |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐸 = (Edg‘𝐺) |
20 | 19 | usgredgne 27476 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 ∈ USGraph ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴 ≠ 𝐴) |
21 | 20 | adantll 710 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴 ≠ 𝐴) |
22 | | df-ne 2943 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ≠ 𝐴 ↔ ¬ 𝐴 = 𝐴) |
23 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐴 = 𝐴 |
24 | 23 | pm2.24i 150 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝐴 = 𝐴 → 𝐴 = 𝐵) |
25 | 22, 24 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ≠ 𝐴 → 𝐴 = 𝐵) |
26 | 21, 25 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴 = 𝐵) |
27 | 26 | expcom 413 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝐴, 𝐴} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐵)) |
28 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐵)) |
29 | 18, 28 | sylbir 234 |
. . . . . . . . . . . . . . . . 17
⊢ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐵)) |
30 | 29 | com12 32 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → 𝐴 = 𝐵)) |
31 | 30 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → 𝐴 = 𝐵)) |
32 | 31 | com12 32 |
. . . . . . . . . . . . . 14
⊢ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐵)) |
33 | 32 | 2a1i 12 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐵)))) |
34 | | preq1 4666 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐵 → {𝑦, 𝐴} = {𝐵, 𝐴}) |
35 | | preq1 4666 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐵 → {𝑦, 𝐵} = {𝐵, 𝐵}) |
36 | 34, 35 | preq12d 4674 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐵 → {{𝑦, 𝐴}, {𝑦, 𝐵}} = {{𝐵, 𝐴}, {𝐵, 𝐵}}) |
37 | 36 | sseq1d 3948 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸)) |
38 | | eqeq2 2750 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐵)) |
39 | 38 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐵 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦) ↔ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐵))) |
40 | 39 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → (({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐵)))) |
41 | 33, 37, 40 | 3imtr4d 293 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)))) |
42 | 23 | pm2.24i 150 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝐴 = 𝐴 → 𝐴 = 𝐶) |
43 | 22, 42 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ≠ 𝐴 → 𝐴 = 𝐶) |
44 | 21, 43 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴 = 𝐶) |
45 | 44 | expcom 413 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝐴, 𝐴} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐶)) |
46 | 45 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐶)) |
47 | 18, 46 | sylbir 234 |
. . . . . . . . . . . . . . . . 17
⊢ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐶)) |
48 | 47 | com12 32 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → 𝐴 = 𝐶)) |
49 | 48 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → 𝐴 = 𝐶)) |
50 | 49 | com12 32 |
. . . . . . . . . . . . . 14
⊢ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐶)) |
51 | 50 | 2a1i 12 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐶 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐶)))) |
52 | | preq1 4666 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐶 → {𝑦, 𝐴} = {𝐶, 𝐴}) |
53 | | preq1 4666 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐶 → {𝑦, 𝐵} = {𝐶, 𝐵}) |
54 | 52, 53 | preq12d 4674 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐶 → {{𝑦, 𝐴}, {𝑦, 𝐵}} = {{𝐶, 𝐴}, {𝐶, 𝐵}}) |
55 | 54 | sseq1d 3948 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 ↔ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸)) |
56 | | eqeq2 2750 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐶 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐶)) |
57 | 56 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐶 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦) ↔ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐶))) |
58 | 57 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐶 → (({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐶)))) |
59 | 51, 55, 58 | 3imtr4d 293 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)))) |
60 | 15, 41, 59 | 3jaoi 1425 |
. . . . . . . . . . 11
⊢ ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)))) |
61 | | preq1 4666 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐴 → {𝑥, 𝐴} = {𝐴, 𝐴}) |
62 | | preq1 4666 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵}) |
63 | 61, 62 | preq12d 4674 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐴 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐴, 𝐴}, {𝐴, 𝐵}}) |
64 | 63 | sseq1d 3948 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐴 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸)) |
65 | | eqeq1 2742 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) |
66 | 65 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐴 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦) ↔ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦))) |
67 | 64, 66 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → (({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)))) |
68 | 67 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → (({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))) ↔ ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦))))) |
69 | 60, 68 | syl5ibr 245 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))))) |
70 | | prex 5350 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝐵, 𝐴} ∈ V |
71 | | prex 5350 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝐵, 𝐵} ∈ V |
72 | 70, 71 | prss 4750 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸) |
73 | 19 | usgredgne 27476 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 ∈ USGraph ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵 ≠ 𝐵) |
74 | 73 | adantll 710 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵 ≠ 𝐵) |
75 | | df-ne 2943 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐵 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐵) |
76 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐵 = 𝐵 |
77 | 76 | pm2.24i 150 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝐵 = 𝐵 → 𝐵 = 𝐴) |
78 | 75, 77 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐵 ≠ 𝐵 → 𝐵 = 𝐴) |
79 | 74, 78 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵 = 𝐴) |
80 | 79 | expcom 413 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝐵, 𝐵} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐴)) |
81 | 80 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐴)) |
82 | 72, 81 | sylbir 234 |
. . . . . . . . . . . . . . . . 17
⊢ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐴)) |
83 | 82 | com12 32 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → 𝐵 = 𝐴)) |
84 | 83 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → 𝐵 = 𝐴)) |
85 | 84 | com12 32 |
. . . . . . . . . . . . . 14
⊢ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐴)) |
86 | 85 | 2a1i 12 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐴)))) |
87 | | eqeq2 2750 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐴 → (𝐵 = 𝑦 ↔ 𝐵 = 𝐴)) |
88 | 87 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐴 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦) ↔ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐴))) |
89 | 88 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐴)))) |
90 | 86, 11, 89 | 3imtr4d 293 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)))) |
91 | | eqidd 2739 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵) |
92 | 91 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵)) |
93 | 92 | a1i13 27 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵)))) |
94 | | eqeq2 2750 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐵 → (𝐵 = 𝑦 ↔ 𝐵 = 𝐵)) |
95 | 94 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐵 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦) ↔ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵))) |
96 | 95 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → (({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵)))) |
97 | 93, 37, 96 | 3imtr4d 293 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)))) |
98 | 76 | pm2.24i 150 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝐵 = 𝐵 → 𝐵 = 𝐶) |
99 | 75, 98 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐵 ≠ 𝐵 → 𝐵 = 𝐶) |
100 | 74, 99 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵 = 𝐶) |
101 | 100 | expcom 413 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝐵, 𝐵} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐶)) |
102 | 101 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐶)) |
103 | 72, 102 | sylbir 234 |
. . . . . . . . . . . . . . . . 17
⊢ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐶)) |
104 | 103 | com12 32 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → 𝐵 = 𝐶)) |
105 | 104 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → 𝐵 = 𝐶)) |
106 | 105 | com12 32 |
. . . . . . . . . . . . . 14
⊢ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐶)) |
107 | 106 | 2a1i 12 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐶 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐶)))) |
108 | | eqeq2 2750 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐶 → (𝐵 = 𝑦 ↔ 𝐵 = 𝐶)) |
109 | 108 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐶 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦) ↔ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐶))) |
110 | 109 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐶 → (({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐶)))) |
111 | 107, 55, 110 | 3imtr4d 293 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)))) |
112 | 90, 97, 111 | 3jaoi 1425 |
. . . . . . . . . . 11
⊢ ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)))) |
113 | | preq1 4666 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐵 → {𝑥, 𝐴} = {𝐵, 𝐴}) |
114 | | preq1 4666 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐵 → {𝑥, 𝐵} = {𝐵, 𝐵}) |
115 | 113, 114 | preq12d 4674 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐵, 𝐴}, {𝐵, 𝐵}}) |
116 | 115 | sseq1d 3948 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸)) |
117 | | eqeq1 2742 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐵 → (𝑥 = 𝑦 ↔ 𝐵 = 𝑦)) |
118 | 117 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐵 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦) ↔ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦))) |
119 | 116, 118 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐵 → (({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)))) |
120 | 119 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐵 → (({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))) ↔ ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦))))) |
121 | 112, 120 | syl5ibr 245 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐵 → ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))))) |
122 | 23 | pm2.24i 150 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝐴 = 𝐴 → 𝐶 = 𝐴) |
123 | 22, 122 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ≠ 𝐴 → 𝐶 = 𝐴) |
124 | 21, 123 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐶 = 𝐴) |
125 | 124 | expcom 413 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝐴, 𝐴} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐶 = 𝐴)) |
126 | 125 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐶 = 𝐴)) |
127 | 18, 126 | sylbir 234 |
. . . . . . . . . . . . . . . . 17
⊢ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐶 = 𝐴)) |
128 | 127 | com12 32 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → 𝐶 = 𝐴)) |
129 | 128 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → 𝐶 = 𝐴)) |
130 | 129 | com12 32 |
. . . . . . . . . . . . . 14
⊢ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐴)) |
131 | 130 | a1i13 27 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐴)))) |
132 | | eqeq2 2750 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐴 → (𝐶 = 𝑦 ↔ 𝐶 = 𝐴)) |
133 | 132 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐴 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦) ↔ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐴))) |
134 | 133 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐴)))) |
135 | 131, 11, 134 | 3imtr4d 293 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)))) |
136 | | pm2.21 123 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝐵 = 𝐵 → (𝐵 = 𝐵 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 = 𝐵))) |
137 | 75, 136 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐵 ≠ 𝐵 → (𝐵 = 𝐵 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 = 𝐵))) |
138 | 74, 76, 137 | mpisyl 21 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 = 𝐵)) |
139 | 138 | expcom 413 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝐵, 𝐵} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 = 𝐵))) |
140 | 139 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 = 𝐵))) |
141 | 72, 140 | sylbir 234 |
. . . . . . . . . . . . . . . . . 18
⊢ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 = 𝐵))) |
142 | 141 | com13 88 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → 𝐶 = 𝐵))) |
143 | 142 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → 𝐶 = 𝐵)))) |
144 | 143 | 3imp 1109 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → 𝐶 = 𝐵)) |
145 | 144 | com12 32 |
. . . . . . . . . . . . . 14
⊢ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐵)) |
146 | 145 | a1i13 27 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐵)))) |
147 | | eqeq2 2750 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐵 → (𝐶 = 𝑦 ↔ 𝐶 = 𝐵)) |
148 | 147 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐵 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦) ↔ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐵))) |
149 | 148 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → (({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐵)))) |
150 | 146, 37, 149 | 3imtr4d 293 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)))) |
151 | | eqidd 2739 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶) |
152 | 151 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶)) |
153 | 152 | a1i13 27 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐶 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶)))) |
154 | | eqeq2 2750 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐶 → (𝐶 = 𝑦 ↔ 𝐶 = 𝐶)) |
155 | 154 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐶 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦) ↔ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶))) |
156 | 155 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐶 → (({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶)))) |
157 | 153, 55, 156 | 3imtr4d 293 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)))) |
158 | 135, 150,
157 | 3jaoi 1425 |
. . . . . . . . . . 11
⊢ ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)))) |
159 | | preq1 4666 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐶 → {𝑥, 𝐴} = {𝐶, 𝐴}) |
160 | | preq1 4666 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐶 → {𝑥, 𝐵} = {𝐶, 𝐵}) |
161 | 159, 160 | preq12d 4674 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐶 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐶, 𝐴}, {𝐶, 𝐵}}) |
162 | 161 | sseq1d 3948 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐶 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸)) |
163 | | eqeq1 2742 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐶 → (𝑥 = 𝑦 ↔ 𝐶 = 𝑦)) |
164 | 163 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐶 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦) ↔ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦))) |
165 | 162, 164 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐶 → (({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)))) |
166 | 165 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐶 → (({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))) ↔ ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦))))) |
167 | 158, 166 | syl5ibr 245 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐶 → ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))))) |
168 | 69, 121, 167 | 3jaoi 1425 |
. . . . . . . . 9
⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) → ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))))) |
169 | 168 | com3l 89 |
. . . . . . . 8
⊢ ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))))) |
170 | 4, 169 | sylbi 216 |
. . . . . . 7
⊢ (𝑦 ∈ {𝐴, 𝐵, 𝐶} → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))))) |
171 | 170 | imp 406 |
. . . . . 6
⊢ ((𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸) → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))) |
172 | 171 | com3l 89 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸) → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))) |
173 | 2, 172 | sylbi 216 |
. . . 4
⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸) → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))) |
174 | 173 | imp31 417 |
. . 3
⊢ (((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)) |
175 | 174 | com12 32 |
. 2
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦)) |
176 | 175 | alrimivv 1932 |
1
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ∀𝑥∀𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦)) |