MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr3vlem1 Structured version   Visualization version   GIF version

Theorem frgr3vlem1 30305
Description: Lemma 1 for frgr3v 30307. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
Hypotheses
Ref Expression
frgr3v.v 𝑉 = (Vtx‘𝐺)
frgr3v.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgr3vlem1 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ∀𝑥𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐸,𝑦   𝑥,𝐺,𝑦   𝑥,𝑉,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦

Proof of Theorem frgr3vlem1
StepHypRef Expression
1 vex 3492 . . . . . 6 𝑥 ∈ V
21eltp 4712 . . . . 5 (𝑥 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶))
3 vex 3492 . . . . . . . . 9 𝑦 ∈ V
43eltp 4712 . . . . . . . 8 (𝑦 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶))
5 eqidd 2741 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴)
65a1i 11 . . . . . . . . . . . . . 14 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴))
76a1i13 27 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴))))
8 preq1 4758 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → {𝑦, 𝐴} = {𝐴, 𝐴})
9 preq1 4758 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → {𝑦, 𝐵} = {𝐴, 𝐵})
108, 9preq12d 4766 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → {{𝑦, 𝐴}, {𝑦, 𝐵}} = {{𝐴, 𝐴}, {𝐴, 𝐵}})
1110sseq1d 4040 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸))
12 eqeq2 2752 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → (𝐴 = 𝑦𝐴 = 𝐴))
1312imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴)))
1413imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴))))
157, 11, 143imtr4d 294 . . . . . . . . . . . 12 (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦))))
16 prex 5452 . . . . . . . . . . . . . . . . . . 19 {𝐴, 𝐴} ∈ V
17 prex 5452 . . . . . . . . . . . . . . . . . . 19 {𝐴, 𝐵} ∈ V
1816, 17prss 4845 . . . . . . . . . . . . . . . . . 18 (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸)
19 frgr3v.e . . . . . . . . . . . . . . . . . . . . . . 23 𝐸 = (Edg‘𝐺)
2019usgredgne 29241 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USGraph ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴𝐴)
2120adantll 713 . . . . . . . . . . . . . . . . . . . . 21 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴𝐴)
22 df-ne 2947 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴𝐴 ↔ ¬ 𝐴 = 𝐴)
23 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . 23 𝐴 = 𝐴
2423pm2.24i 150 . . . . . . . . . . . . . . . . . . . . . 22 𝐴 = 𝐴𝐴 = 𝐵)
2522, 24sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐴𝐴 = 𝐵)
2621, 25syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴 = 𝐵)
2726expcom 413 . . . . . . . . . . . . . . . . . . 19 ({𝐴, 𝐴} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐵))
2827adantr 480 . . . . . . . . . . . . . . . . . 18 (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐵))
2918, 28sylbir 235 . . . . . . . . . . . . . . . . 17 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐵))
3029com12 32 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸𝐴 = 𝐵))
31303ad2ant3 1135 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸𝐴 = 𝐵))
3231com12 32 . . . . . . . . . . . . . 14 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐵))
33322a1i 12 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐵))))
34 preq1 4758 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → {𝑦, 𝐴} = {𝐵, 𝐴})
35 preq1 4758 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → {𝑦, 𝐵} = {𝐵, 𝐵})
3634, 35preq12d 4766 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → {{𝑦, 𝐴}, {𝑦, 𝐵}} = {{𝐵, 𝐴}, {𝐵, 𝐵}})
3736sseq1d 4040 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸))
38 eqeq2 2752 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → (𝐴 = 𝑦𝐴 = 𝐵))
3938imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐵)))
4039imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐵))))
4133, 37, 403imtr4d 294 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦))))
4223pm2.24i 150 . . . . . . . . . . . . . . . . . . . . . 22 𝐴 = 𝐴𝐴 = 𝐶)
4322, 42sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐴𝐴 = 𝐶)
4421, 43syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴 = 𝐶)
4544expcom 413 . . . . . . . . . . . . . . . . . . 19 ({𝐴, 𝐴} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐶))
4645adantr 480 . . . . . . . . . . . . . . . . . 18 (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐶))
4718, 46sylbir 235 . . . . . . . . . . . . . . . . 17 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐶))
4847com12 32 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸𝐴 = 𝐶))
49483ad2ant3 1135 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸𝐴 = 𝐶))
5049com12 32 . . . . . . . . . . . . . 14 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐶))
51502a1i 12 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐶))))
52 preq1 4758 . . . . . . . . . . . . . . 15 (𝑦 = 𝐶 → {𝑦, 𝐴} = {𝐶, 𝐴})
53 preq1 4758 . . . . . . . . . . . . . . 15 (𝑦 = 𝐶 → {𝑦, 𝐵} = {𝐶, 𝐵})
5452, 53preq12d 4766 . . . . . . . . . . . . . 14 (𝑦 = 𝐶 → {{𝑦, 𝐴}, {𝑦, 𝐵}} = {{𝐶, 𝐴}, {𝐶, 𝐵}})
5554sseq1d 4040 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 ↔ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸))
56 eqeq2 2752 . . . . . . . . . . . . . . 15 (𝑦 = 𝐶 → (𝐴 = 𝑦𝐴 = 𝐶))
5756imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = 𝐶 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐶)))
5857imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → (({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐶))))
5951, 55, 583imtr4d 294 . . . . . . . . . . . 12 (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦))))
6015, 41, 593jaoi 1428 . . . . . . . . . . 11 ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦))))
61 preq1 4758 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → {𝑥, 𝐴} = {𝐴, 𝐴})
62 preq1 4758 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
6361, 62preq12d 4766 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐴, 𝐴}, {𝐴, 𝐵}})
6463sseq1d 4040 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸))
65 eqeq1 2744 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
6665imbi2d 340 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)))
6764, 66imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦))))
6867imbi2d 340 . . . . . . . . . . 11 (𝑥 = 𝐴 → (({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))) ↔ ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)))))
6960, 68imbitrrid 246 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))))
70 prex 5452 . . . . . . . . . . . . . . . . . . 19 {𝐵, 𝐴} ∈ V
71 prex 5452 . . . . . . . . . . . . . . . . . . 19 {𝐵, 𝐵} ∈ V
7270, 71prss 4845 . . . . . . . . . . . . . . . . . 18 (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸)
7319usgredgne 29241 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USGraph ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵𝐵)
7473adantll 713 . . . . . . . . . . . . . . . . . . . . 21 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵𝐵)
75 df-ne 2947 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵𝐵 ↔ ¬ 𝐵 = 𝐵)
76 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . 23 𝐵 = 𝐵
7776pm2.24i 150 . . . . . . . . . . . . . . . . . . . . . 22 𝐵 = 𝐵𝐵 = 𝐴)
7875, 77sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐵𝐵𝐵 = 𝐴)
7974, 78syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵 = 𝐴)
8079expcom 413 . . . . . . . . . . . . . . . . . . 19 ({𝐵, 𝐵} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐴))
8180adantl 481 . . . . . . . . . . . . . . . . . 18 (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐴))
8272, 81sylbir 235 . . . . . . . . . . . . . . . . 17 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐴))
8382com12 32 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐵 = 𝐴))
84833ad2ant3 1135 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐵 = 𝐴))
8584com12 32 . . . . . . . . . . . . . 14 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐴))
86852a1i 12 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐴))))
87 eqeq2 2752 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → (𝐵 = 𝑦𝐵 = 𝐴))
8887imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐴)))
8988imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐴))))
9086, 11, 893imtr4d 294 . . . . . . . . . . . 12 (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦))))
91 eqidd 2741 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵)
9291a1i 11 . . . . . . . . . . . . . 14 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵))
9392a1i13 27 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵))))
94 eqeq2 2752 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → (𝐵 = 𝑦𝐵 = 𝐵))
9594imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵)))
9695imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵))))
9793, 37, 963imtr4d 294 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦))))
9876pm2.24i 150 . . . . . . . . . . . . . . . . . . . . . 22 𝐵 = 𝐵𝐵 = 𝐶)
9975, 98sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐵𝐵𝐵 = 𝐶)
10074, 99syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵 = 𝐶)
101100expcom 413 . . . . . . . . . . . . . . . . . . 19 ({𝐵, 𝐵} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐶))
102101adantl 481 . . . . . . . . . . . . . . . . . 18 (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐶))
10372, 102sylbir 235 . . . . . . . . . . . . . . . . 17 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐶))
104103com12 32 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐵 = 𝐶))
1051043ad2ant3 1135 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐵 = 𝐶))
106105com12 32 . . . . . . . . . . . . . 14 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐶))
1071062a1i 12 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐶))))
108 eqeq2 2752 . . . . . . . . . . . . . . 15 (𝑦 = 𝐶 → (𝐵 = 𝑦𝐵 = 𝐶))
109108imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = 𝐶 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐶)))
110109imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → (({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐶))))
111107, 55, 1103imtr4d 294 . . . . . . . . . . . 12 (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦))))
11290, 97, 1113jaoi 1428 . . . . . . . . . . 11 ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦))))
113 preq1 4758 . . . . . . . . . . . . . . 15 (𝑥 = 𝐵 → {𝑥, 𝐴} = {𝐵, 𝐴})
114 preq1 4758 . . . . . . . . . . . . . . 15 (𝑥 = 𝐵 → {𝑥, 𝐵} = {𝐵, 𝐵})
115113, 114preq12d 4766 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐵, 𝐴}, {𝐵, 𝐵}})
116115sseq1d 4040 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸))
117 eqeq1 2744 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝑥 = 𝑦𝐵 = 𝑦))
118117imbi2d 340 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)))
119116, 118imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦))))
120119imbi2d 340 . . . . . . . . . . 11 (𝑥 = 𝐵 → (({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))) ↔ ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)))))
121112, 120imbitrrid 246 . . . . . . . . . 10 (𝑥 = 𝐵 → ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))))
12223pm2.24i 150 . . . . . . . . . . . . . . . . . . . . . 22 𝐴 = 𝐴𝐶 = 𝐴)
12322, 122sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐴𝐶 = 𝐴)
12421, 123syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐶 = 𝐴)
125124expcom 413 . . . . . . . . . . . . . . . . . . 19 ({𝐴, 𝐴} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐶 = 𝐴))
126125adantr 480 . . . . . . . . . . . . . . . . . 18 (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐶 = 𝐴))
12718, 126sylbir 235 . . . . . . . . . . . . . . . . 17 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐶 = 𝐴))
128127com12 32 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸𝐶 = 𝐴))
1291283ad2ant3 1135 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸𝐶 = 𝐴))
130129com12 32 . . . . . . . . . . . . . 14 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐴))
131130a1i13 27 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐴))))
132 eqeq2 2752 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → (𝐶 = 𝑦𝐶 = 𝐴))
133132imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐴)))
134133imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐴))))
135131, 11, 1343imtr4d 294 . . . . . . . . . . . 12 (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦))))
136 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . 23 𝐵 = 𝐵 → (𝐵 = 𝐵 → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 = 𝐵)))
13775, 136sylbi 217 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵𝐵 → (𝐵 = 𝐵 → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 = 𝐵)))
13874, 76, 137mpisyl 21 . . . . . . . . . . . . . . . . . . . . 21 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 = 𝐵))
139138expcom 413 . . . . . . . . . . . . . . . . . . . 20 ({𝐵, 𝐵} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 = 𝐵)))
140139adantl 481 . . . . . . . . . . . . . . . . . . 19 (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 = 𝐵)))
14172, 140sylbir 235 . . . . . . . . . . . . . . . . . 18 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 = 𝐵)))
142141com13 88 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐶 = 𝐵)))
143142a1d 25 . . . . . . . . . . . . . . . 16 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐶 = 𝐵))))
1441433imp 1111 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐶 = 𝐵))
145144com12 32 . . . . . . . . . . . . . 14 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐵))
146145a1i13 27 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐵))))
147 eqeq2 2752 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → (𝐶 = 𝑦𝐶 = 𝐵))
148147imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐵)))
149148imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐵))))
150146, 37, 1493imtr4d 294 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦))))
151 eqidd 2741 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶)
152151a1i 11 . . . . . . . . . . . . . 14 ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶))
153152a1i13 27 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶))))
154 eqeq2 2752 . . . . . . . . . . . . . . 15 (𝑦 = 𝐶 → (𝐶 = 𝑦𝐶 = 𝐶))
155154imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = 𝐶 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶)))
156155imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → (({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶))))
157153, 55, 1563imtr4d 294 . . . . . . . . . . . 12 (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦))))
158135, 150, 1573jaoi 1428 . . . . . . . . . . 11 ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦))))
159 preq1 4758 . . . . . . . . . . . . . . 15 (𝑥 = 𝐶 → {𝑥, 𝐴} = {𝐶, 𝐴})
160 preq1 4758 . . . . . . . . . . . . . . 15 (𝑥 = 𝐶 → {𝑥, 𝐵} = {𝐶, 𝐵})
161159, 160preq12d 4766 . . . . . . . . . . . . . 14 (𝑥 = 𝐶 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐶, 𝐴}, {𝐶, 𝐵}})
162161sseq1d 4040 . . . . . . . . . . . . 13 (𝑥 = 𝐶 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸))
163 eqeq1 2744 . . . . . . . . . . . . . 14 (𝑥 = 𝐶 → (𝑥 = 𝑦𝐶 = 𝑦))
164163imbi2d 340 . . . . . . . . . . . . 13 (𝑥 = 𝐶 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)))
165162, 164imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝐶 → (({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦))))
166165imbi2d 340 . . . . . . . . . . 11 (𝑥 = 𝐶 → (({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))) ↔ ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)))))
167158, 166imbitrrid 246 . . . . . . . . . 10 (𝑥 = 𝐶 → ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))))
16869, 121, 1673jaoi 1428 . . . . . . . . 9 ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) → ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))))
169168com3l 89 . . . . . . . 8 ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))))
1704, 169sylbi 217 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵, 𝐶} → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))))
171170imp 406 . . . . . 6 ((𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸) → ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))))
172171com3l 89 . . . . 5 ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸) → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))))
1732, 172sylbi 217 . . . 4 (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸) → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))))
174173imp31 417 . . 3 (((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))
175174com12 32 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦))
176175alrimivv 1927 1 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ∀𝑥𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3o 1086  w3a 1087  wal 1535   = wceq 1537  wcel 2108  wne 2946  wss 3976  {cpr 4650  {ctp 4652  cfv 6573  Vtxcvtx 29031  Edgcedg 29082  USGraphcusgr 29184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-edg 29083  df-umgr 29118  df-usgr 29186
This theorem is referenced by:  frgr3vlem2  30306
  Copyright terms: Public domain W3C validator