MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr3vlem1 Structured version   Visualization version   GIF version

Theorem frgr3vlem1 30292
Description: Lemma 1 for frgr3v 30294. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
Hypotheses
Ref Expression
frgr3v.v 𝑉 = (Vtx‘𝐺)
frgr3v.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgr3vlem1 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ∀𝑥𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐸,𝑦   𝑥,𝐺,𝑦   𝑥,𝑉,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦

Proof of Theorem frgr3vlem1
StepHypRef Expression
1 vex 3484 . . . . . 6 𝑥 ∈ V
21eltp 4689 . . . . 5 (𝑥 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶))
3 vex 3484 . . . . . . . . 9 𝑦 ∈ V
43eltp 4689 . . . . . . . 8 (𝑦 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶))
5 eqidd 2738 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴)
65a1i 11 . . . . . . . . . . . . . 14 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴))
76a1i13 27 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴))))
8 preq1 4733 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → {𝑦, 𝐴} = {𝐴, 𝐴})
9 preq1 4733 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → {𝑦, 𝐵} = {𝐴, 𝐵})
108, 9preq12d 4741 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → {{𝑦, 𝐴}, {𝑦, 𝐵}} = {{𝐴, 𝐴}, {𝐴, 𝐵}})
1110sseq1d 4015 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸))
12 eqeq2 2749 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → (𝐴 = 𝑦𝐴 = 𝐴))
1312imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴)))
1413imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐴))))
157, 11, 143imtr4d 294 . . . . . . . . . . . 12 (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦))))
16 prex 5437 . . . . . . . . . . . . . . . . . . 19 {𝐴, 𝐴} ∈ V
17 prex 5437 . . . . . . . . . . . . . . . . . . 19 {𝐴, 𝐵} ∈ V
1816, 17prss 4820 . . . . . . . . . . . . . . . . . 18 (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸)
19 frgr3v.e . . . . . . . . . . . . . . . . . . . . . . 23 𝐸 = (Edg‘𝐺)
2019usgredgne 29223 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USGraph ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴𝐴)
2120adantll 714 . . . . . . . . . . . . . . . . . . . . 21 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴𝐴)
22 df-ne 2941 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴𝐴 ↔ ¬ 𝐴 = 𝐴)
23 eqid 2737 . . . . . . . . . . . . . . . . . . . . . . 23 𝐴 = 𝐴
2423pm2.24i 150 . . . . . . . . . . . . . . . . . . . . . 22 𝐴 = 𝐴𝐴 = 𝐵)
2522, 24sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐴𝐴 = 𝐵)
2621, 25syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴 = 𝐵)
2726expcom 413 . . . . . . . . . . . . . . . . . . 19 ({𝐴, 𝐴} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐵))
2827adantr 480 . . . . . . . . . . . . . . . . . 18 (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐵))
2918, 28sylbir 235 . . . . . . . . . . . . . . . . 17 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐵))
3029com12 32 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸𝐴 = 𝐵))
31303ad2ant3 1136 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸𝐴 = 𝐵))
3231com12 32 . . . . . . . . . . . . . 14 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐵))
33322a1i 12 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐵))))
34 preq1 4733 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → {𝑦, 𝐴} = {𝐵, 𝐴})
35 preq1 4733 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → {𝑦, 𝐵} = {𝐵, 𝐵})
3634, 35preq12d 4741 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → {{𝑦, 𝐴}, {𝑦, 𝐵}} = {{𝐵, 𝐴}, {𝐵, 𝐵}})
3736sseq1d 4015 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸))
38 eqeq2 2749 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → (𝐴 = 𝑦𝐴 = 𝐵))
3938imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐵)))
4039imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐵))))
4133, 37, 403imtr4d 294 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦))))
4223pm2.24i 150 . . . . . . . . . . . . . . . . . . . . . 22 𝐴 = 𝐴𝐴 = 𝐶)
4322, 42sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐴𝐴 = 𝐶)
4421, 43syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴 = 𝐶)
4544expcom 413 . . . . . . . . . . . . . . . . . . 19 ({𝐴, 𝐴} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐶))
4645adantr 480 . . . . . . . . . . . . . . . . . 18 (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐶))
4718, 46sylbir 235 . . . . . . . . . . . . . . . . 17 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐴 = 𝐶))
4847com12 32 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸𝐴 = 𝐶))
49483ad2ant3 1136 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸𝐴 = 𝐶))
5049com12 32 . . . . . . . . . . . . . 14 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐶))
51502a1i 12 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐶))))
52 preq1 4733 . . . . . . . . . . . . . . 15 (𝑦 = 𝐶 → {𝑦, 𝐴} = {𝐶, 𝐴})
53 preq1 4733 . . . . . . . . . . . . . . 15 (𝑦 = 𝐶 → {𝑦, 𝐵} = {𝐶, 𝐵})
5452, 53preq12d 4741 . . . . . . . . . . . . . 14 (𝑦 = 𝐶 → {{𝑦, 𝐴}, {𝑦, 𝐵}} = {{𝐶, 𝐴}, {𝐶, 𝐵}})
5554sseq1d 4015 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 ↔ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸))
56 eqeq2 2749 . . . . . . . . . . . . . . 15 (𝑦 = 𝐶 → (𝐴 = 𝑦𝐴 = 𝐶))
5756imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = 𝐶 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐶)))
5857imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → (({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝐶))))
5951, 55, 583imtr4d 294 . . . . . . . . . . . 12 (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦))))
6015, 41, 593jaoi 1430 . . . . . . . . . . 11 ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦))))
61 preq1 4733 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → {𝑥, 𝐴} = {𝐴, 𝐴})
62 preq1 4733 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
6361, 62preq12d 4741 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐴, 𝐴}, {𝐴, 𝐵}})
6463sseq1d 4015 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸))
65 eqeq1 2741 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
6665imbi2d 340 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)))
6764, 66imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦))))
6867imbi2d 340 . . . . . . . . . . 11 (𝑥 = 𝐴 → (({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))) ↔ ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 = 𝑦)))))
6960, 68imbitrrid 246 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))))
70 prex 5437 . . . . . . . . . . . . . . . . . . 19 {𝐵, 𝐴} ∈ V
71 prex 5437 . . . . . . . . . . . . . . . . . . 19 {𝐵, 𝐵} ∈ V
7270, 71prss 4820 . . . . . . . . . . . . . . . . . 18 (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸)
7319usgredgne 29223 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USGraph ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵𝐵)
7473adantll 714 . . . . . . . . . . . . . . . . . . . . 21 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵𝐵)
75 df-ne 2941 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵𝐵 ↔ ¬ 𝐵 = 𝐵)
76 eqid 2737 . . . . . . . . . . . . . . . . . . . . . . 23 𝐵 = 𝐵
7776pm2.24i 150 . . . . . . . . . . . . . . . . . . . . . 22 𝐵 = 𝐵𝐵 = 𝐴)
7875, 77sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐵𝐵𝐵 = 𝐴)
7974, 78syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵 = 𝐴)
8079expcom 413 . . . . . . . . . . . . . . . . . . 19 ({𝐵, 𝐵} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐴))
8180adantl 481 . . . . . . . . . . . . . . . . . 18 (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐴))
8272, 81sylbir 235 . . . . . . . . . . . . . . . . 17 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐴))
8382com12 32 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐵 = 𝐴))
84833ad2ant3 1136 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐵 = 𝐴))
8584com12 32 . . . . . . . . . . . . . 14 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐴))
86852a1i 12 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐴))))
87 eqeq2 2749 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → (𝐵 = 𝑦𝐵 = 𝐴))
8887imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐴)))
8988imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐴))))
9086, 11, 893imtr4d 294 . . . . . . . . . . . 12 (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦))))
91 eqidd 2738 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵)
9291a1i 11 . . . . . . . . . . . . . 14 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵))
9392a1i13 27 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵))))
94 eqeq2 2749 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → (𝐵 = 𝑦𝐵 = 𝐵))
9594imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵)))
9695imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐵))))
9793, 37, 963imtr4d 294 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦))))
9876pm2.24i 150 . . . . . . . . . . . . . . . . . . . . . 22 𝐵 = 𝐵𝐵 = 𝐶)
9975, 98sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐵𝐵𝐵 = 𝐶)
10074, 99syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵 = 𝐶)
101100expcom 413 . . . . . . . . . . . . . . . . . . 19 ({𝐵, 𝐵} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐶))
102101adantl 481 . . . . . . . . . . . . . . . . . 18 (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐶))
10372, 102sylbir 235 . . . . . . . . . . . . . . . . 17 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐵 = 𝐶))
104103com12 32 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐵 = 𝐶))
1051043ad2ant3 1136 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐵 = 𝐶))
106105com12 32 . . . . . . . . . . . . . 14 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐶))
1071062a1i 12 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐶))))
108 eqeq2 2749 . . . . . . . . . . . . . . 15 (𝑦 = 𝐶 → (𝐵 = 𝑦𝐵 = 𝐶))
109108imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = 𝐶 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐶)))
110109imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → (({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝐶))))
111107, 55, 1103imtr4d 294 . . . . . . . . . . . 12 (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦))))
11290, 97, 1113jaoi 1430 . . . . . . . . . . 11 ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦))))
113 preq1 4733 . . . . . . . . . . . . . . 15 (𝑥 = 𝐵 → {𝑥, 𝐴} = {𝐵, 𝐴})
114 preq1 4733 . . . . . . . . . . . . . . 15 (𝑥 = 𝐵 → {𝑥, 𝐵} = {𝐵, 𝐵})
115113, 114preq12d 4741 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐵, 𝐴}, {𝐵, 𝐵}})
116115sseq1d 4015 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸))
117 eqeq1 2741 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝑥 = 𝑦𝐵 = 𝑦))
118117imbi2d 340 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)))
119116, 118imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦))))
120119imbi2d 340 . . . . . . . . . . 11 (𝑥 = 𝐵 → (({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))) ↔ ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 = 𝑦)))))
121112, 120imbitrrid 246 . . . . . . . . . 10 (𝑥 = 𝐵 → ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))))
12223pm2.24i 150 . . . . . . . . . . . . . . . . . . . . . 22 𝐴 = 𝐴𝐶 = 𝐴)
12322, 122sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐴𝐶 = 𝐴)
12421, 123syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐶 = 𝐴)
125124expcom 413 . . . . . . . . . . . . . . . . . . 19 ({𝐴, 𝐴} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐶 = 𝐴))
126125adantr 480 . . . . . . . . . . . . . . . . . 18 (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐶 = 𝐴))
12718, 126sylbir 235 . . . . . . . . . . . . . . . . 17 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝐶 = 𝐴))
128127com12 32 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸𝐶 = 𝐴))
1291283ad2ant3 1136 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸𝐶 = 𝐴))
130129com12 32 . . . . . . . . . . . . . 14 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐴))
131130a1i13 27 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐴))))
132 eqeq2 2749 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → (𝐶 = 𝑦𝐶 = 𝐴))
133132imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐴)))
134133imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐴))))
135131, 11, 1343imtr4d 294 . . . . . . . . . . . 12 (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦))))
136 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . 23 𝐵 = 𝐵 → (𝐵 = 𝐵 → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 = 𝐵)))
13775, 136sylbi 217 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵𝐵 → (𝐵 = 𝐵 → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 = 𝐵)))
13874, 76, 137mpisyl 21 . . . . . . . . . . . . . . . . . . . . 21 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 = 𝐵))
139138expcom 413 . . . . . . . . . . . . . . . . . . . 20 ({𝐵, 𝐵} ∈ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 = 𝐵)))
140139adantl 481 . . . . . . . . . . . . . . . . . . 19 (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 = 𝐵)))
14172, 140sylbir 235 . . . . . . . . . . . . . . . . . 18 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 = 𝐵)))
142141com13 88 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐶 = 𝐵)))
143142a1d 25 . . . . . . . . . . . . . . . 16 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐶 = 𝐵))))
1441433imp 1111 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸𝐶 = 𝐵))
145144com12 32 . . . . . . . . . . . . . 14 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐵))
146145a1i13 27 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐵))))
147 eqeq2 2749 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → (𝐶 = 𝑦𝐶 = 𝐵))
148147imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐵)))
149148imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐵))))
150146, 37, 1493imtr4d 294 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦))))
151 eqidd 2738 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶)
152151a1i 11 . . . . . . . . . . . . . 14 ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶))
153152a1i13 27 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶))))
154 eqeq2 2749 . . . . . . . . . . . . . . 15 (𝑦 = 𝐶 → (𝐶 = 𝑦𝐶 = 𝐶))
155154imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = 𝐶 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶)))
156155imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → (({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝐶))))
157153, 55, 1563imtr4d 294 . . . . . . . . . . . 12 (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦))))
158135, 150, 1573jaoi 1430 . . . . . . . . . . 11 ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦))))
159 preq1 4733 . . . . . . . . . . . . . . 15 (𝑥 = 𝐶 → {𝑥, 𝐴} = {𝐶, 𝐴})
160 preq1 4733 . . . . . . . . . . . . . . 15 (𝑥 = 𝐶 → {𝑥, 𝐵} = {𝐶, 𝐵})
161159, 160preq12d 4741 . . . . . . . . . . . . . 14 (𝑥 = 𝐶 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐶, 𝐴}, {𝐶, 𝐵}})
162161sseq1d 4015 . . . . . . . . . . . . 13 (𝑥 = 𝐶 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸))
163 eqeq1 2741 . . . . . . . . . . . . . 14 (𝑥 = 𝐶 → (𝑥 = 𝑦𝐶 = 𝑦))
164163imbi2d 340 . . . . . . . . . . . . 13 (𝑥 = 𝐶 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦) ↔ (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)))
165162, 164imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝐶 → (({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦))))
166165imbi2d 340 . . . . . . . . . . 11 (𝑥 = 𝐶 → (({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))) ↔ ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 = 𝑦)))))
167158, 166imbitrrid 246 . . . . . . . . . 10 (𝑥 = 𝐶 → ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))))
16869, 121, 1673jaoi 1430 . . . . . . . . 9 ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) → ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))))
169168com3l 89 . . . . . . . 8 ((𝑦 = 𝐴𝑦 = 𝐵𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))))
1704, 169sylbi 217 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵, 𝐶} → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸 → ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦)))))
171170imp 406 . . . . . 6 ((𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸) → ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))))
172171com3l 89 . . . . 5 ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸) → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))))
1732, 172sylbi 217 . . . 4 (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸) → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))))
174173imp31 417 . . 3 (((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝑥 = 𝑦))
175174com12 32 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦))
176175alrimivv 1928 1 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ∀𝑥𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3o 1086  w3a 1087  wal 1538   = wceq 1540  wcel 2108  wne 2940  wss 3951  {cpr 4628  {ctp 4630  cfv 6561  Vtxcvtx 29013  Edgcedg 29064  USGraphcusgr 29166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370  df-edg 29065  df-umgr 29100  df-usgr 29168
This theorem is referenced by:  frgr3vlem2  30293
  Copyright terms: Public domain W3C validator