Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2a1 | Structured version Visualization version GIF version |
Description: A double form of ax-1 6. Its associated inference is 2a1i 12. Its associated deduction is 2a1d 26. (Contributed by BJ, 10-Aug-2020.) (Proof shortened by Wolf Lammen, 1-Sep-2020.) |
Ref | Expression |
---|---|
2a1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | 2a1d 26 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: sbcg 3795 domtriomlem 10198 nn01to3 12681 xnn0lenn0nn0 12979 injresinjlem 13507 expnngt1 13956 reusq0 15174 dfgcd2 16254 lcmf 16338 prmgaplem5 16756 prmgaplem6 16757 cshwshashlem2 16798 mamufacex 21538 mavmulsolcl 21700 lgsqrmodndvds 26501 2sqreultlem 26595 2sqreunnltlem 26598 uspgrn2crct 28173 2pthon3v 28308 frgrreg 28758 icceuelpart 44888 prmdvdsfmtnof1lem2 45037 lighneallem4 45062 evenprm2 45166 suppmptcfin 45715 linc1 45766 |
Copyright terms: Public domain | W3C validator |