| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1 | Structured version Visualization version GIF version | ||
| Description: A double form of ax-1 6. Its associated inference is 2a1i 12. Its associated deduction is 2a1d 26. (Contributed by BJ, 10-Aug-2020.) (Proof shortened by Wolf Lammen, 1-Sep-2020.) |
| Ref | Expression |
|---|---|
| 2a1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | 2a1d 26 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: sbcg 3817 domtriomlem 10355 nn01to3 12860 xnn0lenn0nn0 13165 injresinjlem 13708 expnngt1 14166 reusq0 15390 dfgcd2 16475 lcmf 16562 prmgaplem5 16985 prmgaplem6 16986 cshwshashlem2 17026 mamufacex 22299 mavmulsolcl 22454 lgsqrmodndvds 27280 2sqreultlem 27374 2sqreunnltlem 27377 uspgrn2crct 29771 2pthon3v 29906 frgrreg 30356 ormkglobd 46860 icceuelpart 47424 prmdvdsfmtnof1lem2 47573 lighneallem4 47598 evenprm2 47702 suppmptcfin 48364 linc1 48414 |
| Copyright terms: Public domain | W3C validator |