| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1 | Structured version Visualization version GIF version | ||
| Description: A double form of ax-1 6. Its associated inference is 2a1i 12. Its associated deduction is 2a1d 26. (Contributed by BJ, 10-Aug-2020.) (Proof shortened by Wolf Lammen, 1-Sep-2020.) |
| Ref | Expression |
|---|---|
| 2a1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | 2a1d 26 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: sbcg 3814 domtriomlem 10333 nn01to3 12839 xnn0lenn0nn0 13144 injresinjlem 13690 expnngt1 14148 reusq0 15372 dfgcd2 16457 lcmf 16544 prmgaplem5 16967 prmgaplem6 16968 cshwshashlem2 17008 mamufacex 22312 mavmulsolcl 22467 lgsqrmodndvds 27292 2sqreultlem 27386 2sqreunnltlem 27389 uspgrn2crct 29787 2pthon3v 29922 frgrreg 30372 ormkglobd 46919 icceuelpart 47473 prmdvdsfmtnof1lem2 47622 lighneallem4 47647 evenprm2 47751 suppmptcfin 48413 linc1 48463 |
| Copyright terms: Public domain | W3C validator |