Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2a1 | Structured version Visualization version GIF version |
Description: A double form of ax-1 6. Its associated inference is 2a1i 12. Its associated deduction is 2a1d 26. (Contributed by BJ, 10-Aug-2020.) (Proof shortened by Wolf Lammen, 1-Sep-2020.) |
Ref | Expression |
---|---|
2a1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | 2a1d 26 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: sbcg 3791 domtriomlem 10129 nn01to3 12610 xnn0lenn0nn0 12908 injresinjlem 13435 expnngt1 13884 reusq0 15102 dfgcd2 16182 lcmf 16266 prmgaplem5 16684 prmgaplem6 16685 cshwshashlem2 16726 mamufacex 21448 mavmulsolcl 21608 lgsqrmodndvds 26406 2sqreultlem 26500 2sqreunnltlem 26503 uspgrn2crct 28074 2pthon3v 28209 frgrreg 28659 icceuelpart 44776 prmdvdsfmtnof1lem2 44925 lighneallem4 44950 evenprm2 45054 suppmptcfin 45603 linc1 45654 |
Copyright terms: Public domain | W3C validator |