![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2a1 | Structured version Visualization version GIF version |
Description: A double form of ax-1 6. Its associated inference is 2a1i 12. Its associated deduction is 2a1d 26. (Contributed by BJ, 10-Aug-2020.) (Proof shortened by Wolf Lammen, 1-Sep-2020.) |
Ref | Expression |
---|---|
2a1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | 2a1d 26 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: sbcg 3883 domtriomlem 10511 nn01to3 13006 xnn0lenn0nn0 13307 injresinjlem 13837 expnngt1 14290 reusq0 15511 dfgcd2 16593 lcmf 16680 prmgaplem5 17102 prmgaplem6 17103 cshwshashlem2 17144 mamufacex 22421 mavmulsolcl 22578 lgsqrmodndvds 27415 2sqreultlem 27509 2sqreunnltlem 27512 uspgrn2crct 29841 2pthon3v 29976 frgrreg 30426 icceuelpart 47310 prmdvdsfmtnof1lem2 47459 lighneallem4 47484 evenprm2 47588 suppmptcfin 48104 linc1 48154 |
Copyright terms: Public domain | W3C validator |