| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1 | Structured version Visualization version GIF version | ||
| Description: A double form of ax-1 6. Its associated inference is 2a1i 12. Its associated deduction is 2a1d 26. (Contributed by BJ, 10-Aug-2020.) (Proof shortened by Wolf Lammen, 1-Sep-2020.) |
| Ref | Expression |
|---|---|
| 2a1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | 2a1d 26 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: sbcg 3843 domtriomlem 10461 nn01to3 12962 xnn0lenn0nn0 13266 injresinjlem 13808 expnngt1 14264 reusq0 15486 dfgcd2 16570 lcmf 16657 prmgaplem5 17080 prmgaplem6 17081 cshwshashlem2 17121 mamufacex 22339 mavmulsolcl 22494 lgsqrmodndvds 27321 2sqreultlem 27415 2sqreunnltlem 27418 uspgrn2crct 29795 2pthon3v 29930 frgrreg 30380 ormkglobd 46871 icceuelpart 47417 prmdvdsfmtnof1lem2 47566 lighneallem4 47591 evenprm2 47695 suppmptcfin 48318 linc1 48368 |
| Copyright terms: Public domain | W3C validator |