| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1 | Structured version Visualization version GIF version | ||
| Description: A double form of ax-1 6. Its associated inference is 2a1i 12. Its associated deduction is 2a1d 26. (Contributed by BJ, 10-Aug-2020.) (Proof shortened by Wolf Lammen, 1-Sep-2020.) |
| Ref | Expression |
|---|---|
| 2a1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | 2a1d 26 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: sbcg 3826 domtriomlem 10395 nn01to3 12900 xnn0lenn0nn0 13205 injresinjlem 13748 expnngt1 14206 reusq0 15431 dfgcd2 16516 lcmf 16603 prmgaplem5 17026 prmgaplem6 17027 cshwshashlem2 17067 mamufacex 22283 mavmulsolcl 22438 lgsqrmodndvds 27264 2sqreultlem 27358 2sqreunnltlem 27361 uspgrn2crct 29738 2pthon3v 29873 frgrreg 30323 ormkglobd 46873 icceuelpart 47434 prmdvdsfmtnof1lem2 47583 lighneallem4 47608 evenprm2 47712 suppmptcfin 48361 linc1 48411 |
| Copyright terms: Public domain | W3C validator |