![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2a1 | Structured version Visualization version GIF version |
Description: A double form of ax-1 6. Its associated inference is 2a1i 12. Its associated deduction is 2a1d 26. (Contributed by BJ, 10-Aug-2020.) (Proof shortened by Wolf Lammen, 1-Sep-2020.) |
Ref | Expression |
---|---|
2a1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | 2a1d 26 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: domtriomlem 9579 nn01to3 12064 xnn0lenn0nn0 12363 injresinjlem 12883 expnngt1 13322 dfgcd2 15636 lcmf 15719 cshwshashlem2 16169 mamufacex 20562 mavmulsolcl 20725 lgsqrmodndvds 25491 uspgrn2crct 27107 2pthon3v 27272 frgrreg 27809 icceuelpart 42260 prmdvdsfmtnof1lem2 42327 lighneallem4 42357 evenprm2 42453 suppmptcfin 43007 linc1 43061 |
Copyright terms: Public domain | W3C validator |