![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2a1 | Structured version Visualization version GIF version |
Description: A double form of ax-1 6. Its associated inference is 2a1i 12. Its associated deduction is 2a1d 26. (Contributed by BJ, 10-Aug-2020.) (Proof shortened by Wolf Lammen, 1-Sep-2020.) |
Ref | Expression |
---|---|
2a1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | 2a1d 26 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: sbcg 3857 domtriomlem 10437 nn01to3 12925 xnn0lenn0nn0 13224 injresinjlem 13752 expnngt1 14204 reusq0 15409 dfgcd2 16488 lcmf 16570 prmgaplem5 16988 prmgaplem6 16989 cshwshashlem2 17030 mamufacex 21891 mavmulsolcl 22053 lgsqrmodndvds 26856 2sqreultlem 26950 2sqreunnltlem 26953 uspgrn2crct 29062 2pthon3v 29197 frgrreg 29647 icceuelpart 46104 prmdvdsfmtnof1lem2 46253 lighneallem4 46278 evenprm2 46382 suppmptcfin 47055 linc1 47106 |
Copyright terms: Public domain | W3C validator |