| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1 | Structured version Visualization version GIF version | ||
| Description: A double form of ax-1 6. Its associated inference is 2a1i 12. Its associated deduction is 2a1d 26. (Contributed by BJ, 10-Aug-2020.) (Proof shortened by Wolf Lammen, 1-Sep-2020.) |
| Ref | Expression |
|---|---|
| 2a1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | 2a1d 26 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: sbcg 3810 domtriomlem 10342 nn01to3 12843 xnn0lenn0nn0 13148 injresinjlem 13694 expnngt1 14152 reusq0 15376 dfgcd2 16461 lcmf 16548 prmgaplem5 16971 prmgaplem6 16972 cshwshashlem2 17012 mamufacex 22314 mavmulsolcl 22469 lgsqrmodndvds 27294 2sqreultlem 27388 2sqreunnltlem 27391 uspgrn2crct 29790 2pthon3v 29925 frgrreg 30378 ormkglobd 47000 icceuelpart 47563 prmdvdsfmtnof1lem2 47712 lighneallem4 47737 evenprm2 47841 suppmptcfin 48503 linc1 48553 |
| Copyright terms: Public domain | W3C validator |