| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1 | Structured version Visualization version GIF version | ||
| Description: A double form of ax-1 6. Its associated inference is 2a1i 12. Its associated deduction is 2a1d 26. (Contributed by BJ, 10-Aug-2020.) (Proof shortened by Wolf Lammen, 1-Sep-2020.) |
| Ref | Expression |
|---|---|
| 2a1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | 2a1d 26 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: sbcg 3863 domtriomlem 10482 nn01to3 12983 xnn0lenn0nn0 13287 injresinjlem 13826 expnngt1 14280 reusq0 15501 dfgcd2 16583 lcmf 16670 prmgaplem5 17093 prmgaplem6 17094 cshwshashlem2 17134 mamufacex 22400 mavmulsolcl 22557 lgsqrmodndvds 27397 2sqreultlem 27491 2sqreunnltlem 27494 uspgrn2crct 29828 2pthon3v 29963 frgrreg 30413 ormkglobd 46890 icceuelpart 47423 prmdvdsfmtnof1lem2 47572 lighneallem4 47597 evenprm2 47701 suppmptcfin 48292 linc1 48342 |
| Copyright terms: Public domain | W3C validator |