MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2a1 Structured version   Visualization version   GIF version

Theorem 2a1 28
Description: A double form of ax-1 6. Its associated inference is 2a1i 12. Its associated deduction is 2a1d 26. (Contributed by BJ, 10-Aug-2020.) (Proof shortened by Wolf Lammen, 1-Sep-2020.)
Assertion
Ref Expression
2a1 (𝜑 → (𝜓 → (𝜒𝜑)))

Proof of Theorem 2a1
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
212a1d 26 1 (𝜑 → (𝜓 → (𝜒𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  domtriomlem  9579  nn01to3  12064  xnn0lenn0nn0  12363  injresinjlem  12883  expnngt1  13322  dfgcd2  15636  lcmf  15719  cshwshashlem2  16169  mamufacex  20562  mavmulsolcl  20725  lgsqrmodndvds  25491  uspgrn2crct  27107  2pthon3v  27272  frgrreg  27809  icceuelpart  42260  prmdvdsfmtnof1lem2  42327  lighneallem4  42357  evenprm2  42453  suppmptcfin  43007  linc1  43061
  Copyright terms: Public domain W3C validator