MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqshft2 Structured version   Visualization version   GIF version

Theorem seqshft2 13934
Description: Shifting the index set of a sequence. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqshft2.1 (𝜑𝑁 ∈ (ℤ𝑀))
seqshft2.2 (𝜑𝐾 ∈ ℤ)
seqshft2.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
Assertion
Ref Expression
seqshft2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝑀   𝜑,𝑘   𝑘,𝑁
Allowed substitution hint:   + (𝑘)

Proof of Theorem seqshft2
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqshft2.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 13449 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 eleq1 2825 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁)))
5 fveq2 6842 . . . . . . 7 (𝑥 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑀))
6 fvoveq1 7380 . . . . . . 7 (𝑥 = 𝑀 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)))
75, 6eqeq12d 2752 . . . . . 6 (𝑥 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾))))
84, 7imbi12d 344 . . . . 5 (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)))))
98imbi2d 340 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾))))))
10 eleq1 2825 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
11 fveq2 6842 . . . . . . 7 (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑛))
12 fvoveq1 7380 . . . . . . 7 (𝑥 = 𝑛 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))
1311, 12eqeq12d 2752 . . . . . 6 (𝑥 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))))
1410, 13imbi12d 344 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))))
1514imbi2d 340 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))))))
16 eleq1 2825 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁)))
17 fveq2 6842 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))
18 fvoveq1 7380 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)))
1917, 18eqeq12d 2752 . . . . . 6 (𝑥 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))
2016, 19imbi12d 344 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)))))
2120imbi2d 340 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))))
22 eleq1 2825 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
23 fveq2 6842 . . . . . . 7 (𝑥 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑁))
24 fvoveq1 7380 . . . . . . 7 (𝑥 = 𝑁 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))
2523, 24eqeq12d 2752 . . . . . 6 (𝑥 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))))
2622, 25imbi12d 344 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))))
2726imbi2d 340 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))))))
28 fveq2 6842 . . . . . . . 8 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
29 fvoveq1 7380 . . . . . . . 8 (𝑘 = 𝑀 → (𝐺‘(𝑘 + 𝐾)) = (𝐺‘(𝑀 + 𝐾)))
3028, 29eqeq12d 2752 . . . . . . 7 (𝑘 = 𝑀 → ((𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)) ↔ (𝐹𝑀) = (𝐺‘(𝑀 + 𝐾))))
31 seqshft2.3 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
3231ralrimiva 3143 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
33 eluzfz1 13448 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
341, 33syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
3530, 32, 34rspcdva 3582 . . . . . 6 (𝜑 → (𝐹𝑀) = (𝐺‘(𝑀 + 𝐾)))
36 eluzel2 12768 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
371, 36syl 17 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
38 seq1 13919 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
3937, 38syl 17 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
40 seqshft2.2 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
4137, 40zaddcld 12611 . . . . . . 7 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
42 seq1 13919 . . . . . . 7 ((𝑀 + 𝐾) ∈ ℤ → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)) = (𝐺‘(𝑀 + 𝐾)))
4341, 42syl 17 . . . . . 6 (𝜑 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)) = (𝐺‘(𝑀 + 𝐾)))
4435, 39, 433eqtr4d 2786 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)))
4544a1i13 27 . . . 4 (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)))))
46 peano2fzr 13454 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
4746adantl 482 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
4847expr 457 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁)))
4948imim1d 82 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))))
50 oveq1 7364 . . . . . 6 ((seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))))
51 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ𝑀))
52 seqp1 13921 . . . . . . . 8 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5351, 52syl 17 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5440adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝐾 ∈ ℤ)
55 eluzadd 12792 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑛 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
5651, 54, 55syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
57 seqp1 13921 . . . . . . . . 9 ((𝑛 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 𝐾) + 1)) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1))))
5856, 57syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 𝐾) + 1)) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1))))
59 eluzelz 12773 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
6051, 59syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ ℤ)
61 zcn 12504 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
62 zcn 12504 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
63 ax-1cn 11109 . . . . . . . . . . . 12 1 ∈ ℂ
64 add32 11373 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
6563, 64mp3an2 1449 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
6661, 62, 65syl2an 596 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
6760, 54, 66syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
6867fveq2d 6846 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 𝐾) + 1)))
69 fveq2 6842 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
70 fvoveq1 7380 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → (𝐺‘(𝑘 + 𝐾)) = (𝐺‘((𝑛 + 1) + 𝐾)))
7169, 70eqeq12d 2752 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)) ↔ (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾))))
7232adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
73 simprr 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁))
7471, 72, 73rspcdva 3582 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾)))
7567fveq2d 6846 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐺‘((𝑛 + 1) + 𝐾)) = (𝐺‘((𝑛 + 𝐾) + 1)))
7674, 75eqtrd 2776 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 𝐾) + 1)))
7776oveq2d 7373 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1))))
7858, 68, 773eqtr4d 2786 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))))
7953, 78eqeq12d 2752 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)) ↔ ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1)))))
8050, 79syl5ibr 245 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))
8149, 80animpimp2impd 844 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))))
829, 15, 21, 27, 45, 81uzind4 12831 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))))
831, 82mpcom 38 . 2 (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))))
843, 83mpd 15 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  cfv 6496  (class class class)co 7357  cc 11049  1c1 11052   + caddc 11054  cz 12499  cuz 12763  ...cfz 13424  seqcseq 13906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-seq 13907
This theorem is referenced by:  seqf1olem2  13948  seqshft  14970  isercoll2  15553  fprodser  15832  gsumsgrpccat  18650  mulgnndir  18905
  Copyright terms: Public domain W3C validator