Step | Hyp | Ref
| Expression |
1 | | seqshft2.1 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | eluzfz2 13264 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
4 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁))) |
5 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑀)) |
6 | | fvoveq1 7298 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾))) |
7 | 5, 6 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)))) |
8 | 4, 7 | imbi12d 345 |
. . . . 5
⊢ (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾))))) |
9 | 8 | imbi2d 341 |
. . . 4
⊢ (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)))))) |
10 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁))) |
11 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑛)) |
12 | | fvoveq1 7298 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))) |
13 | 11, 12 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))) |
14 | 10, 13 | imbi12d 345 |
. . . . 5
⊢ (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))))) |
15 | 14 | imbi2d 341 |
. . . 4
⊢ (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))))) |
16 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁))) |
17 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘(𝑛 + 1))) |
18 | | fvoveq1 7298 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))) |
19 | 17, 18 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)))) |
20 | 16, 19 | imbi12d 345 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))) |
21 | 20 | imbi2d 341 |
. . . 4
⊢ (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)))))) |
22 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁))) |
23 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑁)) |
24 | | fvoveq1 7298 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))) |
25 | 23, 24 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))) |
26 | 22, 25 | imbi12d 345 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))))) |
27 | 26 | imbi2d 341 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))))) |
28 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
29 | | fvoveq1 7298 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → (𝐺‘(𝑘 + 𝐾)) = (𝐺‘(𝑀 + 𝐾))) |
30 | 28, 29 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾)) ↔ (𝐹‘𝑀) = (𝐺‘(𝑀 + 𝐾)))) |
31 | | seqshft2.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾))) |
32 | 31 | ralrimiva 3103 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾))) |
33 | | eluzfz1 13263 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
34 | 1, 33 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
35 | 30, 32, 34 | rspcdva 3562 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑀) = (𝐺‘(𝑀 + 𝐾))) |
36 | | eluzel2 12587 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
37 | 1, 36 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
38 | | seq1 13734 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
39 | 37, 38 | syl 17 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
40 | | seqshft2.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ ℤ) |
41 | 37, 40 | zaddcld 12430 |
. . . . . . 7
⊢ (𝜑 → (𝑀 + 𝐾) ∈ ℤ) |
42 | | seq1 13734 |
. . . . . . 7
⊢ ((𝑀 + 𝐾) ∈ ℤ → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)) = (𝐺‘(𝑀 + 𝐾))) |
43 | 41, 42 | syl 17 |
. . . . . 6
⊢ (𝜑 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)) = (𝐺‘(𝑀 + 𝐾))) |
44 | 35, 39, 43 | 3eqtr4d 2788 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾))) |
45 | 44 | a1i13 27 |
. . . 4
⊢ (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾))))) |
46 | | peano2fzr 13269 |
. . . . . . . 8
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁)) |
47 | 46 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁)) |
48 | 47 | expr 457 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁))) |
49 | 48 | imim1d 82 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))))) |
50 | | oveq1 7282 |
. . . . . 6
⊢
((seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1)))) |
51 | | simprl 768 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
52 | | seqp1 13736 |
. . . . . . . 8
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
53 | 51, 52 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
54 | 40 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝐾 ∈ ℤ) |
55 | | eluzadd 12613 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑛 + 𝐾) ∈
(ℤ≥‘(𝑀 + 𝐾))) |
56 | 51, 54, 55 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 𝐾) ∈
(ℤ≥‘(𝑀 + 𝐾))) |
57 | | seqp1 13736 |
. . . . . . . . 9
⊢ ((𝑛 + 𝐾) ∈
(ℤ≥‘(𝑀 + 𝐾)) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 𝐾) + 1)) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1)))) |
58 | 56, 57 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 𝐾) + 1)) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1)))) |
59 | | eluzelz 12592 |
. . . . . . . . . . 11
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → 𝑛 ∈ ℤ) |
60 | 51, 59 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ ℤ) |
61 | | zcn 12324 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) |
62 | | zcn 12324 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℂ) |
63 | | ax-1cn 10929 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
64 | | add32 11193 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ ∧ 𝐾 ∈
ℂ) → ((𝑛 + 1) +
𝐾) = ((𝑛 + 𝐾) + 1)) |
65 | 63, 64 | mp3an2 1448 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1)) |
66 | 61, 62, 65 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1)) |
67 | 60, 54, 66 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1)) |
68 | 67 | fveq2d 6778 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 𝐾) + 1))) |
69 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
70 | | fvoveq1 7298 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑛 + 1) → (𝐺‘(𝑘 + 𝐾)) = (𝐺‘((𝑛 + 1) + 𝐾))) |
71 | 69, 70 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾)) ↔ (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾)))) |
72 | 32 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾))) |
73 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
74 | 71, 72, 73 | rspcdva 3562 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾))) |
75 | 67 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐺‘((𝑛 + 1) + 𝐾)) = (𝐺‘((𝑛 + 𝐾) + 1))) |
76 | 74, 75 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 𝐾) + 1))) |
77 | 76 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1)))) |
78 | 58, 68, 77 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1)))) |
79 | 53, 78 | eqeq12d 2754 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)) ↔ ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))))) |
80 | 50, 79 | syl5ibr 245 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)))) |
81 | 49, 80 | animpimp2impd 843 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)))))) |
82 | 9, 15, 21, 27, 45, 81 | uzind4 12646 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))))) |
83 | 1, 82 | mpcom 38 |
. 2
⊢ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))) |
84 | 3, 83 | mpd 15 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))) |