MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abbiOLD Structured version   Visualization version   GIF version

Theorem abbiOLD 2879
Description: Obsolete proof of abbi 2811 as of 7-Jan-2024. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
abbiOLD (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})

Proof of Theorem abbiOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 hbab1 2724 . . 3 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
2 hbab1 2724 . . 3 (𝑦 ∈ {𝑥𝜓} → ∀𝑥 𝑦 ∈ {𝑥𝜓})
31, 2cleqh 2862 . 2 ({𝑥𝜑} = {𝑥𝜓} ↔ ∀𝑥(𝑥 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {𝑥𝜓}))
4 abid 2719 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
5 abid 2719 . . . 4 (𝑥 ∈ {𝑥𝜓} ↔ 𝜓)
64, 5bibi12i 339 . . 3 ((𝑥 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {𝑥𝜓}) ↔ (𝜑𝜓))
76albii 1823 . 2 (∀𝑥(𝑥 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {𝑥𝜓}) ↔ ∀𝑥(𝜑𝜓))
83, 7bitr2i 275 1 (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537   = wceq 1539  wcel 2108  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator