Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abbi2i | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 26-May-1993.) Avoid ax-11 2156. (Revised by Wolf Lammen, 6-May-2023.) |
Ref | Expression |
---|---|
abbi2i.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Ref | Expression |
---|---|
abbi2i | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi2i.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
3 | 2 | abbi2dv 2876 | . 2 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
4 | 3 | mptru 1546 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: abid1 2880 cbvralcsf 3873 cbvreucsf 3875 cbvrabcsf 3876 dfsymdif4 4179 dfsymdif2 4181 dfpr2 4577 dftp2 4622 0iin 4989 pwpwab 5028 epse 5563 pwvabrel 5629 fv3 6774 fo1st 7824 fo2nd 7825 xp2 7841 tfrlem3 8180 ixpconstg 8652 ixp0x 8672 ruv 9291 dfom4 9337 cardnum 9781 alephiso 9785 nnzrab 12278 nn0zrab 12279 qnnen 15850 h2hcau 29242 dfch2 29670 hhcno 30167 hhcnf 30168 pjhmopidm 30446 bdayfo 33807 madeval2 33964 fobigcup 34129 dfsingles2 34150 dfrecs2 34179 dfrdg4 34180 dfint3 34181 bj-snglinv 35089 ecres 36340 dfdm6 36364 ruvALT 40096 dfuniv2 41809 compeq 41947 dfnrm2 46113 dfnrm3 46114 |
Copyright terms: Public domain | W3C validator |