Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abbi2i | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 26-May-1993.) Avoid ax-11 2155. (Revised by Wolf Lammen, 6-May-2023.) |
Ref | Expression |
---|---|
abbi2i.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Ref | Expression |
---|---|
abbi2i | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi2i.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
3 | 2 | abbi2dv 2878 | . 2 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
4 | 3 | mptru 1546 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 {cab 2716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 |
This theorem is referenced by: abid1 2882 cbvralcsf 3878 cbvreucsf 3880 cbvrabcsf 3881 dfsymdif4 4183 dfsymdif2 4185 dfpr2 4581 dftp2 4626 0iin 4994 pwpwab 5033 epse 5573 pwvabrel 5639 fv3 6801 fo1st 7860 fo2nd 7861 xp2 7877 tfrlem3 8218 ixpconstg 8703 ixp0x 8723 ruv 9370 dfom4 9416 cardnum 9859 alephiso 9863 nnzrab 12357 nn0zrab 12358 qnnen 15931 h2hcau 29350 dfch2 29778 hhcno 30275 hhcnf 30276 pjhmopidm 30554 bdayfo 33889 madeval2 34046 fobigcup 34211 dfsingles2 34232 dfrecs2 34261 dfrdg4 34262 dfint3 34263 bj-snglinv 35171 ecres 36421 dfdm6 36444 ruvALT 40175 dfuniv2 41927 compeq 42065 dfnrm2 46236 dfnrm3 46237 |
Copyright terms: Public domain | W3C validator |