![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abexd | Structured version Visualization version GIF version |
Description: Conditions for a class abstraction to be a set, deduction form. (Contributed by AV, 19-Apr-2025.) |
Ref | Expression |
---|---|
abexd.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) |
abexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
abexd | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abexd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | abexd.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) | |
3 | 2 | ex 412 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) |
4 | 3 | alrimiv 1927 | . . 3 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝑥 ∈ 𝐴)) |
5 | abss 4076 | . . 3 ⊢ ({𝑥 ∣ 𝜓} ⊆ 𝐴 ↔ ∀𝑥(𝜓 → 𝑥 ∈ 𝐴)) | |
6 | 4, 5 | sylibr 234 | . 2 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
7 | 1, 6 | ssexd 5333 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 {cab 2714 Vcvv 3481 ⊆ wss 3966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-rab 3437 df-v 3483 df-in 3973 df-ss 3983 |
This theorem is referenced by: upfval2 48855 |
Copyright terms: Public domain | W3C validator |