MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abexd Structured version   Visualization version   GIF version

Theorem abexd 5288
Description: Conditions for a class abstraction to be a set, deduction form. (Contributed by AV, 19-Apr-2025.)
Hypotheses
Ref Expression
abexd.1 ((𝜑𝜓) → 𝑥𝐴)
abexd.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
abexd (𝜑 → {𝑥𝜓} ∈ V)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem abexd
StepHypRef Expression
1 abexd.2 . 2 (𝜑𝐴𝑉)
2 abexd.1 . . . . 5 ((𝜑𝜓) → 𝑥𝐴)
32ex 412 . . . 4 (𝜑 → (𝜓𝑥𝐴))
43alrimiv 1927 . . 3 (𝜑 → ∀𝑥(𝜓𝑥𝐴))
5 abss 4034 . . 3 ({𝑥𝜓} ⊆ 𝐴 ↔ ∀𝑥(𝜓𝑥𝐴))
64, 5sylibr 234 . 2 (𝜑 → {𝑥𝜓} ⊆ 𝐴)
71, 6ssexd 5287 1 (𝜑 → {𝑥𝜓} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wcel 2109  {cab 2708  Vcvv 3455  wss 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-rab 3412  df-v 3457  df-in 3929  df-ss 3939
This theorem is referenced by:  upfval2  49085
  Copyright terms: Public domain W3C validator