MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abexd Structured version   Visualization version   GIF version

Theorem abexd 5343
Description: Conditions for a class abstraction to be a set, deduction form. (Contributed by AV, 19-Apr-2025.)
Hypotheses
Ref Expression
abexd.1 ((𝜑𝜓) → 𝑥𝐴)
abexd.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
abexd (𝜑 → {𝑥𝜓} ∈ V)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem abexd
StepHypRef Expression
1 abexd.2 . 2 (𝜑𝐴𝑉)
2 abexd.1 . . . . 5 ((𝜑𝜓) → 𝑥𝐴)
32ex 412 . . . 4 (𝜑 → (𝜓𝑥𝐴))
43alrimiv 1926 . . 3 (𝜑 → ∀𝑥(𝜓𝑥𝐴))
5 abss 4086 . . 3 ({𝑥𝜓} ⊆ 𝐴 ↔ ∀𝑥(𝜓𝑥𝐴))
64, 5sylibr 234 . 2 (𝜑 → {𝑥𝜓} ⊆ 𝐴)
71, 6ssexd 5342 1 (𝜑 → {𝑥𝜓} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535  wcel 2108  {cab 2717  Vcvv 3488  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator