| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abexd | Structured version Visualization version GIF version | ||
| Description: Conditions for a class abstraction to be a set, deduction form. (Contributed by AV, 19-Apr-2025.) |
| Ref | Expression |
|---|---|
| abexd.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) |
| abexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| abexd | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abexd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | abexd.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | ex 412 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) |
| 4 | 3 | alrimiv 1926 | . . 3 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝑥 ∈ 𝐴)) |
| 5 | abss 4045 | . . 3 ⊢ ({𝑥 ∣ 𝜓} ⊆ 𝐴 ↔ ∀𝑥(𝜓 → 𝑥 ∈ 𝐴)) | |
| 6 | 4, 5 | sylibr 234 | . 2 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
| 7 | 1, 6 | ssexd 5306 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∈ wcel 2107 {cab 2712 Vcvv 3464 ⊆ wss 3933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3421 df-v 3466 df-in 3940 df-ss 3950 |
| This theorem is referenced by: upfval2 48889 |
| Copyright terms: Public domain | W3C validator |