MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abexd Structured version   Visualization version   GIF version

Theorem abexd 5334
Description: Conditions for a class abstraction to be a set, deduction form. (Contributed by AV, 19-Apr-2025.)
Hypotheses
Ref Expression
abexd.1 ((𝜑𝜓) → 𝑥𝐴)
abexd.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
abexd (𝜑 → {𝑥𝜓} ∈ V)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem abexd
StepHypRef Expression
1 abexd.2 . 2 (𝜑𝐴𝑉)
2 abexd.1 . . . . 5 ((𝜑𝜓) → 𝑥𝐴)
32ex 412 . . . 4 (𝜑 → (𝜓𝑥𝐴))
43alrimiv 1927 . . 3 (𝜑 → ∀𝑥(𝜓𝑥𝐴))
5 abss 4076 . . 3 ({𝑥𝜓} ⊆ 𝐴 ↔ ∀𝑥(𝜓𝑥𝐴))
64, 5sylibr 234 . 2 (𝜑 → {𝑥𝜓} ⊆ 𝐴)
71, 6ssexd 5333 1 (𝜑 → {𝑥𝜓} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wcel 2108  {cab 2714  Vcvv 3481  wss 3966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-rab 3437  df-v 3483  df-in 3973  df-ss 3983
This theorem is referenced by:  upfval2  48855
  Copyright terms: Public domain W3C validator