Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upfval2 Structured version   Visualization version   GIF version

Theorem upfval2 49166
Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.)
Hypotheses
Ref Expression
upfval.b 𝐵 = (Base‘𝐷)
upfval.c 𝐶 = (Base‘𝐸)
upfval.h 𝐻 = (Hom ‘𝐷)
upfval.j 𝐽 = (Hom ‘𝐸)
upfval.o 𝑂 = (comp‘𝐸)
upfval2.w (𝜑𝑊𝐶)
upfval2.f (𝜑𝐹 ∈ (𝐷 Func 𝐸))
Assertion
Ref Expression
upfval2 (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
Distinct variable groups:   𝐵,𝑔,𝑘,𝑚,𝑥,𝑦   𝐶,𝑔,𝑘,𝑚,𝑥,𝑦   𝐷,𝑔,𝑘,𝑚,𝑥,𝑦   𝑔,𝐸,𝑘,𝑚,𝑥,𝑦   𝑔,𝐹,𝑘,𝑚,𝑥,𝑦   𝑔,𝐻,𝑘,𝑚,𝑥,𝑦   𝑔,𝐽,𝑘,𝑚,𝑥,𝑦   𝑔,𝑂,𝑘,𝑚,𝑥,𝑦   𝑔,𝑊,𝑘,𝑚,𝑥,𝑦   𝜑,𝑚,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑔,𝑘)

Proof of Theorem upfval2
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upfval2.f . 2 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
2 upfval2.w . 2 (𝜑𝑊𝐶)
3 anass 468 . . . 4 (((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)) ↔ (𝑥𝐵 ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))))
43opabbii 5174 . . 3 {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ (𝑥𝐵 ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))}
5 upfval.b . . . . . 6 𝐵 = (Base‘𝐷)
65fvexi 6872 . . . . 5 𝐵 ∈ V
76a1i 11 . . . 4 (𝜑𝐵 ∈ V)
8 simprl 770 . . . . 5 (((𝜑𝑥𝐵) ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))) → 𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)))
9 ovexd 7422 . . . . 5 ((𝜑𝑥𝐵) → (𝑊𝐽((1st𝐹)‘𝑥)) ∈ V)
108, 9abexd 5280 . . . 4 ((𝜑𝑥𝐵) → {𝑚 ∣ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} ∈ V)
117, 10opabex3d 7944 . . 3 (𝜑 → {⟨𝑥, 𝑚⟩ ∣ (𝑥𝐵 ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))} ∈ V)
124, 11eqeltrid 2832 . 2 (𝜑 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} ∈ V)
13 fveq2 6858 . . . . . . . . 9 (𝑓 = 𝐹 → (1st𝑓) = (1st𝐹))
1413fveq1d 6860 . . . . . . . 8 (𝑓 = 𝐹 → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑥))
1514oveq2d 7403 . . . . . . 7 (𝑓 = 𝐹 → (𝑤𝐽((1st𝑓)‘𝑥)) = (𝑤𝐽((1st𝐹)‘𝑥)))
1615eleq2d 2814 . . . . . 6 (𝑓 = 𝐹 → (𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥)) ↔ 𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))))
1716anbi2d 630 . . . . 5 (𝑓 = 𝐹 → ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥)))))
1813fveq1d 6860 . . . . . . . 8 (𝑓 = 𝐹 → ((1st𝑓)‘𝑦) = ((1st𝐹)‘𝑦))
1918oveq2d 7403 . . . . . . 7 (𝑓 = 𝐹 → (𝑤𝐽((1st𝑓)‘𝑦)) = (𝑤𝐽((1st𝐹)‘𝑦)))
2014opeq2d 4844 . . . . . . . . . . 11 (𝑓 = 𝐹 → ⟨𝑤, ((1st𝑓)‘𝑥)⟩ = ⟨𝑤, ((1st𝐹)‘𝑥)⟩)
2120, 18oveq12d 7405 . . . . . . . . . 10 (𝑓 = 𝐹 → (⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦)) = (⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦)))
22 fveq2 6858 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (2nd𝑓) = (2nd𝐹))
2322oveqd 7404 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑥(2nd𝑓)𝑦) = (𝑥(2nd𝐹)𝑦))
2423fveq1d 6860 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑥(2nd𝑓)𝑦)‘𝑘) = ((𝑥(2nd𝐹)𝑦)‘𝑘))
25 eqidd 2730 . . . . . . . . . 10 (𝑓 = 𝐹𝑚 = 𝑚)
2621, 24, 25oveq123d 7408 . . . . . . . . 9 (𝑓 = 𝐹 → (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))
2726eqeq2d 2740 . . . . . . . 8 (𝑓 = 𝐹 → (𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
2827reubidv 3372 . . . . . . 7 (𝑓 = 𝐹 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
2919, 28raleqbidv 3319 . . . . . 6 (𝑓 = 𝐹 → (∀𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
3029ralbidv 3156 . . . . 5 (𝑓 = 𝐹 → (∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
3117, 30anbi12d 632 . . . 4 (𝑓 = 𝐹 → (((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))))
3231opabbidv 5173 . . 3 (𝑓 = 𝐹 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
33 oveq1 7394 . . . . . . 7 (𝑤 = 𝑊 → (𝑤𝐽((1st𝐹)‘𝑥)) = (𝑊𝐽((1st𝐹)‘𝑥)))
3433eleq2d 2814 . . . . . 6 (𝑤 = 𝑊 → (𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥)) ↔ 𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))))
3534anbi2d 630 . . . . 5 (𝑤 = 𝑊 → ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)))))
36 oveq1 7394 . . . . . . 7 (𝑤 = 𝑊 → (𝑤𝐽((1st𝐹)‘𝑦)) = (𝑊𝐽((1st𝐹)‘𝑦)))
37 opeq1 4837 . . . . . . . . . . 11 (𝑤 = 𝑊 → ⟨𝑤, ((1st𝐹)‘𝑥)⟩ = ⟨𝑊, ((1st𝐹)‘𝑥)⟩)
3837oveq1d 7402 . . . . . . . . . 10 (𝑤 = 𝑊 → (⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦)) = (⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦)))
3938oveqd 7404 . . . . . . . . 9 (𝑤 = 𝑊 → (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))
4039eqeq2d 2740 . . . . . . . 8 (𝑤 = 𝑊 → (𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4140reubidv 3372 . . . . . . 7 (𝑤 = 𝑊 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4236, 41raleqbidv 3319 . . . . . 6 (𝑤 = 𝑊 → (∀𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4342ralbidv 3156 . . . . 5 (𝑤 = 𝑊 → (∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4435, 43anbi12d 632 . . . 4 (𝑤 = 𝑊 → (((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))))
4544opabbidv 5173 . . 3 (𝑤 = 𝑊 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
46 upfval.c . . . 4 𝐶 = (Base‘𝐸)
47 upfval.h . . . 4 𝐻 = (Hom ‘𝐷)
48 upfval.j . . . 4 𝐽 = (Hom ‘𝐸)
49 upfval.o . . . 4 𝑂 = (comp‘𝐸)
505, 46, 47, 48, 49upfval 49165 . . 3 (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))})
5132, 45, 50ovmpog 7548 . 2 ((𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊𝐶 ∧ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} ∈ V) → (𝐹(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
521, 2, 12, 51syl3anc 1373 1 (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3352  Vcvv 3447  cop 4595  {copab 5169  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  Hom chom 17231  compcco 17232   Func cfunc 17816   UP cup 49162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-func 17820  df-up 49163
This theorem is referenced by:  upfval3  49167
  Copyright terms: Public domain W3C validator