Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upfval2 Structured version   Visualization version   GIF version

Theorem upfval2 48889
Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.)
Hypotheses
Ref Expression
upfval.b 𝐵 = (Base‘𝐷)
upfval.c 𝐶 = (Base‘𝐸)
upfval.h 𝐻 = (Hom ‘𝐷)
upfval.j 𝐽 = (Hom ‘𝐸)
upfval.o 𝑂 = (comp‘𝐸)
upfval2.w (𝜑𝑊𝐶)
upfval2.f (𝜑𝐹 ∈ (𝐷 Func 𝐸))
Assertion
Ref Expression
upfval2 (𝜑 → (𝐹(𝐷UP𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
Distinct variable groups:   𝐵,𝑔,𝑘,𝑚,𝑥,𝑦   𝐶,𝑔,𝑘,𝑚,𝑥,𝑦   𝐷,𝑔,𝑘,𝑚,𝑥,𝑦   𝑔,𝐸,𝑘,𝑚,𝑥,𝑦   𝑔,𝐹,𝑘,𝑚,𝑥,𝑦   𝑔,𝐻,𝑘,𝑚,𝑥,𝑦   𝑔,𝐽,𝑘,𝑚,𝑥,𝑦   𝑔,𝑂,𝑘,𝑚,𝑥,𝑦   𝑔,𝑊,𝑘,𝑚,𝑥,𝑦   𝜑,𝑚,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑔,𝑘)

Proof of Theorem upfval2
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upfval2.f . 2 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
2 upfval2.w . 2 (𝜑𝑊𝐶)
3 anass 468 . . . 4 (((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)) ↔ (𝑥𝐵 ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))))
43opabbii 5192 . . 3 {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ (𝑥𝐵 ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))}
5 upfval.b . . . . . 6 𝐵 = (Base‘𝐷)
65fvexi 6901 . . . . 5 𝐵 ∈ V
76a1i 11 . . . 4 (𝜑𝐵 ∈ V)
8 simprl 770 . . . . 5 (((𝜑𝑥𝐵) ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))) → 𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)))
9 ovexd 7449 . . . . 5 ((𝜑𝑥𝐵) → (𝑊𝐽((1st𝐹)‘𝑥)) ∈ V)
108, 9abexd 5307 . . . 4 ((𝜑𝑥𝐵) → {𝑚 ∣ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} ∈ V)
117, 10opabex3d 7973 . . 3 (𝜑 → {⟨𝑥, 𝑚⟩ ∣ (𝑥𝐵 ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))} ∈ V)
124, 11eqeltrid 2837 . 2 (𝜑 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} ∈ V)
13 fveq2 6887 . . . . . . . . 9 (𝑓 = 𝐹 → (1st𝑓) = (1st𝐹))
1413fveq1d 6889 . . . . . . . 8 (𝑓 = 𝐹 → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑥))
1514oveq2d 7430 . . . . . . 7 (𝑓 = 𝐹 → (𝑤𝐽((1st𝑓)‘𝑥)) = (𝑤𝐽((1st𝐹)‘𝑥)))
1615eleq2d 2819 . . . . . 6 (𝑓 = 𝐹 → (𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥)) ↔ 𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))))
1716anbi2d 630 . . . . 5 (𝑓 = 𝐹 → ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥)))))
1813fveq1d 6889 . . . . . . . 8 (𝑓 = 𝐹 → ((1st𝑓)‘𝑦) = ((1st𝐹)‘𝑦))
1918oveq2d 7430 . . . . . . 7 (𝑓 = 𝐹 → (𝑤𝐽((1st𝑓)‘𝑦)) = (𝑤𝐽((1st𝐹)‘𝑦)))
2014opeq2d 4862 . . . . . . . . . . 11 (𝑓 = 𝐹 → ⟨𝑤, ((1st𝑓)‘𝑥)⟩ = ⟨𝑤, ((1st𝐹)‘𝑥)⟩)
2120, 18oveq12d 7432 . . . . . . . . . 10 (𝑓 = 𝐹 → (⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦)) = (⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦)))
22 fveq2 6887 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (2nd𝑓) = (2nd𝐹))
2322oveqd 7431 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑥(2nd𝑓)𝑦) = (𝑥(2nd𝐹)𝑦))
2423fveq1d 6889 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑥(2nd𝑓)𝑦)‘𝑘) = ((𝑥(2nd𝐹)𝑦)‘𝑘))
25 eqidd 2735 . . . . . . . . . 10 (𝑓 = 𝐹𝑚 = 𝑚)
2621, 24, 25oveq123d 7435 . . . . . . . . 9 (𝑓 = 𝐹 → (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))
2726eqeq2d 2745 . . . . . . . 8 (𝑓 = 𝐹 → (𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
2827reubidv 3382 . . . . . . 7 (𝑓 = 𝐹 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
2919, 28raleqbidv 3330 . . . . . 6 (𝑓 = 𝐹 → (∀𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
3029ralbidv 3165 . . . . 5 (𝑓 = 𝐹 → (∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
3117, 30anbi12d 632 . . . 4 (𝑓 = 𝐹 → (((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))))
3231opabbidv 5191 . . 3 (𝑓 = 𝐹 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
33 oveq1 7421 . . . . . . 7 (𝑤 = 𝑊 → (𝑤𝐽((1st𝐹)‘𝑥)) = (𝑊𝐽((1st𝐹)‘𝑥)))
3433eleq2d 2819 . . . . . 6 (𝑤 = 𝑊 → (𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥)) ↔ 𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))))
3534anbi2d 630 . . . . 5 (𝑤 = 𝑊 → ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)))))
36 oveq1 7421 . . . . . . 7 (𝑤 = 𝑊 → (𝑤𝐽((1st𝐹)‘𝑦)) = (𝑊𝐽((1st𝐹)‘𝑦)))
37 opeq1 4855 . . . . . . . . . . 11 (𝑤 = 𝑊 → ⟨𝑤, ((1st𝐹)‘𝑥)⟩ = ⟨𝑊, ((1st𝐹)‘𝑥)⟩)
3837oveq1d 7429 . . . . . . . . . 10 (𝑤 = 𝑊 → (⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦)) = (⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦)))
3938oveqd 7431 . . . . . . . . 9 (𝑤 = 𝑊 → (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))
4039eqeq2d 2745 . . . . . . . 8 (𝑤 = 𝑊 → (𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4140reubidv 3382 . . . . . . 7 (𝑤 = 𝑊 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4236, 41raleqbidv 3330 . . . . . 6 (𝑤 = 𝑊 → (∀𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4342ralbidv 3165 . . . . 5 (𝑤 = 𝑊 → (∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4435, 43anbi12d 632 . . . 4 (𝑤 = 𝑊 → (((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))))
4544opabbidv 5191 . . 3 (𝑤 = 𝑊 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
46 upfval.c . . . 4 𝐶 = (Base‘𝐸)
47 upfval.h . . . 4 𝐻 = (Hom ‘𝐷)
48 upfval.j . . . 4 𝐽 = (Hom ‘𝐸)
49 upfval.o . . . 4 𝑂 = (comp‘𝐸)
505, 46, 47, 48, 49upfval 48888 . . 3 (𝐷UP𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))})
5132, 45, 50ovmpog 7575 . 2 ((𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊𝐶 ∧ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} ∈ V) → (𝐹(𝐷UP𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
521, 2, 12, 51syl3anc 1372 1 (𝜑 → (𝐹(𝐷UP𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  ∃!wreu 3362  Vcvv 3464  cop 4614  {copab 5187  cfv 6542  (class class class)co 7414  1st c1st 7995  2nd c2nd 7996  Basecbs 17230  Hom chom 17285  compcco 17286   Func cfunc 17871  UPcup 48885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-func 17875  df-up 48886
This theorem is referenced by:  upfval3  48890
  Copyright terms: Public domain W3C validator