Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upfval2 Structured version   Visualization version   GIF version

Theorem upfval2 49302
Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.)
Hypotheses
Ref Expression
upfval.b 𝐵 = (Base‘𝐷)
upfval.c 𝐶 = (Base‘𝐸)
upfval.h 𝐻 = (Hom ‘𝐷)
upfval.j 𝐽 = (Hom ‘𝐸)
upfval.o 𝑂 = (comp‘𝐸)
upfval2.w (𝜑𝑊𝐶)
upfval2.f (𝜑𝐹 ∈ (𝐷 Func 𝐸))
Assertion
Ref Expression
upfval2 (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
Distinct variable groups:   𝐵,𝑔,𝑘,𝑚,𝑥,𝑦   𝐶,𝑔,𝑘,𝑚,𝑥,𝑦   𝐷,𝑔,𝑘,𝑚,𝑥,𝑦   𝑔,𝐸,𝑘,𝑚,𝑥,𝑦   𝑔,𝐹,𝑘,𝑚,𝑥,𝑦   𝑔,𝐻,𝑘,𝑚,𝑥,𝑦   𝑔,𝐽,𝑘,𝑚,𝑥,𝑦   𝑔,𝑂,𝑘,𝑚,𝑥,𝑦   𝑔,𝑊,𝑘,𝑚,𝑥,𝑦   𝜑,𝑚,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑔,𝑘)

Proof of Theorem upfval2
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upfval2.f . 2 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
2 upfval2.w . 2 (𝜑𝑊𝐶)
3 anass 468 . . . 4 (((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)) ↔ (𝑥𝐵 ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))))
43opabbii 5160 . . 3 {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ (𝑥𝐵 ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))}
5 upfval.b . . . . . 6 𝐵 = (Base‘𝐷)
65fvexi 6842 . . . . 5 𝐵 ∈ V
76a1i 11 . . . 4 (𝜑𝐵 ∈ V)
8 simprl 770 . . . . 5 (((𝜑𝑥𝐵) ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))) → 𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)))
9 ovexd 7387 . . . . 5 ((𝜑𝑥𝐵) → (𝑊𝐽((1st𝐹)‘𝑥)) ∈ V)
108, 9abexd 5265 . . . 4 ((𝜑𝑥𝐵) → {𝑚 ∣ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} ∈ V)
117, 10opabex3d 7903 . . 3 (𝜑 → {⟨𝑥, 𝑚⟩ ∣ (𝑥𝐵 ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))} ∈ V)
124, 11eqeltrid 2837 . 2 (𝜑 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} ∈ V)
13 fveq2 6828 . . . . . . . . 9 (𝑓 = 𝐹 → (1st𝑓) = (1st𝐹))
1413fveq1d 6830 . . . . . . . 8 (𝑓 = 𝐹 → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑥))
1514oveq2d 7368 . . . . . . 7 (𝑓 = 𝐹 → (𝑤𝐽((1st𝑓)‘𝑥)) = (𝑤𝐽((1st𝐹)‘𝑥)))
1615eleq2d 2819 . . . . . 6 (𝑓 = 𝐹 → (𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥)) ↔ 𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))))
1716anbi2d 630 . . . . 5 (𝑓 = 𝐹 → ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥)))))
1813fveq1d 6830 . . . . . . . 8 (𝑓 = 𝐹 → ((1st𝑓)‘𝑦) = ((1st𝐹)‘𝑦))
1918oveq2d 7368 . . . . . . 7 (𝑓 = 𝐹 → (𝑤𝐽((1st𝑓)‘𝑦)) = (𝑤𝐽((1st𝐹)‘𝑦)))
2014opeq2d 4831 . . . . . . . . . . 11 (𝑓 = 𝐹 → ⟨𝑤, ((1st𝑓)‘𝑥)⟩ = ⟨𝑤, ((1st𝐹)‘𝑥)⟩)
2120, 18oveq12d 7370 . . . . . . . . . 10 (𝑓 = 𝐹 → (⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦)) = (⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦)))
22 fveq2 6828 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (2nd𝑓) = (2nd𝐹))
2322oveqd 7369 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑥(2nd𝑓)𝑦) = (𝑥(2nd𝐹)𝑦))
2423fveq1d 6830 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑥(2nd𝑓)𝑦)‘𝑘) = ((𝑥(2nd𝐹)𝑦)‘𝑘))
25 eqidd 2734 . . . . . . . . . 10 (𝑓 = 𝐹𝑚 = 𝑚)
2621, 24, 25oveq123d 7373 . . . . . . . . 9 (𝑓 = 𝐹 → (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))
2726eqeq2d 2744 . . . . . . . 8 (𝑓 = 𝐹 → (𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
2827reubidv 3363 . . . . . . 7 (𝑓 = 𝐹 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
2919, 28raleqbidv 3313 . . . . . 6 (𝑓 = 𝐹 → (∀𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
3029ralbidv 3156 . . . . 5 (𝑓 = 𝐹 → (∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
3117, 30anbi12d 632 . . . 4 (𝑓 = 𝐹 → (((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))))
3231opabbidv 5159 . . 3 (𝑓 = 𝐹 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
33 oveq1 7359 . . . . . . 7 (𝑤 = 𝑊 → (𝑤𝐽((1st𝐹)‘𝑥)) = (𝑊𝐽((1st𝐹)‘𝑥)))
3433eleq2d 2819 . . . . . 6 (𝑤 = 𝑊 → (𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥)) ↔ 𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))))
3534anbi2d 630 . . . . 5 (𝑤 = 𝑊 → ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)))))
36 oveq1 7359 . . . . . . 7 (𝑤 = 𝑊 → (𝑤𝐽((1st𝐹)‘𝑦)) = (𝑊𝐽((1st𝐹)‘𝑦)))
37 opeq1 4824 . . . . . . . . . . 11 (𝑤 = 𝑊 → ⟨𝑤, ((1st𝐹)‘𝑥)⟩ = ⟨𝑊, ((1st𝐹)‘𝑥)⟩)
3837oveq1d 7367 . . . . . . . . . 10 (𝑤 = 𝑊 → (⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦)) = (⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦)))
3938oveqd 7369 . . . . . . . . 9 (𝑤 = 𝑊 → (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))
4039eqeq2d 2744 . . . . . . . 8 (𝑤 = 𝑊 → (𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4140reubidv 3363 . . . . . . 7 (𝑤 = 𝑊 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4236, 41raleqbidv 3313 . . . . . 6 (𝑤 = 𝑊 → (∀𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4342ralbidv 3156 . . . . 5 (𝑤 = 𝑊 → (∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4435, 43anbi12d 632 . . . 4 (𝑤 = 𝑊 → (((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))))
4544opabbidv 5159 . . 3 (𝑤 = 𝑊 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
46 upfval.c . . . 4 𝐶 = (Base‘𝐸)
47 upfval.h . . . 4 𝐻 = (Hom ‘𝐷)
48 upfval.j . . . 4 𝐽 = (Hom ‘𝐸)
49 upfval.o . . . 4 𝑂 = (comp‘𝐸)
505, 46, 47, 48, 49upfval 49301 . . 3 (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))})
5132, 45, 50ovmpog 7511 . 2 ((𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊𝐶 ∧ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} ∈ V) → (𝐹(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
521, 2, 12, 51syl3anc 1373 1 (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  ∃!wreu 3345  Vcvv 3437  cop 4581  {copab 5155  cfv 6486  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  Basecbs 17122  Hom chom 17174  compcco 17175   Func cfunc 17763   UP cup 49298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-func 17767  df-up 49299
This theorem is referenced by:  upfval3  49303
  Copyright terms: Public domain W3C validator