Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upfval2 Structured version   Visualization version   GIF version

Theorem upfval2 49208
Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.)
Hypotheses
Ref Expression
upfval.b 𝐵 = (Base‘𝐷)
upfval.c 𝐶 = (Base‘𝐸)
upfval.h 𝐻 = (Hom ‘𝐷)
upfval.j 𝐽 = (Hom ‘𝐸)
upfval.o 𝑂 = (comp‘𝐸)
upfval2.w (𝜑𝑊𝐶)
upfval2.f (𝜑𝐹 ∈ (𝐷 Func 𝐸))
Assertion
Ref Expression
upfval2 (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
Distinct variable groups:   𝐵,𝑔,𝑘,𝑚,𝑥,𝑦   𝐶,𝑔,𝑘,𝑚,𝑥,𝑦   𝐷,𝑔,𝑘,𝑚,𝑥,𝑦   𝑔,𝐸,𝑘,𝑚,𝑥,𝑦   𝑔,𝐹,𝑘,𝑚,𝑥,𝑦   𝑔,𝐻,𝑘,𝑚,𝑥,𝑦   𝑔,𝐽,𝑘,𝑚,𝑥,𝑦   𝑔,𝑂,𝑘,𝑚,𝑥,𝑦   𝑔,𝑊,𝑘,𝑚,𝑥,𝑦   𝜑,𝑚,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑔,𝑘)

Proof of Theorem upfval2
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upfval2.f . 2 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
2 upfval2.w . 2 (𝜑𝑊𝐶)
3 anass 468 . . . 4 (((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)) ↔ (𝑥𝐵 ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))))
43opabbii 5158 . . 3 {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ (𝑥𝐵 ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))}
5 upfval.b . . . . . 6 𝐵 = (Base‘𝐷)
65fvexi 6836 . . . . 5 𝐵 ∈ V
76a1i 11 . . . 4 (𝜑𝐵 ∈ V)
8 simprl 770 . . . . 5 (((𝜑𝑥𝐵) ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))) → 𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)))
9 ovexd 7381 . . . . 5 ((𝜑𝑥𝐵) → (𝑊𝐽((1st𝐹)‘𝑥)) ∈ V)
108, 9abexd 5263 . . . 4 ((𝜑𝑥𝐵) → {𝑚 ∣ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} ∈ V)
117, 10opabex3d 7897 . . 3 (𝜑 → {⟨𝑥, 𝑚⟩ ∣ (𝑥𝐵 ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))} ∈ V)
124, 11eqeltrid 2835 . 2 (𝜑 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} ∈ V)
13 fveq2 6822 . . . . . . . . 9 (𝑓 = 𝐹 → (1st𝑓) = (1st𝐹))
1413fveq1d 6824 . . . . . . . 8 (𝑓 = 𝐹 → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑥))
1514oveq2d 7362 . . . . . . 7 (𝑓 = 𝐹 → (𝑤𝐽((1st𝑓)‘𝑥)) = (𝑤𝐽((1st𝐹)‘𝑥)))
1615eleq2d 2817 . . . . . 6 (𝑓 = 𝐹 → (𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥)) ↔ 𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))))
1716anbi2d 630 . . . . 5 (𝑓 = 𝐹 → ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥)))))
1813fveq1d 6824 . . . . . . . 8 (𝑓 = 𝐹 → ((1st𝑓)‘𝑦) = ((1st𝐹)‘𝑦))
1918oveq2d 7362 . . . . . . 7 (𝑓 = 𝐹 → (𝑤𝐽((1st𝑓)‘𝑦)) = (𝑤𝐽((1st𝐹)‘𝑦)))
2014opeq2d 4832 . . . . . . . . . . 11 (𝑓 = 𝐹 → ⟨𝑤, ((1st𝑓)‘𝑥)⟩ = ⟨𝑤, ((1st𝐹)‘𝑥)⟩)
2120, 18oveq12d 7364 . . . . . . . . . 10 (𝑓 = 𝐹 → (⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦)) = (⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦)))
22 fveq2 6822 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (2nd𝑓) = (2nd𝐹))
2322oveqd 7363 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑥(2nd𝑓)𝑦) = (𝑥(2nd𝐹)𝑦))
2423fveq1d 6824 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑥(2nd𝑓)𝑦)‘𝑘) = ((𝑥(2nd𝐹)𝑦)‘𝑘))
25 eqidd 2732 . . . . . . . . . 10 (𝑓 = 𝐹𝑚 = 𝑚)
2621, 24, 25oveq123d 7367 . . . . . . . . 9 (𝑓 = 𝐹 → (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))
2726eqeq2d 2742 . . . . . . . 8 (𝑓 = 𝐹 → (𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
2827reubidv 3362 . . . . . . 7 (𝑓 = 𝐹 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
2919, 28raleqbidv 3312 . . . . . 6 (𝑓 = 𝐹 → (∀𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
3029ralbidv 3155 . . . . 5 (𝑓 = 𝐹 → (∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
3117, 30anbi12d 632 . . . 4 (𝑓 = 𝐹 → (((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))))
3231opabbidv 5157 . . 3 (𝑓 = 𝐹 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
33 oveq1 7353 . . . . . . 7 (𝑤 = 𝑊 → (𝑤𝐽((1st𝐹)‘𝑥)) = (𝑊𝐽((1st𝐹)‘𝑥)))
3433eleq2d 2817 . . . . . 6 (𝑤 = 𝑊 → (𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥)) ↔ 𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))))
3534anbi2d 630 . . . . 5 (𝑤 = 𝑊 → ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)))))
36 oveq1 7353 . . . . . . 7 (𝑤 = 𝑊 → (𝑤𝐽((1st𝐹)‘𝑦)) = (𝑊𝐽((1st𝐹)‘𝑦)))
37 opeq1 4825 . . . . . . . . . . 11 (𝑤 = 𝑊 → ⟨𝑤, ((1st𝐹)‘𝑥)⟩ = ⟨𝑊, ((1st𝐹)‘𝑥)⟩)
3837oveq1d 7361 . . . . . . . . . 10 (𝑤 = 𝑊 → (⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦)) = (⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦)))
3938oveqd 7363 . . . . . . . . 9 (𝑤 = 𝑊 → (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))
4039eqeq2d 2742 . . . . . . . 8 (𝑤 = 𝑊 → (𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4140reubidv 3362 . . . . . . 7 (𝑤 = 𝑊 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4236, 41raleqbidv 3312 . . . . . 6 (𝑤 = 𝑊 → (∀𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4342ralbidv 3155 . . . . 5 (𝑤 = 𝑊 → (∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4435, 43anbi12d 632 . . . 4 (𝑤 = 𝑊 → (((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))))
4544opabbidv 5157 . . 3 (𝑤 = 𝑊 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
46 upfval.c . . . 4 𝐶 = (Base‘𝐸)
47 upfval.h . . . 4 𝐻 = (Hom ‘𝐷)
48 upfval.j . . . 4 𝐽 = (Hom ‘𝐸)
49 upfval.o . . . 4 𝑂 = (comp‘𝐸)
505, 46, 47, 48, 49upfval 49207 . . 3 (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))})
5132, 45, 50ovmpog 7505 . 2 ((𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊𝐶 ∧ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} ∈ V) → (𝐹(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
521, 2, 12, 51syl3anc 1373 1 (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  ∃!wreu 3344  Vcvv 3436  cop 4582  {copab 5153  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Basecbs 17117  Hom chom 17169  compcco 17170   Func cfunc 17758   UP cup 49204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-func 17762  df-up 49205
This theorem is referenced by:  upfval3  49209
  Copyright terms: Public domain W3C validator