Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upfval2 Structured version   Visualization version   GIF version

Theorem upfval2 49085
Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.)
Hypotheses
Ref Expression
upfval.b 𝐵 = (Base‘𝐷)
upfval.c 𝐶 = (Base‘𝐸)
upfval.h 𝐻 = (Hom ‘𝐷)
upfval.j 𝐽 = (Hom ‘𝐸)
upfval.o 𝑂 = (comp‘𝐸)
upfval2.w (𝜑𝑊𝐶)
upfval2.f (𝜑𝐹 ∈ (𝐷 Func 𝐸))
Assertion
Ref Expression
upfval2 (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
Distinct variable groups:   𝐵,𝑔,𝑘,𝑚,𝑥,𝑦   𝐶,𝑔,𝑘,𝑚,𝑥,𝑦   𝐷,𝑔,𝑘,𝑚,𝑥,𝑦   𝑔,𝐸,𝑘,𝑚,𝑥,𝑦   𝑔,𝐹,𝑘,𝑚,𝑥,𝑦   𝑔,𝐻,𝑘,𝑚,𝑥,𝑦   𝑔,𝐽,𝑘,𝑚,𝑥,𝑦   𝑔,𝑂,𝑘,𝑚,𝑥,𝑦   𝑔,𝑊,𝑘,𝑚,𝑥,𝑦   𝜑,𝑚,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑔,𝑘)

Proof of Theorem upfval2
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upfval2.f . 2 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
2 upfval2.w . 2 (𝜑𝑊𝐶)
3 anass 468 . . . 4 (((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)) ↔ (𝑥𝐵 ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))))
43opabbii 5182 . . 3 {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ (𝑥𝐵 ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))}
5 upfval.b . . . . . 6 𝐵 = (Base‘𝐷)
65fvexi 6879 . . . . 5 𝐵 ∈ V
76a1i 11 . . . 4 (𝜑𝐵 ∈ V)
8 simprl 770 . . . . 5 (((𝜑𝑥𝐵) ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))) → 𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)))
9 ovexd 7429 . . . . 5 ((𝜑𝑥𝐵) → (𝑊𝐽((1st𝐹)‘𝑥)) ∈ V)
108, 9abexd 5288 . . . 4 ((𝜑𝑥𝐵) → {𝑚 ∣ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} ∈ V)
117, 10opabex3d 7953 . . 3 (𝜑 → {⟨𝑥, 𝑚⟩ ∣ (𝑥𝐵 ∧ (𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))} ∈ V)
124, 11eqeltrid 2833 . 2 (𝜑 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} ∈ V)
13 fveq2 6865 . . . . . . . . 9 (𝑓 = 𝐹 → (1st𝑓) = (1st𝐹))
1413fveq1d 6867 . . . . . . . 8 (𝑓 = 𝐹 → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑥))
1514oveq2d 7410 . . . . . . 7 (𝑓 = 𝐹 → (𝑤𝐽((1st𝑓)‘𝑥)) = (𝑤𝐽((1st𝐹)‘𝑥)))
1615eleq2d 2815 . . . . . 6 (𝑓 = 𝐹 → (𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥)) ↔ 𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))))
1716anbi2d 630 . . . . 5 (𝑓 = 𝐹 → ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥)))))
1813fveq1d 6867 . . . . . . . 8 (𝑓 = 𝐹 → ((1st𝑓)‘𝑦) = ((1st𝐹)‘𝑦))
1918oveq2d 7410 . . . . . . 7 (𝑓 = 𝐹 → (𝑤𝐽((1st𝑓)‘𝑦)) = (𝑤𝐽((1st𝐹)‘𝑦)))
2014opeq2d 4852 . . . . . . . . . . 11 (𝑓 = 𝐹 → ⟨𝑤, ((1st𝑓)‘𝑥)⟩ = ⟨𝑤, ((1st𝐹)‘𝑥)⟩)
2120, 18oveq12d 7412 . . . . . . . . . 10 (𝑓 = 𝐹 → (⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦)) = (⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦)))
22 fveq2 6865 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (2nd𝑓) = (2nd𝐹))
2322oveqd 7411 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑥(2nd𝑓)𝑦) = (𝑥(2nd𝐹)𝑦))
2423fveq1d 6867 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑥(2nd𝑓)𝑦)‘𝑘) = ((𝑥(2nd𝐹)𝑦)‘𝑘))
25 eqidd 2731 . . . . . . . . . 10 (𝑓 = 𝐹𝑚 = 𝑚)
2621, 24, 25oveq123d 7415 . . . . . . . . 9 (𝑓 = 𝐹 → (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))
2726eqeq2d 2741 . . . . . . . 8 (𝑓 = 𝐹 → (𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
2827reubidv 3375 . . . . . . 7 (𝑓 = 𝐹 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
2919, 28raleqbidv 3322 . . . . . 6 (𝑓 = 𝐹 → (∀𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
3029ralbidv 3158 . . . . 5 (𝑓 = 𝐹 → (∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
3117, 30anbi12d 632 . . . 4 (𝑓 = 𝐹 → (((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))))
3231opabbidv 5181 . . 3 (𝑓 = 𝐹 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
33 oveq1 7401 . . . . . . 7 (𝑤 = 𝑊 → (𝑤𝐽((1st𝐹)‘𝑥)) = (𝑊𝐽((1st𝐹)‘𝑥)))
3433eleq2d 2815 . . . . . 6 (𝑤 = 𝑊 → (𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥)) ↔ 𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))))
3534anbi2d 630 . . . . 5 (𝑤 = 𝑊 → ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥)))))
36 oveq1 7401 . . . . . . 7 (𝑤 = 𝑊 → (𝑤𝐽((1st𝐹)‘𝑦)) = (𝑊𝐽((1st𝐹)‘𝑦)))
37 opeq1 4845 . . . . . . . . . . 11 (𝑤 = 𝑊 → ⟨𝑤, ((1st𝐹)‘𝑥)⟩ = ⟨𝑊, ((1st𝐹)‘𝑥)⟩)
3837oveq1d 7409 . . . . . . . . . 10 (𝑤 = 𝑊 → (⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦)) = (⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦)))
3938oveqd 7411 . . . . . . . . 9 (𝑤 = 𝑊 → (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))
4039eqeq2d 2741 . . . . . . . 8 (𝑤 = 𝑊 → (𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4140reubidv 3375 . . . . . . 7 (𝑤 = 𝑊 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4236, 41raleqbidv 3322 . . . . . 6 (𝑤 = 𝑊 → (∀𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4342ralbidv 3158 . . . . 5 (𝑤 = 𝑊 → (∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)))
4435, 43anbi12d 632 . . . 4 (𝑤 = 𝑊 → (((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))))
4544opabbidv 5181 . . 3 (𝑤 = 𝑊 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑤, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
46 upfval.c . . . 4 𝐶 = (Base‘𝐸)
47 upfval.h . . . 4 𝐻 = (Hom ‘𝐷)
48 upfval.j . . . 4 𝐽 = (Hom ‘𝐸)
49 upfval.o . . . 4 𝑂 = (comp‘𝐸)
505, 46, 47, 48, 49upfval 49084 . . 3 (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))})
5132, 45, 50ovmpog 7555 . 2 ((𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊𝐶 ∧ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))} ∈ V) → (𝐹(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
521, 2, 12, 51syl3anc 1373 1 (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st𝐹)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝐹)𝑦)‘𝑘)(⟨𝑊, ((1st𝐹)‘𝑥)⟩𝑂((1st𝐹)‘𝑦))𝑚))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3046  ∃!wreu 3355  Vcvv 3455  cop 4603  {copab 5177  cfv 6519  (class class class)co 7394  1st c1st 7975  2nd c2nd 7976  Basecbs 17185  Hom chom 17237  compcco 17238   Func cfunc 17822   UP cup 49081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-func 17826  df-up 49082
This theorem is referenced by:  upfval3  49086
  Copyright terms: Public domain W3C validator