| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abex | Structured version Visualization version GIF version | ||
| Description: Conditions for a class abstraction to be a set. Remark: This proof is shorter than a proof using abexd 5261. (Contributed by AV, 19-Apr-2025.) |
| Ref | Expression |
|---|---|
| abex.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| abex.2 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| abex | ⊢ {𝑥 ∣ 𝜑} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abex.2 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | abss 4009 | . . 3 ⊢ ({𝑥 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) | |
| 3 | abex.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 4 | 2, 3 | mpgbir 1800 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
| 5 | 1, 4 | ssexi 5258 | 1 ⊢ {𝑥 ∣ 𝜑} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 {cab 2709 Vcvv 3436 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 |
| This theorem is referenced by: grimfn 47918 isgrim 47921 |
| Copyright terms: Public domain | W3C validator |