MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abex Structured version   Visualization version   GIF version

Theorem abex 5344
Description: Conditions for a class abstraction to be a set. Remark: This proof is shorter than a proof using abexd 5343. (Contributed by AV, 19-Apr-2025.)
Hypotheses
Ref Expression
abex.1 (𝜑𝑥𝐴)
abex.2 𝐴 ∈ V
Assertion
Ref Expression
abex {𝑥𝜑} ∈ V
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem abex
StepHypRef Expression
1 abex.2 . 2 𝐴 ∈ V
2 abss 4086 . . 3 ({𝑥𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
3 abex.1 . . 3 (𝜑𝑥𝐴)
42, 3mpgbir 1797 . 2 {𝑥𝜑} ⊆ 𝐴
51, 4ssexi 5340 1 {𝑥𝜑} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  {cab 2717  Vcvv 3488  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993
This theorem is referenced by:  grimfn  47751  isgrim  47754
  Copyright terms: Public domain W3C validator