MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abex Structured version   Visualization version   GIF version

Theorem abex 5289
Description: Conditions for a class abstraction to be a set. Remark: This proof is shorter than a proof using abexd 5288. (Contributed by AV, 19-Apr-2025.)
Hypotheses
Ref Expression
abex.1 (𝜑𝑥𝐴)
abex.2 𝐴 ∈ V
Assertion
Ref Expression
abex {𝑥𝜑} ∈ V
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem abex
StepHypRef Expression
1 abex.2 . 2 𝐴 ∈ V
2 abss 4034 . . 3 ({𝑥𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
3 abex.1 . . 3 (𝜑𝑥𝐴)
42, 3mpgbir 1799 . 2 {𝑥𝜑} ⊆ 𝐴
51, 4ssexi 5285 1 {𝑥𝜑} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {cab 2708  Vcvv 3455  wss 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-rab 3412  df-v 3457  df-in 3929  df-ss 3939
This theorem is referenced by:  grimfn  47834  isgrim  47837
  Copyright terms: Public domain W3C validator