![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abex | Structured version Visualization version GIF version |
Description: Conditions for a class abstraction to be a set. Remark: This proof is shorter than a proof using abexd 5343. (Contributed by AV, 19-Apr-2025.) |
Ref | Expression |
---|---|
abex.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
abex.2 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
abex | ⊢ {𝑥 ∣ 𝜑} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abex.2 | . 2 ⊢ 𝐴 ∈ V | |
2 | abss 4086 | . . 3 ⊢ ({𝑥 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) | |
3 | abex.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
4 | 2, 3 | mpgbir 1797 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
5 | 1, 4 | ssexi 5340 | 1 ⊢ {𝑥 ∣ 𝜑} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {cab 2717 Vcvv 3488 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 |
This theorem is referenced by: grimfn 47751 isgrim 47754 |
Copyright terms: Public domain | W3C validator |