| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abex | Structured version Visualization version GIF version | ||
| Description: Conditions for a class abstraction to be a set. Remark: This proof is shorter than a proof using abexd 5307. (Contributed by AV, 19-Apr-2025.) |
| Ref | Expression |
|---|---|
| abex.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| abex.2 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| abex | ⊢ {𝑥 ∣ 𝜑} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abex.2 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | abss 4045 | . . 3 ⊢ ({𝑥 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) | |
| 3 | abex.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 4 | 2, 3 | mpgbir 1798 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
| 5 | 1, 4 | ssexi 5304 | 1 ⊢ {𝑥 ∣ 𝜑} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 {cab 2712 Vcvv 3464 ⊆ wss 3933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3421 df-v 3466 df-in 3940 df-ss 3950 |
| This theorem is referenced by: grimfn 47807 isgrim 47810 |
| Copyright terms: Public domain | W3C validator |