![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abex | Structured version Visualization version GIF version |
Description: Conditions for a class abstraction to be a set. Remark: This proof is shorter than a proof using abexd 5332. (Contributed by AV, 19-Apr-2025.) |
Ref | Expression |
---|---|
abex.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
abex.2 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
abex | ⊢ {𝑥 ∣ 𝜑} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abex.2 | . 2 ⊢ 𝐴 ∈ V | |
2 | abss 4074 | . . 3 ⊢ ({𝑥 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) | |
3 | abex.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
4 | 2, 3 | mpgbir 1797 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
5 | 1, 4 | ssexi 5329 | 1 ⊢ {𝑥 ∣ 𝜑} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 {cab 2713 Vcvv 3479 ⊆ wss 3964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-ex 1778 df-nf 1782 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-rab 3435 df-v 3481 df-in 3971 df-ss 3981 |
This theorem is referenced by: grimfn 47814 isgrim 47817 |
Copyright terms: Public domain | W3C validator |