Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablgrpd | Structured version Visualization version GIF version |
Description: An Abelian group is a group, deduction form of ablgrp 19306. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
ablgrpd.1 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
Ref | Expression |
---|---|
ablgrpd | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablgrpd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
2 | ablgrp 19306 | . 2 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Grpcgrp 18492 Abelcabl 19302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-abl 19304 |
This theorem is referenced by: ablsimpgd 19634 |
Copyright terms: Public domain | W3C validator |