![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablgrpd | Structured version Visualization version GIF version |
Description: An Abelian group is a group, deduction form of ablgrp 19818. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
ablgrpd.1 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
Ref | Expression |
---|---|
ablgrpd | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablgrpd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
2 | ablgrp 19818 | . 2 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Grpcgrp 18964 Abelcabl 19814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-in 3970 df-abl 19816 |
This theorem is referenced by: imasabl 19909 ablsimpgd 20151 rnggrp 20176 primrootscoprmpow 42081 primrootspoweq0 42088 aks6d1c6isolem1 42156 aks6d1c6isolem2 42157 aks6d1c6lem5 42159 |
Copyright terms: Public domain | W3C validator |