| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablgrpd | Structured version Visualization version GIF version | ||
| Description: An Abelian group is a group, deduction form of ablgrp 19698. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| ablgrpd.1 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| Ref | Expression |
|---|---|
| ablgrpd | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablgrpd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 2 | ablgrp 19698 | . 2 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Grpcgrp 18846 Abelcabl 19694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3909 df-abl 19696 |
| This theorem is referenced by: imasabl 19789 ablsimpgd 20031 rnggrp 20077 primrootscoprmpow 42138 primrootspoweq0 42145 aks6d1c6isolem1 42213 aks6d1c6isolem2 42214 aks6d1c6lem5 42216 |
| Copyright terms: Public domain | W3C validator |