MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablgrpd Structured version   Visualization version   GIF version

Theorem ablgrpd 19772
Description: An Abelian group is a group, deduction form of ablgrp 19771. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypothesis
Ref Expression
ablgrpd.1 (𝜑𝐺 ∈ Abel)
Assertion
Ref Expression
ablgrpd (𝜑𝐺 ∈ Grp)

Proof of Theorem ablgrpd
StepHypRef Expression
1 ablgrpd.1 . 2 (𝜑𝐺 ∈ Abel)
2 ablgrp 19771 . 2 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
31, 2syl 17 1 (𝜑𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Grpcgrp 18921  Abelcabl 19767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-in 3938  df-abl 19769
This theorem is referenced by:  imasabl  19862  ablsimpgd  20104  rnggrp  20123  primrootscoprmpow  42117  primrootspoweq0  42124  aks6d1c6isolem1  42192  aks6d1c6isolem2  42193  aks6d1c6lem5  42195
  Copyright terms: Public domain W3C validator