MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablgrpd Structured version   Visualization version   GIF version

Theorem ablgrpd 19699
Description: An Abelian group is a group, deduction form of ablgrp 19698. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypothesis
Ref Expression
ablgrpd.1 (𝜑𝐺 ∈ Abel)
Assertion
Ref Expression
ablgrpd (𝜑𝐺 ∈ Grp)

Proof of Theorem ablgrpd
StepHypRef Expression
1 ablgrpd.1 . 2 (𝜑𝐺 ∈ Abel)
2 ablgrp 19698 . 2 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
31, 2syl 17 1 (𝜑𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Grpcgrp 18846  Abelcabl 19694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-in 3909  df-abl 19696
This theorem is referenced by:  imasabl  19789  ablsimpgd  20031  rnggrp  20077  primrootscoprmpow  42138  primrootspoweq0  42145  aks6d1c6isolem1  42213  aks6d1c6isolem2  42214  aks6d1c6lem5  42216
  Copyright terms: Public domain W3C validator