MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablgrpd Structured version   Visualization version   GIF version

Theorem ablgrpd 19777
Description: An Abelian group is a group, deduction form of ablgrp 19776. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypothesis
Ref Expression
ablgrpd.1 (𝜑𝐺 ∈ Abel)
Assertion
Ref Expression
ablgrpd (𝜑𝐺 ∈ Grp)

Proof of Theorem ablgrpd
StepHypRef Expression
1 ablgrpd.1 . 2 (𝜑𝐺 ∈ Abel)
2 ablgrp 19776 . 2 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
31, 2syl 17 1 (𝜑𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Grpcgrp 18925  Abelcabl 19772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3466  df-in 3940  df-abl 19774
This theorem is referenced by:  imasabl  19867  ablsimpgd  20109  rnggrp  20128  primrootscoprmpow  42041  primrootspoweq0  42048  aks6d1c6isolem1  42116  aks6d1c6isolem2  42117  aks6d1c6lem5  42119
  Copyright terms: Public domain W3C validator