Step | Hyp | Ref
| Expression |
1 | | eqid 2728 |
. . . . . 6
⊢
(Base‘(𝑅
↾s 𝑈)) =
(Base‘(𝑅
↾s 𝑈)) |
2 | | eqid 2728 |
. . . . . 6
⊢
(.g‘(𝑅 ↾s 𝑈)) = (.g‘(𝑅 ↾s 𝑈)) |
3 | | primrootscoprmpow.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ CMnd) |
4 | | primrootscoprmpow.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ ℕ) |
5 | | primrootscoprmpow.6 |
. . . . . . . . . 10
⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} |
6 | 3, 4, 5 | primrootsunit 41600 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ∧ (𝑅 ↾s 𝑈) ∈ Abel)) |
7 | 6 | simprd 494 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Abel) |
8 | 7 | ablcmnd 19750 |
. . . . . . 7
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ CMnd) |
9 | 8 | cmnmndd 19766 |
. . . . . 6
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Mnd) |
10 | | primrootscoprmpow.3 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ ℕ) |
11 | 10 | nnnn0d 12570 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈
ℕ0) |
12 | | primrootscoprmpow.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
13 | 6 | simpld 493 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
14 | 13 | eleq2d 2815 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ 𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾))) |
15 | 12, 14 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
16 | 4 | nnnn0d 12570 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
17 | 8, 16, 2 | isprimroot 41596 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
18 | 17 | biimpd 228 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
19 | 15, 18 | mpd 15 |
. . . . . . 7
⊢ (𝜑 → (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙))) |
20 | 19 | simp1d 1139 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
21 | 1, 2, 9, 11, 20 | mulgnn0cld 19057 |
. . . . 5
⊢ (𝜑 → (𝐸(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ (Base‘(𝑅 ↾s 𝑈))) |
22 | 5 | eleq2i 2821 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ 𝑈 ↔ 𝑐 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
23 | | oveq2 7434 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑐 → (𝑖(+g‘𝑅)𝑎) = (𝑖(+g‘𝑅)𝑐)) |
24 | 23 | eqeq1d 2730 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑐 → ((𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ (𝑖(+g‘𝑅)𝑐) = (0g‘𝑅))) |
25 | 24 | rexbidv 3176 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑐 → (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑐) = (0g‘𝑅))) |
26 | 25 | elrab 3684 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} ↔ (𝑐 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑐) = (0g‘𝑅))) |
27 | 22, 26 | bitri 274 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ 𝑈 ↔ (𝑐 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑐) = (0g‘𝑅))) |
28 | 27 | biimpi 215 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ 𝑈 → (𝑐 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑐) = (0g‘𝑅))) |
29 | 28 | simpld 493 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ 𝑈 → 𝑐 ∈ (Base‘𝑅)) |
30 | 29 | adantl 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑈) → 𝑐 ∈ (Base‘𝑅)) |
31 | 30 | ex 411 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑐 ∈ 𝑈 → 𝑐 ∈ (Base‘𝑅))) |
32 | 31 | ssrdv 3988 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ⊆ (Base‘𝑅)) |
33 | | oveq2 7434 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (0g‘𝑅) → (𝑖(+g‘𝑅)𝑎) = (𝑖(+g‘𝑅)(0g‘𝑅))) |
34 | 33 | eqeq1d 2730 |
. . . . . . . . . . . 12
⊢ (𝑎 = (0g‘𝑅) → ((𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ (𝑖(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) |
35 | 34 | rexbidv 3176 |
. . . . . . . . . . 11
⊢ (𝑎 = (0g‘𝑅) → (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) |
36 | 3 | cmnmndd 19766 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ Mnd) |
37 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑅) =
(Base‘𝑅) |
38 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢
(0g‘𝑅) = (0g‘𝑅) |
39 | 37, 38 | mndidcl 18716 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Mnd →
(0g‘𝑅)
∈ (Base‘𝑅)) |
40 | 36, 39 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
41 | | simpr 483 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 = (0g‘𝑅)) → 𝑖 = (0g‘𝑅)) |
42 | 41 | oveq1d 7441 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 = (0g‘𝑅)) → (𝑖(+g‘𝑅)(0g‘𝑅)) = ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅))) |
43 | 42 | eqeq1d 2730 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 = (0g‘𝑅)) → ((𝑖(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅) ↔ ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) |
44 | | eqid 2728 |
. . . . . . . . . . . . . 14
⊢
(+g‘𝑅) = (+g‘𝑅) |
45 | 37, 44, 38 | mndlid 18721 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Mnd ∧
(0g‘𝑅)
∈ (Base‘𝑅))
→ ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
46 | 36, 40, 45 | syl2anc 582 |
. . . . . . . . . . . 12
⊢ (𝜑 →
((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
47 | 40, 43, 46 | rspcedvd 3613 |
. . . . . . . . . . 11
⊢ (𝜑 → ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
48 | 35, 40, 47 | elrabd 3686 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝑅) ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
49 | 5 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
50 | 49 | eleq2d 2815 |
. . . . . . . . . 10
⊢ (𝜑 →
((0g‘𝑅)
∈ 𝑈 ↔
(0g‘𝑅)
∈ {𝑎 ∈
(Base‘𝑅) ∣
∃𝑖 ∈
(Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)})) |
51 | 48, 50 | mpbird 256 |
. . . . . . . . 9
⊢ (𝜑 → (0g‘𝑅) ∈ 𝑈) |
52 | 32, 51, 9 | 3jca 1125 |
. . . . . . . 8
⊢ (𝜑 → (𝑈 ⊆ (Base‘𝑅) ∧ (0g‘𝑅) ∈ 𝑈 ∧ (𝑅 ↾s 𝑈) ∈ Mnd)) |
53 | | eqid 2728 |
. . . . . . . . . 10
⊢ (𝑅 ↾s 𝑈) = (𝑅 ↾s 𝑈) |
54 | 37, 38, 53 | issubm2 18763 |
. . . . . . . . 9
⊢ (𝑅 ∈ Mnd → (𝑈 ∈ (SubMnd‘𝑅) ↔ (𝑈 ⊆ (Base‘𝑅) ∧ (0g‘𝑅) ∈ 𝑈 ∧ (𝑅 ↾s 𝑈) ∈ Mnd))) |
55 | 36, 54 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑈 ∈ (SubMnd‘𝑅) ↔ (𝑈 ⊆ (Base‘𝑅) ∧ (0g‘𝑅) ∈ 𝑈 ∧ (𝑅 ↾s 𝑈) ∈ Mnd))) |
56 | 52, 55 | mpbird 256 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ (SubMnd‘𝑅)) |
57 | 53, 37 | ressbas2 17225 |
. . . . . . . . . 10
⊢ (𝑈 ⊆ (Base‘𝑅) → 𝑈 = (Base‘(𝑅 ↾s 𝑈))) |
58 | 32, 57 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 = (Base‘(𝑅 ↾s 𝑈))) |
59 | 58 | eleq2d 2815 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 ∈ 𝑈 ↔ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
60 | 20, 59 | mpbird 256 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ 𝑈) |
61 | | eqid 2728 |
. . . . . . . 8
⊢
(.g‘𝑅) = (.g‘𝑅) |
62 | 61, 53, 2 | submmulg 19080 |
. . . . . . 7
⊢ ((𝑈 ∈ (SubMnd‘𝑅) ∧ 𝐸 ∈ ℕ0 ∧ 𝑀 ∈ 𝑈) → (𝐸(.g‘𝑅)𝑀) = (𝐸(.g‘(𝑅 ↾s 𝑈))𝑀)) |
63 | 56, 11, 60, 62 | syl3anc 1368 |
. . . . . 6
⊢ (𝜑 → (𝐸(.g‘𝑅)𝑀) = (𝐸(.g‘(𝑅 ↾s 𝑈))𝑀)) |
64 | 63 | eleq1d 2814 |
. . . . 5
⊢ (𝜑 → ((𝐸(.g‘𝑅)𝑀) ∈ (Base‘(𝑅 ↾s 𝑈)) ↔ (𝐸(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ (Base‘(𝑅 ↾s 𝑈)))) |
65 | 21, 64 | mpbird 256 |
. . . 4
⊢ (𝜑 → (𝐸(.g‘𝑅)𝑀) ∈ (Base‘(𝑅 ↾s 𝑈))) |
66 | 63 | oveq2d 7442 |
. . . . 5
⊢ (𝜑 → (𝐾(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (𝐾(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘(𝑅 ↾s 𝑈))𝑀))) |
67 | 7 | ablgrpd 19748 |
. . . . . . 7
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Grp) |
68 | 16 | nn0zd 12622 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ ℤ) |
69 | 11 | nn0zd 12622 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ ℤ) |
70 | 68, 69, 20 | 3jca 1125 |
. . . . . . 7
⊢ (𝜑 → (𝐾 ∈ ℤ ∧ 𝐸 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
71 | 1, 2 | mulgass 19073 |
. . . . . . 7
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝐾 ∈ ℤ ∧ 𝐸 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) → ((𝐾 · 𝐸)(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝐾(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘(𝑅 ↾s 𝑈))𝑀))) |
72 | 67, 70, 71 | syl2anc 582 |
. . . . . 6
⊢ (𝜑 → ((𝐾 · 𝐸)(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝐾(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘(𝑅 ↾s 𝑈))𝑀))) |
73 | 4 | nncnd 12266 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ ℂ) |
74 | 10 | nncnd 12266 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ ℂ) |
75 | 73, 74 | mulcomd 11273 |
. . . . . . . 8
⊢ (𝜑 → (𝐾 · 𝐸) = (𝐸 · 𝐾)) |
76 | 75 | oveq1d 7441 |
. . . . . . 7
⊢ (𝜑 → ((𝐾 · 𝐸)(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝐸 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀)) |
77 | 69, 68, 20 | 3jca 1125 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
78 | 1, 2 | mulgass 19073 |
. . . . . . . . 9
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝐸 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) → ((𝐸 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝐸(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑀))) |
79 | 67, 77, 78 | syl2anc 582 |
. . . . . . . 8
⊢ (𝜑 → ((𝐸 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝐸(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑀))) |
80 | 19 | simp2d 1140 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
81 | 80 | oveq2d 7442 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑀)) = (𝐸(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈)))) |
82 | | eqid 2728 |
. . . . . . . . . . 11
⊢
(0g‘(𝑅 ↾s 𝑈)) = (0g‘(𝑅 ↾s 𝑈)) |
83 | 1, 2, 82 | mulgz 19064 |
. . . . . . . . . 10
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ 𝐸 ∈ ℤ) → (𝐸(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) =
(0g‘(𝑅
↾s 𝑈))) |
84 | 67, 69, 83 | syl2anc 582 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) = (0g‘(𝑅 ↾s 𝑈))) |
85 | 81, 84 | eqtrd 2768 |
. . . . . . . 8
⊢ (𝜑 → (𝐸(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑀)) = (0g‘(𝑅 ↾s 𝑈))) |
86 | 79, 85 | eqtrd 2768 |
. . . . . . 7
⊢ (𝜑 → ((𝐸 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
87 | 76, 86 | eqtrd 2768 |
. . . . . 6
⊢ (𝜑 → ((𝐾 · 𝐸)(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
88 | 72, 87 | eqtr3d 2770 |
. . . . 5
⊢ (𝜑 → (𝐾(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘(𝑅 ↾s 𝑈))𝑀)) = (0g‘(𝑅 ↾s 𝑈))) |
89 | 66, 88 | eqtrd 2768 |
. . . 4
⊢ (𝜑 → (𝐾(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) |
90 | 19 | simp3d 1141 |
. . . . 5
⊢ (𝜑 → ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) |
91 | | simp-6r 786 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) → 𝑙 ∈ ℕ0) |
92 | 91 | nn0cnd 12572 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) → 𝑙 ∈ ℂ) |
93 | 92 | mullidd 11270 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) → (1 · 𝑙) = 𝑙) |
94 | 93 | eqcomd 2734 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) → 𝑙 = (1 · 𝑙)) |
95 | | simpr 483 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) → (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) |
96 | | primrootscoprmpow.4 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐸 gcd 𝐾) = 1) |
97 | 96 | ad6antr 734 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) → (𝐸 gcd 𝐾) = 1) |
98 | 95, 97 | eqtr3d 2770 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) → ((𝐸 · 𝑥) + (𝐾 · 𝑦)) = 1) |
99 | 95, 98 | eqtr2d 2769 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) → 1 = (𝐸 gcd 𝐾)) |
100 | 99 | oveq1d 7441 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) → (1 · 𝑙) = ((𝐸 gcd 𝐾) · 𝑙)) |
101 | 94, 100 | eqtrd 2768 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) → 𝑙 = ((𝐸 gcd 𝐾) · 𝑙)) |
102 | 101 | oveq1d 7441 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) → (𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (((𝐸 gcd 𝐾) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀)) |
103 | 95 | oveq1d 7441 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) → ((𝐸 gcd 𝐾) · 𝑙) = (((𝐸 · 𝑥) + (𝐾 · 𝑦)) · 𝑙)) |
104 | 103 | oveq1d 7441 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) → (((𝐸 gcd 𝐾) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀) = ((((𝐸 · 𝑥) + (𝐾 · 𝑦)) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀)) |
105 | | simp-4l 781 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (𝜑 ∧ 𝑙 ∈
ℕ0)) |
106 | | simpllr 774 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) |
107 | | simplr 767 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ) |
108 | 105, 106,
107 | jca31 513 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ)) |
109 | | simpr 483 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ) |
110 | 108, 109 | jca 510 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ)) |
111 | 74 | ad4antr 730 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → 𝐸 ∈ ℂ) |
112 | | simplr 767 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ) |
113 | 112 | zcnd 12705 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℂ) |
114 | 111, 113 | mulcld 11272 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (𝐸 · 𝑥) ∈ ℂ) |
115 | 73 | ad4antr 730 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → 𝐾 ∈ ℂ) |
116 | | simpr 483 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ) |
117 | 116 | zcnd 12705 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℂ) |
118 | 115, 117 | mulcld 11272 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (𝐾 · 𝑦) ∈ ℂ) |
119 | | simp-4r 782 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → 𝑙 ∈ ℕ0) |
120 | 119 | nn0cnd 12572 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → 𝑙 ∈ ℂ) |
121 | 114, 118,
120 | adddird 11277 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (((𝐸 · 𝑥) + (𝐾 · 𝑦)) · 𝑙) = (((𝐸 · 𝑥) · 𝑙) + ((𝐾 · 𝑦) · 𝑙))) |
122 | 121 | oveq1d 7441 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((((𝐸 · 𝑥) + (𝐾 · 𝑦)) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀) = ((((𝐸 · 𝑥) · 𝑙) + ((𝐾 · 𝑦) · 𝑙))(.g‘(𝑅 ↾s 𝑈))𝑀)) |
123 | 67 | ad4antr 730 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (𝑅 ↾s 𝑈) ∈ Grp) |
124 | 69 | ad4antr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → 𝐸 ∈ ℤ) |
125 | 124, 112 | zmulcld 12710 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (𝐸 · 𝑥) ∈ ℤ) |
126 | 119 | nn0zd 12622 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → 𝑙 ∈ ℤ) |
127 | 125, 126 | zmulcld 12710 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝐸 · 𝑥) · 𝑙) ∈ ℤ) |
128 | 68 | ad4antr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → 𝐾 ∈ ℤ) |
129 | 128, 116 | zmulcld 12710 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (𝐾 · 𝑦) ∈ ℤ) |
130 | 129, 126 | zmulcld 12710 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝐾 · 𝑦) · 𝑙) ∈ ℤ) |
131 | 20 | ad4antr 730 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
132 | 127, 130,
131 | 3jca 1125 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (((𝐸 · 𝑥) · 𝑙) ∈ ℤ ∧ ((𝐾 · 𝑦) · 𝑙) ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
133 | | eqid 2728 |
. . . . . . . . . . . . . . . . . 18
⊢
(+g‘(𝑅 ↾s 𝑈)) = (+g‘(𝑅 ↾s 𝑈)) |
134 | 1, 2, 133 | mulgdir 19068 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (((𝐸 · 𝑥) · 𝑙) ∈ ℤ ∧ ((𝐾 · 𝑦) · 𝑙) ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) → ((((𝐸 · 𝑥) · 𝑙) + ((𝐾 · 𝑦) · 𝑙))(.g‘(𝑅 ↾s 𝑈))𝑀) = ((((𝐸 · 𝑥) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(((𝐾 · 𝑦) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀))) |
135 | 123, 132,
134 | syl2anc 582 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((((𝐸 · 𝑥) · 𝑙) + ((𝐾 · 𝑦) · 𝑙))(.g‘(𝑅 ↾s 𝑈))𝑀) = ((((𝐸 · 𝑥) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(((𝐾 · 𝑦) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀))) |
136 | 74 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → 𝐸 ∈ ℂ) |
137 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) |
138 | 137 | zcnd 12705 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ) |
139 | | simpllr 774 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → 𝑙 ∈ ℕ0) |
140 | 139 | nn0cnd 12572 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → 𝑙 ∈ ℂ) |
141 | 136, 138,
140 | mulassd 11275 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → ((𝐸 · 𝑥) · 𝑙) = (𝐸 · (𝑥 · 𝑙))) |
142 | 138, 140 | mulcld 11272 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝑙) ∈ ℂ) |
143 | 136, 142 | mulcomd 11273 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → (𝐸 · (𝑥 · 𝑙)) = ((𝑥 · 𝑙) · 𝐸)) |
144 | 141, 143 | eqtrd 2768 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → ((𝐸 · 𝑥) · 𝑙) = ((𝑥 · 𝑙) · 𝐸)) |
145 | 144 | oveq1d 7441 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → (((𝐸 · 𝑥) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀) = (((𝑥 · 𝑙) · 𝐸)(.g‘(𝑅 ↾s 𝑈))𝑀)) |
146 | 67 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → (𝑅 ↾s 𝑈) ∈ Grp) |
147 | 139 | nn0zd 12622 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → 𝑙 ∈ ℤ) |
148 | 137, 147 | zmulcld 12710 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝑙) ∈ ℤ) |
149 | 69 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → 𝐸 ∈ ℤ) |
150 | 20 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
151 | 148, 149,
150 | 3jca 1125 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑙) ∈ ℤ ∧ 𝐸 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
152 | 1, 2 | mulgass 19073 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ ((𝑥 · 𝑙) ∈ ℤ ∧ 𝐸 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) → (((𝑥 · 𝑙) · 𝐸)(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝑥 · 𝑙)(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘(𝑅 ↾s 𝑈))𝑀))) |
153 | 146, 151,
152 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → (((𝑥 · 𝑙) · 𝐸)(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝑥 · 𝑙)(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘(𝑅 ↾s 𝑈))𝑀))) |
154 | 21 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → (𝐸(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ (Base‘(𝑅 ↾s 𝑈))) |
155 | 137, 147,
154 | 3jca 1125 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ℤ ∧ 𝑙 ∈ ℤ ∧ (𝐸(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ (Base‘(𝑅 ↾s 𝑈)))) |
156 | 1, 2 | mulgass 19073 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑙 ∈ ℤ ∧ (𝐸(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ (Base‘(𝑅 ↾s 𝑈)))) → ((𝑥 · 𝑙)(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘(𝑅 ↾s 𝑈))𝑀)) = (𝑥(.g‘(𝑅 ↾s 𝑈))(𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘(𝑅 ↾s 𝑈))𝑀)))) |
157 | 146, 155,
156 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑙)(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘(𝑅 ↾s 𝑈))𝑀)) = (𝑥(.g‘(𝑅 ↾s 𝑈))(𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘(𝑅 ↾s 𝑈))𝑀)))) |
158 | 56 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → 𝑈 ∈ (SubMnd‘𝑅)) |
159 | 11 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → 𝐸 ∈
ℕ0) |
160 | 60 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → 𝑀 ∈ 𝑈) |
161 | 158, 159,
160, 62 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → (𝐸(.g‘𝑅)𝑀) = (𝐸(.g‘(𝑅 ↾s 𝑈))𝑀)) |
162 | 161 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → (𝐸(.g‘𝑅)𝑀) = (𝐸(.g‘(𝑅 ↾s 𝑈))𝑀)) |
163 | 162 | eqcomd 2734 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → (𝐸(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝐸(.g‘𝑅)𝑀)) |
164 | 163 | oveq2d 7442 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘(𝑅 ↾s 𝑈))𝑀)) = (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀))) |
165 | | simplr 767 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) |
166 | 164, 165 | eqtrd 2768 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘(𝑅 ↾s 𝑈))𝑀)) = (0g‘(𝑅 ↾s 𝑈))) |
167 | 166 | oveq2d 7442 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅 ↾s 𝑈))(𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘(𝑅 ↾s 𝑈))𝑀))) = (𝑥(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈)))) |
168 | 1, 2, 82 | mulgz 19064 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) =
(0g‘(𝑅
↾s 𝑈))) |
169 | 146, 137,
168 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) = (0g‘(𝑅 ↾s 𝑈))) |
170 | 167, 169 | eqtrd 2768 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅 ↾s 𝑈))(𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘(𝑅 ↾s 𝑈))𝑀))) = (0g‘(𝑅 ↾s 𝑈))) |
171 | 157, 170 | eqtrd 2768 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑙)(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘(𝑅 ↾s 𝑈))𝑀)) = (0g‘(𝑅 ↾s 𝑈))) |
172 | 153, 171 | eqtrd 2768 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → (((𝑥 · 𝑙) · 𝐸)(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
173 | 145, 172 | eqtrd 2768 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) → (((𝐸 · 𝑥) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
174 | 173 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (((𝐸 · 𝑥) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
175 | | simplll 773 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (𝜑 ∧ 𝑙 ∈
ℕ0)) |
176 | 175, 116 | jca 510 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈
ℤ)) |
177 | 73 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → 𝐾 ∈
ℂ) |
178 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈
ℤ) |
179 | 178 | zcnd 12705 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈
ℂ) |
180 | | simplr 767 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → 𝑙 ∈
ℕ0) |
181 | 180 | nn0cnd 12572 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → 𝑙 ∈
ℂ) |
182 | 177, 179,
181 | mulassd 11275 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → ((𝐾 · 𝑦) · 𝑙) = (𝐾 · (𝑦 · 𝑙))) |
183 | 179, 181 | mulcld 11272 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → (𝑦 · 𝑙) ∈ ℂ) |
184 | 177, 183 | mulcomd 11273 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → (𝐾 · (𝑦 · 𝑙)) = ((𝑦 · 𝑙) · 𝐾)) |
185 | 182, 184 | eqtrd 2768 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → ((𝐾 · 𝑦) · 𝑙) = ((𝑦 · 𝑙) · 𝐾)) |
186 | 185 | oveq1d 7441 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → (((𝐾 · 𝑦) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀) = (((𝑦 · 𝑙) · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀)) |
187 | 67 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → (𝑅 ↾s 𝑈) ∈ Grp) |
188 | 180 | nn0zd 12622 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → 𝑙 ∈
ℤ) |
189 | 178, 188 | zmulcld 12710 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → (𝑦 · 𝑙) ∈ ℤ) |
190 | 68 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → 𝐾 ∈
ℤ) |
191 | 20 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
192 | 189, 190,
191 | 3jca 1125 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → ((𝑦 · 𝑙) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
193 | 1, 2 | mulgass 19073 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ ((𝑦 · 𝑙) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) → (((𝑦 · 𝑙) · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝑦 · 𝑙)(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑀))) |
194 | 187, 192,
193 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → (((𝑦 · 𝑙) · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝑦 · 𝑙)(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑀))) |
195 | 80 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
196 | 195 | oveq2d 7442 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → ((𝑦 · 𝑙)(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑀)) = ((𝑦 · 𝑙)(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈)))) |
197 | 1, 2, 82 | mulgz 19064 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝑦 · 𝑙) ∈ ℤ) → ((𝑦 · 𝑙)(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) = (0g‘(𝑅 ↾s 𝑈))) |
198 | 187, 189,
197 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → ((𝑦 · 𝑙)(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) = (0g‘(𝑅 ↾s 𝑈))) |
199 | 196, 198 | eqtrd 2768 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → ((𝑦 · 𝑙)(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑀)) = (0g‘(𝑅 ↾s 𝑈))) |
200 | 194, 199 | eqtrd 2768 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → (((𝑦 · 𝑙) · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
201 | 186, 200 | eqtrd 2768 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ 𝑦 ∈ ℤ) → (((𝐾 · 𝑦) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
202 | 176, 201 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (((𝐾 · 𝑦) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
203 | 174, 202 | oveq12d 7444 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((((𝐸 · 𝑥) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(((𝐾 · 𝑦) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀)) = ((0g‘(𝑅 ↾s 𝑈))(+g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈)))) |
204 | 1, 82 | grpidcl 18929 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ↾s 𝑈) ∈ Grp →
(0g‘(𝑅
↾s 𝑈))
∈ (Base‘(𝑅
↾s 𝑈))) |
205 | 123, 204 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) →
(0g‘(𝑅
↾s 𝑈))
∈ (Base‘(𝑅
↾s 𝑈))) |
206 | 1, 133, 82, 123, 205 | grpridd 18934 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) →
((0g‘(𝑅
↾s 𝑈))(+g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) = (0g‘(𝑅 ↾s 𝑈))) |
207 | 203, 206 | eqtrd 2768 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((((𝐸 · 𝑥) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(((𝐾 · 𝑦) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀)) = (0g‘(𝑅 ↾s 𝑈))) |
208 | 135, 207 | eqtrd 2768 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((((𝐸 · 𝑥) · 𝑙) + ((𝐾 · 𝑦) · 𝑙))(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
209 | 122, 208 | eqtrd 2768 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((((𝐸 · 𝑥) + (𝐾 · 𝑦)) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
210 | 110, 209 | syl 17 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((((𝐸 · 𝑥) + (𝐾 · 𝑦)) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
211 | 210 | adantr 479 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) → ((((𝐸 · 𝑥) + (𝐾 · 𝑦)) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
212 | 104, 211 | eqtrd 2768 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) → (((𝐸 gcd 𝐾) · 𝑙)(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
213 | 102, 212 | eqtrd 2768 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) → (𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
214 | | simp-5r 784 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) → ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) |
215 | 213, 214 | mpd 15 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑙 ∈ ℕ0)
∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) → 𝐾 ∥ 𝑙) |
216 | | bezout 16526 |
. . . . . . . . . . 11
⊢ ((𝐸 ∈ ℤ ∧ 𝐾 ∈ ℤ) →
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℤ
(𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) |
217 | 69, 68, 216 | syl2anc 582 |
. . . . . . . . . 10
⊢ (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) |
218 | 217 | ad3antrrr 728 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐸 gcd 𝐾) = ((𝐸 · 𝑥) + (𝐾 · 𝑦))) |
219 | 215, 218 | r19.29vva 3211 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) ∧ (𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈))) → 𝐾 ∥ 𝑙) |
220 | 219 | ex 411 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) → ((𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) |
221 | 220 | ex 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → (((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙) → ((𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙))) |
222 | 221 | ralimdva 3164 |
. . . . 5
⊢ (𝜑 → (∀𝑙 ∈ ℕ0
((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙) → ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙))) |
223 | 90, 222 | mpd 15 |
. . . 4
⊢ (𝜑 → ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) |
224 | 65, 89, 223 | 3jca 1125 |
. . 3
⊢ (𝜑 → ((𝐸(.g‘𝑅)𝑀) ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙))) |
225 | | nnnn0 12517 |
. . . . 5
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℕ0) |
226 | 4, 225 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
227 | 8, 226, 2 | isprimroot 41596 |
. . 3
⊢ (𝜑 → ((𝐸(.g‘𝑅)𝑀) ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ↔ ((𝐸(.g‘𝑅)𝑀) ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))(𝐸(.g‘𝑅)𝑀)) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
228 | 224, 227 | mpbird 256 |
. 2
⊢ (𝜑 → (𝐸(.g‘𝑅)𝑀) ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
229 | 13 | eleq2d 2815 |
. 2
⊢ (𝜑 → ((𝐸(.g‘𝑅)𝑀) ∈ (𝑅 PrimRoots 𝐾) ↔ (𝐸(.g‘𝑅)𝑀) ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾))) |
230 | 228, 229 | mpbird 256 |
1
⊢ (𝜑 → (𝐸(.g‘𝑅)𝑀) ∈ (𝑅 PrimRoots 𝐾)) |