Step | Hyp | Ref
| Expression |
1 | | eqidd 2727 |
. 2
⊢ (𝜑 → ((𝑅 ↾s 𝑈) ↾s ran 𝐹) = ((𝑅 ↾s 𝑈) ↾s ran 𝐹)) |
2 | | eqidd 2727 |
. 2
⊢ (𝜑 →
(0g‘(𝑅
↾s 𝑈)) =
(0g‘(𝑅
↾s 𝑈))) |
3 | | eqidd 2727 |
. 2
⊢ (𝜑 →
(+g‘(𝑅
↾s 𝑈)) =
(+g‘(𝑅
↾s 𝑈))) |
4 | | eqid 2726 |
. . . . 5
⊢
(Base‘(𝑅
↾s 𝑈)) =
(Base‘(𝑅
↾s 𝑈)) |
5 | | eqid 2726 |
. . . . 5
⊢
(.g‘(𝑅 ↾s 𝑈)) = (.g‘(𝑅 ↾s 𝑈)) |
6 | | aks6d1c6isolem1.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ CMnd) |
7 | | aks6d1c6isolem1.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ ℕ) |
8 | | aks6d1c6isolem1.3 |
. . . . . . . . 9
⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} |
9 | 6, 7, 8 | primrootsunit 41796 |
. . . . . . . 8
⊢ (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ∧ (𝑅 ↾s 𝑈) ∈ Abel)) |
10 | 9 | simprd 494 |
. . . . . . 7
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Abel) |
11 | 10 | ablgrpd 19784 |
. . . . . 6
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Grp) |
12 | 11 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝑅 ↾s 𝑈) ∈ Grp) |
13 | | simpr 483 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) |
14 | | aks6d1c6isolem1.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
15 | 9 | simpld 493 |
. . . . . . . . 9
⊢ (𝜑 → (𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
16 | 14, 15 | eleqtrd 2828 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
17 | 10 | ablcmnd 19786 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ CMnd) |
18 | 7 | nnnn0d 12584 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
19 | 17, 18, 5 | isprimroot 41792 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
20 | 19 | biimpd 228 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
21 | 16, 20 | mpd 15 |
. . . . . . 7
⊢ (𝜑 → (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙))) |
22 | 21 | simp1d 1139 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
23 | 22 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
24 | 4, 5, 12, 13, 23 | mulgcld 19090 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ (Base‘(𝑅 ↾s 𝑈))) |
25 | | aks6d1c6isolem1.4 |
. . . 4
⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) |
26 | 24, 25 | fmptd 7128 |
. . 3
⊢ (𝜑 → 𝐹:ℤ⟶(Base‘(𝑅 ↾s 𝑈))) |
27 | | frn 6735 |
. . 3
⊢ (𝐹:ℤ⟶(Base‘(𝑅 ↾s 𝑈)) → ran 𝐹 ⊆ (Base‘(𝑅 ↾s 𝑈))) |
28 | 26, 27 | syl 17 |
. 2
⊢ (𝜑 → ran 𝐹 ⊆ (Base‘(𝑅 ↾s 𝑈))) |
29 | | 0zd 12622 |
. . . 4
⊢ (𝜑 → 0 ∈
ℤ) |
30 | | simpr 483 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 = 0) → 𝑐 = 0) |
31 | 30 | fveqeq2d 6909 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 = 0) → ((𝐹‘𝑐) = (0g‘(𝑅 ↾s 𝑈)) ↔ (𝐹‘0) = (0g‘(𝑅 ↾s 𝑈)))) |
32 | 25 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀))) |
33 | | simpr 483 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 0) → 𝑥 = 0) |
34 | 33 | oveq1d 7439 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 0) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (0(.g‘(𝑅 ↾s 𝑈))𝑀)) |
35 | | eqid 2726 |
. . . . . . . . 9
⊢
(0g‘(𝑅 ↾s 𝑈)) = (0g‘(𝑅 ↾s 𝑈)) |
36 | 4, 35, 5 | mulg0 19068 |
. . . . . . . 8
⊢ (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) →
(0(.g‘(𝑅
↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
37 | 22, 36 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(0(.g‘(𝑅
↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
38 | 37 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 0) → (0(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
39 | 34, 38 | eqtrd 2766 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 0) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
40 | | fvexd 6916 |
. . . . 5
⊢ (𝜑 →
(0g‘(𝑅
↾s 𝑈))
∈ V) |
41 | 32, 39, 29, 40 | fvmptd 7016 |
. . . 4
⊢ (𝜑 → (𝐹‘0) = (0g‘(𝑅 ↾s 𝑈))) |
42 | 29, 31, 41 | rspcedvd 3610 |
. . 3
⊢ (𝜑 → ∃𝑐 ∈ ℤ (𝐹‘𝑐) = (0g‘(𝑅 ↾s 𝑈))) |
43 | 26 | ffnd 6729 |
. . . 4
⊢ (𝜑 → 𝐹 Fn ℤ) |
44 | | fvelrnb 6963 |
. . . 4
⊢ (𝐹 Fn ℤ →
((0g‘(𝑅
↾s 𝑈))
∈ ran 𝐹 ↔
∃𝑐 ∈ ℤ
(𝐹‘𝑐) = (0g‘(𝑅 ↾s 𝑈)))) |
45 | 43, 44 | syl 17 |
. . 3
⊢ (𝜑 →
((0g‘(𝑅
↾s 𝑈))
∈ ran 𝐹 ↔
∃𝑐 ∈ ℤ
(𝐹‘𝑐) = (0g‘(𝑅 ↾s 𝑈)))) |
46 | 42, 45 | mpbird 256 |
. 2
⊢ (𝜑 →
(0g‘(𝑅
↾s 𝑈))
∈ ran 𝐹) |
47 | | fvelrnb 6963 |
. . . . . . 7
⊢ (𝐹 Fn ℤ → (𝑦 ∈ ran 𝐹 ↔ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦)) |
48 | 43, 47 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦)) |
49 | 48 | biimpd 228 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ ran 𝐹 → ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦)) |
50 | 49 | imp 405 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) |
51 | 50 | 3adant3 1129 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) → ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) |
52 | | simpl1 1188 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) → 𝜑) |
53 | | simpl3 1190 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) → 𝑧 ∈ ran 𝐹) |
54 | 52, 53 | jca 510 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) → (𝜑 ∧ 𝑧 ∈ ran 𝐹)) |
55 | | fvelrnb 6963 |
. . . . . . . 8
⊢ (𝐹 Fn ℤ → (𝑧 ∈ ran 𝐹 ↔ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧)) |
56 | 43, 55 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧)) |
57 | 56 | biimpd 228 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ ran 𝐹 → ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧)) |
58 | 57 | imp 405 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐹) → ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) |
59 | 54, 58 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) → ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) |
60 | | simpll1 1209 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) → 𝜑) |
61 | | simplr 767 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) → ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) |
62 | | simpr 483 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) → ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) |
63 | 60, 61, 62 | 3jca 1125 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) → (𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧)) |
64 | | simpr 483 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹‘𝑔) = 𝑧) → (𝐹‘𝑔) = 𝑧) |
65 | 64 | eqcomd 2732 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹‘𝑔) = 𝑧) → 𝑧 = (𝐹‘𝑔)) |
66 | 65 | oveq2d 7440 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹‘𝑔) = 𝑧) → (𝑦(+g‘(𝑅 ↾s 𝑈))𝑧) = (𝑦(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑔))) |
67 | | simpr 483 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧
∃𝑑 ∈ ℤ
(𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → (𝐹‘𝑓) = 𝑦) |
68 | 67 | eqcomd 2732 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧
∃𝑑 ∈ ℤ
(𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → 𝑦 = (𝐹‘𝑓)) |
69 | 68 | oveq1d 7439 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧
∃𝑑 ∈ ℤ
(𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → (𝑦(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑔)) = ((𝐹‘𝑓)(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑔))) |
70 | | simpll1 1209 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) → 𝜑) |
71 | 70 | adantr 479 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧
∃𝑑 ∈ ℤ
(𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → 𝜑) |
72 | | simpllr 774 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧
∃𝑑 ∈ ℤ
(𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → 𝑔 ∈ ℤ) |
73 | | simplr 767 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧
∃𝑑 ∈ ℤ
(𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → 𝑓 ∈ ℤ) |
74 | 71, 72, 73 | 3jca 1125 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧
∃𝑑 ∈ ℤ
(𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → (𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ)) |
75 | 25 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀))) |
76 | | simpr 483 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → 𝑥 = 𝑓) |
77 | 76 | oveq1d 7439 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)) |
78 | | simp3 1135 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝑓 ∈ ℤ) |
79 | | ovexd 7459 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑓(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
80 | 75, 77, 78, 79 | fvmptd 7016 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝐹‘𝑓) = (𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)) |
81 | | simpr 483 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑔) → 𝑥 = 𝑔) |
82 | 81 | oveq1d 7439 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑔) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑔(.g‘(𝑅 ↾s 𝑈))𝑀)) |
83 | | simp2 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝑔 ∈ ℤ) |
84 | | ovexd 7459 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑔(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
85 | 75, 82, 83, 84 | fvmptd 7016 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝐹‘𝑔) = (𝑔(.g‘(𝑅 ↾s 𝑈))𝑀)) |
86 | 80, 85 | oveq12d 7442 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝐹‘𝑓)(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑔)) = ((𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑔(.g‘(𝑅 ↾s 𝑈))𝑀))) |
87 | 11 | 3ad2ant1 1130 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑅 ↾s 𝑈) ∈ Grp) |
88 | 22 | 3ad2ant1 1130 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
89 | 78, 83, 88 | 3jca 1125 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑓 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
90 | | eqid 2726 |
. . . . . . . . . . . . . . . 16
⊢
(+g‘(𝑅 ↾s 𝑈)) = (+g‘(𝑅 ↾s 𝑈)) |
91 | 4, 5, 90 | mulgdir 19100 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝑓 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) → ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑔(.g‘(𝑅 ↾s 𝑈))𝑀))) |
92 | 87, 89, 91 | syl2anc 582 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑔(.g‘(𝑅 ↾s 𝑈))𝑀))) |
93 | 78, 83 | zaddcld 12722 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑓 + 𝑔) ∈ ℤ) |
94 | | simpr 483 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ ℎ = (𝑓 + 𝑔)) → ℎ = (𝑓 + 𝑔)) |
95 | 94 | fveqeq2d 6909 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ ℎ = (𝑓 + 𝑔)) → ((𝐹‘ℎ) = ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀) ↔ (𝐹‘(𝑓 + 𝑔)) = ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀))) |
96 | | simpr 483 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = (𝑓 + 𝑔)) → 𝑥 = (𝑓 + 𝑔)) |
97 | 96 | oveq1d 7439 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = (𝑓 + 𝑔)) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀)) |
98 | | ovexd 7459 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
99 | 75, 97, 93, 98 | fvmptd 7016 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝐹‘(𝑓 + 𝑔)) = ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀)) |
100 | 93, 95, 99 | rspcedvd 3610 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ∃ℎ ∈ ℤ (𝐹‘ℎ) = ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀)) |
101 | | fvelrnb 6963 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 Fn ℤ → (((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ ran 𝐹 ↔ ∃ℎ ∈ ℤ (𝐹‘ℎ) = ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀))) |
102 | 43, 101 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ ran 𝐹 ↔ ∃ℎ ∈ ℤ (𝐹‘ℎ) = ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀))) |
103 | 102 | 3ad2ant1 1130 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ ran 𝐹 ↔ ∃ℎ ∈ ℤ (𝐹‘ℎ) = ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀))) |
104 | 100, 103 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ ran 𝐹) |
105 | 92, 104 | eqeltrrd 2827 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑔(.g‘(𝑅 ↾s 𝑈))𝑀)) ∈ ran 𝐹) |
106 | 86, 105 | eqeltrd 2826 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝐹‘𝑓)(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑔)) ∈ ran 𝐹) |
107 | 74, 106 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧
∃𝑑 ∈ ℤ
(𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → ((𝐹‘𝑓)(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑔)) ∈ ran 𝐹) |
108 | 69, 107 | eqeltrd 2826 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧
∃𝑑 ∈ ℤ
(𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → (𝑦(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑔)) ∈ ran 𝐹) |
109 | | simpl2 1189 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) → ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) |
110 | | nfv 1910 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑓(𝐹‘𝑑) = 𝑦 |
111 | | nfv 1910 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑑(𝐹‘𝑓) = 𝑦 |
112 | | fveqeq2 6910 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑓 → ((𝐹‘𝑑) = 𝑦 ↔ (𝐹‘𝑓) = 𝑦)) |
113 | 110, 111,
112 | cbvrexw 3295 |
. . . . . . . . . . . 12
⊢
(∃𝑑 ∈
ℤ (𝐹‘𝑑) = 𝑦 ↔ ∃𝑓 ∈ ℤ (𝐹‘𝑓) = 𝑦) |
114 | 113 | biimpi 215 |
. . . . . . . . . . 11
⊢
(∃𝑑 ∈
ℤ (𝐹‘𝑑) = 𝑦 → ∃𝑓 ∈ ℤ (𝐹‘𝑓) = 𝑦) |
115 | 109, 114 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) → ∃𝑓 ∈ ℤ (𝐹‘𝑓) = 𝑦) |
116 | 108, 115 | r19.29a 3152 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) → (𝑦(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑔)) ∈ ran 𝐹) |
117 | 116 | adantr 479 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹‘𝑔) = 𝑧) → (𝑦(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑔)) ∈ ran 𝐹) |
118 | 66, 117 | eqeltrd 2826 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹‘𝑔) = 𝑧) → (𝑦(+g‘(𝑅 ↾s 𝑈))𝑧) ∈ ran 𝐹) |
119 | | simp3 1135 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) → ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) |
120 | | nfv 1910 |
. . . . . . . . . 10
⊢
Ⅎ𝑔(𝐹‘𝑒) = 𝑧 |
121 | | nfv 1910 |
. . . . . . . . . 10
⊢
Ⅎ𝑒(𝐹‘𝑔) = 𝑧 |
122 | | fveqeq2 6910 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑔 → ((𝐹‘𝑒) = 𝑧 ↔ (𝐹‘𝑔) = 𝑧)) |
123 | 120, 121,
122 | cbvrexw 3295 |
. . . . . . . . 9
⊢
(∃𝑒 ∈
ℤ (𝐹‘𝑒) = 𝑧 ↔ ∃𝑔 ∈ ℤ (𝐹‘𝑔) = 𝑧) |
124 | 123 | biimpi 215 |
. . . . . . . 8
⊢
(∃𝑒 ∈
ℤ (𝐹‘𝑒) = 𝑧 → ∃𝑔 ∈ ℤ (𝐹‘𝑔) = 𝑧) |
125 | 119, 124 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) → ∃𝑔 ∈ ℤ (𝐹‘𝑔) = 𝑧) |
126 | 118, 125 | r19.29a 3152 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) → (𝑦(+g‘(𝑅 ↾s 𝑈))𝑧) ∈ ran 𝐹) |
127 | 63, 126 | syl 17 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) → (𝑦(+g‘(𝑅 ↾s 𝑈))𝑧) ∈ ran 𝐹) |
128 | 127 | ex 411 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) → (∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧 → (𝑦(+g‘(𝑅 ↾s 𝑈))𝑧) ∈ ran 𝐹)) |
129 | 59, 128 | mpd 15 |
. . 3
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) → (𝑦(+g‘(𝑅 ↾s 𝑈))𝑧) ∈ ran 𝐹) |
130 | 51, 129 | mpdan 685 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) → (𝑦(+g‘(𝑅 ↾s 𝑈))𝑧) ∈ ran 𝐹) |
131 | | simpr 483 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → (𝐹‘𝑓) = 𝑦) |
132 | 131 | eqcomd 2732 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → 𝑦 = (𝐹‘𝑓)) |
133 | 132 | fveq2d 6905 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → ((invg‘(𝑅 ↾s 𝑈))‘𝑦) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓))) |
134 | | simplll 773 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → 𝜑) |
135 | | simplr 767 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → 𝑓 ∈ ℤ) |
136 | 134, 135 | jca 510 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → (𝜑 ∧ 𝑓 ∈ ℤ)) |
137 | | simpr 483 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → 𝑓 ∈ ℤ) |
138 | 137 | znegcld 12720 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → -𝑓 ∈ ℤ) |
139 | | simpr 483 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ ℤ) ∧ ℎ = -𝑓) → ℎ = -𝑓) |
140 | 139 | fveqeq2d 6909 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ ℤ) ∧ ℎ = -𝑓) → ((𝐹‘ℎ) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓)) ↔ (𝐹‘-𝑓) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓)))) |
141 | 25 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀))) |
142 | | simpr 483 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = -𝑓) → 𝑥 = -𝑓) |
143 | 142 | oveq1d 7439 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = -𝑓) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (-𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)) |
144 | | ovexd 7459 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → (-𝑓(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
145 | 141, 143,
138, 144 | fvmptd 7016 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → (𝐹‘-𝑓) = (-𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)) |
146 | 11 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → (𝑅 ↾s 𝑈) ∈ Grp) |
147 | 22 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
148 | | eqid 2726 |
. . . . . . . . . . . . . . . 16
⊢
(invg‘(𝑅 ↾s 𝑈)) = (invg‘(𝑅 ↾s 𝑈)) |
149 | 4, 5, 148 | mulgneg 19086 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ 𝑓 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) → (-𝑓(.g‘(𝑅 ↾s 𝑈))𝑀) = ((invg‘(𝑅 ↾s 𝑈))‘(𝑓(.g‘(𝑅 ↾s 𝑈))𝑀))) |
150 | 146, 137,
147, 149 | syl3anc 1368 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → (-𝑓(.g‘(𝑅 ↾s 𝑈))𝑀) = ((invg‘(𝑅 ↾s 𝑈))‘(𝑓(.g‘(𝑅 ↾s 𝑈))𝑀))) |
151 | | simpr 483 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → 𝑥 = 𝑓) |
152 | 151 | oveq1d 7439 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)) |
153 | | ovexd 7459 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → (𝑓(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
154 | 141, 152,
137, 153 | fvmptd 7016 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → (𝐹‘𝑓) = (𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)) |
155 | 154 | eqcomd 2732 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → (𝑓(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝐹‘𝑓)) |
156 | 155 | fveq2d 6905 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) →
((invg‘(𝑅
↾s 𝑈))‘(𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓))) |
157 | 150, 156 | eqtrd 2766 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → (-𝑓(.g‘(𝑅 ↾s 𝑈))𝑀) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓))) |
158 | 145, 157 | eqtrd 2766 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → (𝐹‘-𝑓) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓))) |
159 | 138, 140,
158 | rspcedvd 3610 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → ∃ℎ ∈ ℤ (𝐹‘ℎ) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓))) |
160 | | fvelrnb 6963 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn ℤ →
(((invg‘(𝑅
↾s 𝑈))‘(𝐹‘𝑓)) ∈ ran 𝐹 ↔ ∃ℎ ∈ ℤ (𝐹‘ℎ) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓)))) |
161 | 43, 160 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(((invg‘(𝑅
↾s 𝑈))‘(𝐹‘𝑓)) ∈ ran 𝐹 ↔ ∃ℎ ∈ ℤ (𝐹‘ℎ) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓)))) |
162 | 161 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) →
(((invg‘(𝑅
↾s 𝑈))‘(𝐹‘𝑓)) ∈ ran 𝐹 ↔ ∃ℎ ∈ ℤ (𝐹‘ℎ) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓)))) |
163 | 159, 162 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) →
((invg‘(𝑅
↾s 𝑈))‘(𝐹‘𝑓)) ∈ ran 𝐹) |
164 | 163 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → ((𝜑 ∧ 𝑓 ∈ ℤ) →
((invg‘(𝑅
↾s 𝑈))‘(𝐹‘𝑓)) ∈ ran 𝐹)) |
165 | 136, 164 | mpd 15 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓)) ∈ ran 𝐹) |
166 | 133, 165 | eqeltrd 2826 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → ((invg‘(𝑅 ↾s 𝑈))‘𝑦) ∈ ran 𝐹) |
167 | 114 | adantl 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) → ∃𝑓 ∈ ℤ (𝐹‘𝑓) = 𝑦) |
168 | 166, 167 | r19.29a 3152 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) → ((invg‘(𝑅 ↾s 𝑈))‘𝑦) ∈ ran 𝐹) |
169 | 168 | ex 411 |
. . . . 5
⊢ (𝜑 → (∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 → ((invg‘(𝑅 ↾s 𝑈))‘𝑦) ∈ ran 𝐹)) |
170 | 169 | adantr 479 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → (∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 → ((invg‘(𝑅 ↾s 𝑈))‘𝑦) ∈ ran 𝐹)) |
171 | 170 | imp 405 |
. . 3
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) → ((invg‘(𝑅 ↾s 𝑈))‘𝑦) ∈ ran 𝐹) |
172 | 50, 171 | mpdan 685 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → ((invg‘(𝑅 ↾s 𝑈))‘𝑦) ∈ ran 𝐹) |
173 | 1, 2, 3, 28, 46, 130, 172, 11 | issubgrpd 19137 |
1
⊢ (𝜑 → ((𝑅 ↾s 𝑈) ↾s ran 𝐹) ∈ Grp) |