Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6isolem1 Structured version   Visualization version   GIF version

Theorem aks6d1c6isolem1 41872
Description: Lemma to construct the map out of the quotient for AKS. (Contributed by metakunt, 14-May-2025.)
Hypotheses
Ref Expression
aks6d1c6isolem1.1 (𝜑𝑅 ∈ CMnd)
aks6d1c6isolem1.2 (𝜑𝐾 ∈ ℕ)
aks6d1c6isolem1.3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
aks6d1c6isolem1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
aks6d1c6isolem1.5 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
Assertion
Ref Expression
aks6d1c6isolem1 (𝜑 → ((𝑅s 𝑈) ↾s ran 𝐹) ∈ Grp)
Distinct variable groups:   𝑥,𝑀   𝑅,𝑎,𝑖   𝑥,𝑅   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎)   𝑈(𝑖,𝑎)   𝐹(𝑥,𝑖,𝑎)   𝐾(𝑥,𝑖,𝑎)   𝑀(𝑖,𝑎)

Proof of Theorem aks6d1c6isolem1
Dummy variables 𝑐 𝑑 𝑓 𝑔 𝑦 𝑒 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2727 . 2 (𝜑 → ((𝑅s 𝑈) ↾s ran 𝐹) = ((𝑅s 𝑈) ↾s ran 𝐹))
2 eqidd 2727 . 2 (𝜑 → (0g‘(𝑅s 𝑈)) = (0g‘(𝑅s 𝑈)))
3 eqidd 2727 . 2 (𝜑 → (+g‘(𝑅s 𝑈)) = (+g‘(𝑅s 𝑈)))
4 eqid 2726 . . . . 5 (Base‘(𝑅s 𝑈)) = (Base‘(𝑅s 𝑈))
5 eqid 2726 . . . . 5 (.g‘(𝑅s 𝑈)) = (.g‘(𝑅s 𝑈))
6 aks6d1c6isolem1.1 . . . . . . . . 9 (𝜑𝑅 ∈ CMnd)
7 aks6d1c6isolem1.2 . . . . . . . . 9 (𝜑𝐾 ∈ ℕ)
8 aks6d1c6isolem1.3 . . . . . . . . 9 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
96, 7, 8primrootsunit 41796 . . . . . . . 8 (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾) ∧ (𝑅s 𝑈) ∈ Abel))
109simprd 494 . . . . . . 7 (𝜑 → (𝑅s 𝑈) ∈ Abel)
1110ablgrpd 19784 . . . . . 6 (𝜑 → (𝑅s 𝑈) ∈ Grp)
1211adantr 479 . . . . 5 ((𝜑𝑥 ∈ ℤ) → (𝑅s 𝑈) ∈ Grp)
13 simpr 483 . . . . 5 ((𝜑𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
14 aks6d1c6isolem1.5 . . . . . . . . 9 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
159simpld 493 . . . . . . . . 9 (𝜑 → (𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾))
1614, 15eleqtrd 2828 . . . . . . . 8 (𝜑𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾))
1710ablcmnd 19786 . . . . . . . . . 10 (𝜑 → (𝑅s 𝑈) ∈ CMnd)
187nnnn0d 12584 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
1917, 18, 5isprimroot 41792 . . . . . . . . 9 (𝜑 → (𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
2019biimpd 228 . . . . . . . 8 (𝜑 → (𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) → (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
2116, 20mpd 15 . . . . . . 7 (𝜑 → (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙)))
2221simp1d 1139 . . . . . 6 (𝜑𝑀 ∈ (Base‘(𝑅s 𝑈)))
2322adantr 479 . . . . 5 ((𝜑𝑥 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
244, 5, 12, 13, 23mulgcld 19090 . . . 4 ((𝜑𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅s 𝑈))𝑀) ∈ (Base‘(𝑅s 𝑈)))
25 aks6d1c6isolem1.4 . . . 4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
2624, 25fmptd 7128 . . 3 (𝜑𝐹:ℤ⟶(Base‘(𝑅s 𝑈)))
27 frn 6735 . . 3 (𝐹:ℤ⟶(Base‘(𝑅s 𝑈)) → ran 𝐹 ⊆ (Base‘(𝑅s 𝑈)))
2826, 27syl 17 . 2 (𝜑 → ran 𝐹 ⊆ (Base‘(𝑅s 𝑈)))
29 0zd 12622 . . . 4 (𝜑 → 0 ∈ ℤ)
30 simpr 483 . . . . 5 ((𝜑𝑐 = 0) → 𝑐 = 0)
3130fveqeq2d 6909 . . . 4 ((𝜑𝑐 = 0) → ((𝐹𝑐) = (0g‘(𝑅s 𝑈)) ↔ (𝐹‘0) = (0g‘(𝑅s 𝑈))))
3225a1i 11 . . . . 5 (𝜑𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
33 simpr 483 . . . . . . 7 ((𝜑𝑥 = 0) → 𝑥 = 0)
3433oveq1d 7439 . . . . . 6 ((𝜑𝑥 = 0) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (0(.g‘(𝑅s 𝑈))𝑀))
35 eqid 2726 . . . . . . . . 9 (0g‘(𝑅s 𝑈)) = (0g‘(𝑅s 𝑈))
364, 35, 5mulg0 19068 . . . . . . . 8 (𝑀 ∈ (Base‘(𝑅s 𝑈)) → (0(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)))
3722, 36syl 17 . . . . . . 7 (𝜑 → (0(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)))
3837adantr 479 . . . . . 6 ((𝜑𝑥 = 0) → (0(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)))
3934, 38eqtrd 2766 . . . . 5 ((𝜑𝑥 = 0) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)))
40 fvexd 6916 . . . . 5 (𝜑 → (0g‘(𝑅s 𝑈)) ∈ V)
4132, 39, 29, 40fvmptd 7016 . . . 4 (𝜑 → (𝐹‘0) = (0g‘(𝑅s 𝑈)))
4229, 31, 41rspcedvd 3610 . . 3 (𝜑 → ∃𝑐 ∈ ℤ (𝐹𝑐) = (0g‘(𝑅s 𝑈)))
4326ffnd 6729 . . . 4 (𝜑𝐹 Fn ℤ)
44 fvelrnb 6963 . . . 4 (𝐹 Fn ℤ → ((0g‘(𝑅s 𝑈)) ∈ ran 𝐹 ↔ ∃𝑐 ∈ ℤ (𝐹𝑐) = (0g‘(𝑅s 𝑈))))
4543, 44syl 17 . . 3 (𝜑 → ((0g‘(𝑅s 𝑈)) ∈ ran 𝐹 ↔ ∃𝑐 ∈ ℤ (𝐹𝑐) = (0g‘(𝑅s 𝑈))))
4642, 45mpbird 256 . 2 (𝜑 → (0g‘(𝑅s 𝑈)) ∈ ran 𝐹)
47 fvelrnb 6963 . . . . . . 7 (𝐹 Fn ℤ → (𝑦 ∈ ran 𝐹 ↔ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦))
4843, 47syl 17 . . . . . 6 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦))
4948biimpd 228 . . . . 5 (𝜑 → (𝑦 ∈ ran 𝐹 → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦))
5049imp 405 . . . 4 ((𝜑𝑦 ∈ ran 𝐹) → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦)
51503adant3 1129 . . 3 ((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦)
52 simpl1 1188 . . . . . 6 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → 𝜑)
53 simpl3 1190 . . . . . 6 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → 𝑧 ∈ ran 𝐹)
5452, 53jca 510 . . . . 5 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → (𝜑𝑧 ∈ ran 𝐹))
55 fvelrnb 6963 . . . . . . . 8 (𝐹 Fn ℤ → (𝑧 ∈ ran 𝐹 ↔ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧))
5643, 55syl 17 . . . . . . 7 (𝜑 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧))
5756biimpd 228 . . . . . 6 (𝜑 → (𝑧 ∈ ran 𝐹 → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧))
5857imp 405 . . . . 5 ((𝜑𝑧 ∈ ran 𝐹) → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧)
5954, 58syl 17 . . . 4 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧)
60 simpll1 1209 . . . . . . 7 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → 𝜑)
61 simplr 767 . . . . . . 7 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦)
62 simpr 483 . . . . . . 7 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧)
6360, 61, 623jca 1125 . . . . . 6 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → (𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧))
64 simpr 483 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → (𝐹𝑔) = 𝑧)
6564eqcomd 2732 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → 𝑧 = (𝐹𝑔))
6665oveq2d 7440 . . . . . . . 8 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))𝑧) = (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)))
67 simpr 483 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝐹𝑓) = 𝑦)
6867eqcomd 2732 . . . . . . . . . . . 12 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑦 = (𝐹𝑓))
6968oveq1d 7439 . . . . . . . . . . 11 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)) = ((𝐹𝑓)(+g‘(𝑅s 𝑈))(𝐹𝑔)))
70 simpll1 1209 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) → 𝜑)
7170adantr 479 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝜑)
72 simpllr 774 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑔 ∈ ℤ)
73 simplr 767 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑓 ∈ ℤ)
7471, 72, 733jca 1125 . . . . . . . . . . . 12 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ))
7525a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
76 simpr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → 𝑥 = 𝑓)
7776oveq1d 7439 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑓(.g‘(𝑅s 𝑈))𝑀))
78 simp3 1135 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝑓 ∈ ℤ)
79 ovexd 7459 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑓(.g‘(𝑅s 𝑈))𝑀) ∈ V)
8075, 77, 78, 79fvmptd 7016 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝐹𝑓) = (𝑓(.g‘(𝑅s 𝑈))𝑀))
81 simpr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑔) → 𝑥 = 𝑔)
8281oveq1d 7439 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑔) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑔(.g‘(𝑅s 𝑈))𝑀))
83 simp2 1134 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝑔 ∈ ℤ)
84 ovexd 7459 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑔(.g‘(𝑅s 𝑈))𝑀) ∈ V)
8575, 82, 83, 84fvmptd 7016 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝐹𝑔) = (𝑔(.g‘(𝑅s 𝑈))𝑀))
8680, 85oveq12d 7442 . . . . . . . . . . . . 13 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝐹𝑓)(+g‘(𝑅s 𝑈))(𝐹𝑔)) = ((𝑓(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑔(.g‘(𝑅s 𝑈))𝑀)))
87113ad2ant1 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑅s 𝑈) ∈ Grp)
88223ad2ant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
8978, 83, 883jca 1125 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑓 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈))))
90 eqid 2726 . . . . . . . . . . . . . . . 16 (+g‘(𝑅s 𝑈)) = (+g‘(𝑅s 𝑈))
914, 5, 90mulgdir 19100 . . . . . . . . . . . . . . 15 (((𝑅s 𝑈) ∈ Grp ∧ (𝑓 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈)))) → ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) = ((𝑓(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑔(.g‘(𝑅s 𝑈))𝑀)))
9287, 89, 91syl2anc 582 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) = ((𝑓(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑔(.g‘(𝑅s 𝑈))𝑀)))
9378, 83zaddcld 12722 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑓 + 𝑔) ∈ ℤ)
94 simpr 483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ = (𝑓 + 𝑔)) → = (𝑓 + 𝑔))
9594fveqeq2d 6909 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ = (𝑓 + 𝑔)) → ((𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ↔ (𝐹‘(𝑓 + 𝑔)) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀)))
96 simpr 483 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = (𝑓 + 𝑔)) → 𝑥 = (𝑓 + 𝑔))
9796oveq1d 7439 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = (𝑓 + 𝑔)) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀))
98 ovexd 7459 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ V)
9975, 97, 93, 98fvmptd 7016 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝐹‘(𝑓 + 𝑔)) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀))
10093, 95, 99rspcedvd 3610 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ∃ ∈ ℤ (𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀))
101 fvelrnb 6963 . . . . . . . . . . . . . . . . 17 (𝐹 Fn ℤ → (((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀)))
10243, 101syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀)))
1031023ad2ant1 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀)))
104100, 103mpbird 256 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ ran 𝐹)
10592, 104eqeltrrd 2827 . . . . . . . . . . . . 13 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑔(.g‘(𝑅s 𝑈))𝑀)) ∈ ran 𝐹)
10686, 105eqeltrd 2826 . . . . . . . . . . . 12 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝐹𝑓)(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
10774, 106syl 17 . . . . . . . . . . 11 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((𝐹𝑓)(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
10869, 107eqeltrd 2826 . . . . . . . . . 10 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
109 simpl2 1189 . . . . . . . . . . 11 (((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦)
110 nfv 1910 . . . . . . . . . . . . 13 𝑓(𝐹𝑑) = 𝑦
111 nfv 1910 . . . . . . . . . . . . 13 𝑑(𝐹𝑓) = 𝑦
112 fveqeq2 6910 . . . . . . . . . . . . 13 (𝑑 = 𝑓 → ((𝐹𝑑) = 𝑦 ↔ (𝐹𝑓) = 𝑦))
113110, 111, 112cbvrexw 3295 . . . . . . . . . . . 12 (∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ↔ ∃𝑓 ∈ ℤ (𝐹𝑓) = 𝑦)
114113biimpi 215 . . . . . . . . . . 11 (∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 → ∃𝑓 ∈ ℤ (𝐹𝑓) = 𝑦)
115109, 114syl 17 . . . . . . . . . 10 (((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) → ∃𝑓 ∈ ℤ (𝐹𝑓) = 𝑦)
116108, 115r19.29a 3152 . . . . . . . . 9 (((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) → (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
117116adantr 479 . . . . . . . 8 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
11866, 117eqeltrd 2826 . . . . . . 7 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
119 simp3 1135 . . . . . . . 8 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧)
120 nfv 1910 . . . . . . . . . 10 𝑔(𝐹𝑒) = 𝑧
121 nfv 1910 . . . . . . . . . 10 𝑒(𝐹𝑔) = 𝑧
122 fveqeq2 6910 . . . . . . . . . 10 (𝑒 = 𝑔 → ((𝐹𝑒) = 𝑧 ↔ (𝐹𝑔) = 𝑧))
123120, 121, 122cbvrexw 3295 . . . . . . . . 9 (∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧 ↔ ∃𝑔 ∈ ℤ (𝐹𝑔) = 𝑧)
124123biimpi 215 . . . . . . . 8 (∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧 → ∃𝑔 ∈ ℤ (𝐹𝑔) = 𝑧)
125119, 124syl 17 . . . . . . 7 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → ∃𝑔 ∈ ℤ (𝐹𝑔) = 𝑧)
126118, 125r19.29a 3152 . . . . . 6 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
12763, 126syl 17 . . . . 5 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
128127ex 411 . . . 4 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → (∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧 → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹))
12959, 128mpd 15 . . 3 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
13051, 129mpdan 685 . 2 ((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
131 simpr 483 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝐹𝑓) = 𝑦)
132131eqcomd 2732 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑦 = (𝐹𝑓))
133132fveq2d 6905 . . . . . . . 8 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((invg‘(𝑅s 𝑈))‘𝑦) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
134 simplll 773 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝜑)
135 simplr 767 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑓 ∈ ℤ)
136134, 135jca 510 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝜑𝑓 ∈ ℤ))
137 simpr 483 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ℤ) → 𝑓 ∈ ℤ)
138137znegcld 12720 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ ℤ) → -𝑓 ∈ ℤ)
139 simpr 483 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ℤ) ∧ = -𝑓) → = -𝑓)
140139fveqeq2d 6909 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ℤ) ∧ = -𝑓) → ((𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ↔ (𝐹‘-𝑓) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓))))
14125a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
142 simpr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ ℤ) ∧ 𝑥 = -𝑓) → 𝑥 = -𝑓)
143142oveq1d 7439 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ ℤ) ∧ 𝑥 = -𝑓) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (-𝑓(.g‘(𝑅s 𝑈))𝑀))
144 ovexd 7459 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ ℤ) → (-𝑓(.g‘(𝑅s 𝑈))𝑀) ∈ V)
145141, 143, 138, 144fvmptd 7016 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ℤ) → (𝐹‘-𝑓) = (-𝑓(.g‘(𝑅s 𝑈))𝑀))
14611adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑓 ∈ ℤ) → (𝑅s 𝑈) ∈ Grp)
14722adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑓 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
148 eqid 2726 . . . . . . . . . . . . . . . 16 (invg‘(𝑅s 𝑈)) = (invg‘(𝑅s 𝑈))
1494, 5, 148mulgneg 19086 . . . . . . . . . . . . . . 15 (((𝑅s 𝑈) ∈ Grp ∧ 𝑓 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈))) → (-𝑓(.g‘(𝑅s 𝑈))𝑀) = ((invg‘(𝑅s 𝑈))‘(𝑓(.g‘(𝑅s 𝑈))𝑀)))
150146, 137, 147, 149syl3anc 1368 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ ℤ) → (-𝑓(.g‘(𝑅s 𝑈))𝑀) = ((invg‘(𝑅s 𝑈))‘(𝑓(.g‘(𝑅s 𝑈))𝑀)))
151 simpr 483 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → 𝑥 = 𝑓)
152151oveq1d 7439 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑓(.g‘(𝑅s 𝑈))𝑀))
153 ovexd 7459 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ ℤ) → (𝑓(.g‘(𝑅s 𝑈))𝑀) ∈ V)
154141, 152, 137, 153fvmptd 7016 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ ℤ) → (𝐹𝑓) = (𝑓(.g‘(𝑅s 𝑈))𝑀))
155154eqcomd 2732 . . . . . . . . . . . . . . 15 ((𝜑𝑓 ∈ ℤ) → (𝑓(.g‘(𝑅s 𝑈))𝑀) = (𝐹𝑓))
156155fveq2d 6905 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ ℤ) → ((invg‘(𝑅s 𝑈))‘(𝑓(.g‘(𝑅s 𝑈))𝑀)) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
157150, 156eqtrd 2766 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ℤ) → (-𝑓(.g‘(𝑅s 𝑈))𝑀) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
158145, 157eqtrd 2766 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ ℤ) → (𝐹‘-𝑓) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
159138, 140, 158rspcedvd 3610 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℤ) → ∃ ∈ ℤ (𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
160 fvelrnb 6963 . . . . . . . . . . . . 13 (𝐹 Fn ℤ → (((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓))))
16143, 160syl 17 . . . . . . . . . . . 12 (𝜑 → (((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓))))
162161adantr 479 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℤ) → (((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓))))
163159, 162mpbird 256 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℤ) → ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹)
164163a1i 11 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((𝜑𝑓 ∈ ℤ) → ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹))
165136, 164mpd 15 . . . . . . . 8 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹)
166133, 165eqeltrd 2826 . . . . . . 7 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹)
167114adantl 480 . . . . . . 7 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → ∃𝑓 ∈ ℤ (𝐹𝑓) = 𝑦)
168166, 167r19.29a 3152 . . . . . 6 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹)
169168ex 411 . . . . 5 (𝜑 → (∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹))
170169adantr 479 . . . 4 ((𝜑𝑦 ∈ ran 𝐹) → (∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹))
171170imp 405 . . 3 (((𝜑𝑦 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹)
17250, 171mpdan 685 . 2 ((𝜑𝑦 ∈ ran 𝐹) → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹)
1731, 2, 3, 28, 46, 130, 172, 11issubgrpd 19137 1 (𝜑 → ((𝑅s 𝑈) ↾s ran 𝐹) ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  wrex 3060  {crab 3419  Vcvv 3462  wss 3947   class class class wbr 5153  cmpt 5236  ran crn 5683   Fn wfn 6549  wf 6550  cfv 6554  (class class class)co 7424  0cc0 11158   + caddc 11161  -cneg 11495  cn 12264  0cn0 12524  cz 12610  cdvds 16256  Basecbs 17213  s cress 17242  +gcplusg 17266  0gc0g 17454  Grpcgrp 18928  invgcminusg 18929  .gcmg 19061  CMndccmn 19778  Abelcabl 19779   PrimRoots cprimroots 41790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-seq 14022  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-0g 17456  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-grp 18931  df-minusg 18932  df-mulg 19062  df-subg 19117  df-cmn 19780  df-abl 19781  df-primroots 41791
This theorem is referenced by:  aks6d1c6isolem2  41873
  Copyright terms: Public domain W3C validator