Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6isolem1 Structured version   Visualization version   GIF version

Theorem aks6d1c6isolem1 42176
Description: Lemma to construct the map out of the quotient for AKS. (Contributed by metakunt, 14-May-2025.)
Hypotheses
Ref Expression
aks6d1c6isolem1.1 (𝜑𝑅 ∈ CMnd)
aks6d1c6isolem1.2 (𝜑𝐾 ∈ ℕ)
aks6d1c6isolem1.3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
aks6d1c6isolem1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
aks6d1c6isolem1.5 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
Assertion
Ref Expression
aks6d1c6isolem1 (𝜑 → ((𝑅s 𝑈) ↾s ran 𝐹) ∈ Grp)
Distinct variable groups:   𝑥,𝑀   𝑅,𝑎,𝑖   𝑥,𝑅   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎)   𝑈(𝑖,𝑎)   𝐹(𝑥,𝑖,𝑎)   𝐾(𝑥,𝑖,𝑎)   𝑀(𝑖,𝑎)

Proof of Theorem aks6d1c6isolem1
Dummy variables 𝑐 𝑑 𝑓 𝑔 𝑦 𝑒 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2737 . 2 (𝜑 → ((𝑅s 𝑈) ↾s ran 𝐹) = ((𝑅s 𝑈) ↾s ran 𝐹))
2 eqidd 2737 . 2 (𝜑 → (0g‘(𝑅s 𝑈)) = (0g‘(𝑅s 𝑈)))
3 eqidd 2737 . 2 (𝜑 → (+g‘(𝑅s 𝑈)) = (+g‘(𝑅s 𝑈)))
4 eqid 2736 . . . . 5 (Base‘(𝑅s 𝑈)) = (Base‘(𝑅s 𝑈))
5 eqid 2736 . . . . 5 (.g‘(𝑅s 𝑈)) = (.g‘(𝑅s 𝑈))
6 aks6d1c6isolem1.1 . . . . . . . . 9 (𝜑𝑅 ∈ CMnd)
7 aks6d1c6isolem1.2 . . . . . . . . 9 (𝜑𝐾 ∈ ℕ)
8 aks6d1c6isolem1.3 . . . . . . . . 9 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
96, 7, 8primrootsunit 42100 . . . . . . . 8 (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾) ∧ (𝑅s 𝑈) ∈ Abel))
109simprd 495 . . . . . . 7 (𝜑 → (𝑅s 𝑈) ∈ Abel)
1110ablgrpd 19805 . . . . . 6 (𝜑 → (𝑅s 𝑈) ∈ Grp)
1211adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℤ) → (𝑅s 𝑈) ∈ Grp)
13 simpr 484 . . . . 5 ((𝜑𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
14 aks6d1c6isolem1.5 . . . . . . . . 9 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
159simpld 494 . . . . . . . . 9 (𝜑 → (𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾))
1614, 15eleqtrd 2842 . . . . . . . 8 (𝜑𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾))
1710ablcmnd 19807 . . . . . . . . . 10 (𝜑 → (𝑅s 𝑈) ∈ CMnd)
187nnnn0d 12589 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
1917, 18, 5isprimroot 42095 . . . . . . . . 9 (𝜑 → (𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
2019biimpd 229 . . . . . . . 8 (𝜑 → (𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) → (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
2116, 20mpd 15 . . . . . . 7 (𝜑 → (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙)))
2221simp1d 1142 . . . . . 6 (𝜑𝑀 ∈ (Base‘(𝑅s 𝑈)))
2322adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
244, 5, 12, 13, 23mulgcld 19115 . . . 4 ((𝜑𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅s 𝑈))𝑀) ∈ (Base‘(𝑅s 𝑈)))
25 aks6d1c6isolem1.4 . . . 4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
2624, 25fmptd 7133 . . 3 (𝜑𝐹:ℤ⟶(Base‘(𝑅s 𝑈)))
27 frn 6742 . . 3 (𝐹:ℤ⟶(Base‘(𝑅s 𝑈)) → ran 𝐹 ⊆ (Base‘(𝑅s 𝑈)))
2826, 27syl 17 . 2 (𝜑 → ran 𝐹 ⊆ (Base‘(𝑅s 𝑈)))
29 0zd 12627 . . . 4 (𝜑 → 0 ∈ ℤ)
30 simpr 484 . . . . 5 ((𝜑𝑐 = 0) → 𝑐 = 0)
3130fveqeq2d 6913 . . . 4 ((𝜑𝑐 = 0) → ((𝐹𝑐) = (0g‘(𝑅s 𝑈)) ↔ (𝐹‘0) = (0g‘(𝑅s 𝑈))))
3225a1i 11 . . . . 5 (𝜑𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
33 simpr 484 . . . . . . 7 ((𝜑𝑥 = 0) → 𝑥 = 0)
3433oveq1d 7447 . . . . . 6 ((𝜑𝑥 = 0) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (0(.g‘(𝑅s 𝑈))𝑀))
35 eqid 2736 . . . . . . . . 9 (0g‘(𝑅s 𝑈)) = (0g‘(𝑅s 𝑈))
364, 35, 5mulg0 19093 . . . . . . . 8 (𝑀 ∈ (Base‘(𝑅s 𝑈)) → (0(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)))
3722, 36syl 17 . . . . . . 7 (𝜑 → (0(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)))
3837adantr 480 . . . . . 6 ((𝜑𝑥 = 0) → (0(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)))
3934, 38eqtrd 2776 . . . . 5 ((𝜑𝑥 = 0) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)))
40 fvexd 6920 . . . . 5 (𝜑 → (0g‘(𝑅s 𝑈)) ∈ V)
4132, 39, 29, 40fvmptd 7022 . . . 4 (𝜑 → (𝐹‘0) = (0g‘(𝑅s 𝑈)))
4229, 31, 41rspcedvd 3623 . . 3 (𝜑 → ∃𝑐 ∈ ℤ (𝐹𝑐) = (0g‘(𝑅s 𝑈)))
4326ffnd 6736 . . . 4 (𝜑𝐹 Fn ℤ)
44 fvelrnb 6968 . . . 4 (𝐹 Fn ℤ → ((0g‘(𝑅s 𝑈)) ∈ ran 𝐹 ↔ ∃𝑐 ∈ ℤ (𝐹𝑐) = (0g‘(𝑅s 𝑈))))
4543, 44syl 17 . . 3 (𝜑 → ((0g‘(𝑅s 𝑈)) ∈ ran 𝐹 ↔ ∃𝑐 ∈ ℤ (𝐹𝑐) = (0g‘(𝑅s 𝑈))))
4642, 45mpbird 257 . 2 (𝜑 → (0g‘(𝑅s 𝑈)) ∈ ran 𝐹)
47 fvelrnb 6968 . . . . . . 7 (𝐹 Fn ℤ → (𝑦 ∈ ran 𝐹 ↔ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦))
4843, 47syl 17 . . . . . 6 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦))
4948biimpd 229 . . . . 5 (𝜑 → (𝑦 ∈ ran 𝐹 → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦))
5049imp 406 . . . 4 ((𝜑𝑦 ∈ ran 𝐹) → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦)
51503adant3 1132 . . 3 ((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦)
52 simpl1 1191 . . . . . 6 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → 𝜑)
53 simpl3 1193 . . . . . 6 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → 𝑧 ∈ ran 𝐹)
5452, 53jca 511 . . . . 5 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → (𝜑𝑧 ∈ ran 𝐹))
55 fvelrnb 6968 . . . . . . . 8 (𝐹 Fn ℤ → (𝑧 ∈ ran 𝐹 ↔ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧))
5643, 55syl 17 . . . . . . 7 (𝜑 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧))
5756biimpd 229 . . . . . 6 (𝜑 → (𝑧 ∈ ran 𝐹 → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧))
5857imp 406 . . . . 5 ((𝜑𝑧 ∈ ran 𝐹) → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧)
5954, 58syl 17 . . . 4 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧)
60 simpll1 1212 . . . . . . 7 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → 𝜑)
61 simplr 768 . . . . . . 7 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦)
62 simpr 484 . . . . . . 7 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧)
6360, 61, 623jca 1128 . . . . . 6 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → (𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧))
64 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → (𝐹𝑔) = 𝑧)
6564eqcomd 2742 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → 𝑧 = (𝐹𝑔))
6665oveq2d 7448 . . . . . . . 8 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))𝑧) = (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)))
67 simpr 484 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝐹𝑓) = 𝑦)
6867eqcomd 2742 . . . . . . . . . . . 12 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑦 = (𝐹𝑓))
6968oveq1d 7447 . . . . . . . . . . 11 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)) = ((𝐹𝑓)(+g‘(𝑅s 𝑈))(𝐹𝑔)))
70 simpll1 1212 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) → 𝜑)
7170adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝜑)
72 simpllr 775 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑔 ∈ ℤ)
73 simplr 768 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑓 ∈ ℤ)
7471, 72, 733jca 1128 . . . . . . . . . . . 12 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ))
7525a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
76 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → 𝑥 = 𝑓)
7776oveq1d 7447 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑓(.g‘(𝑅s 𝑈))𝑀))
78 simp3 1138 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝑓 ∈ ℤ)
79 ovexd 7467 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑓(.g‘(𝑅s 𝑈))𝑀) ∈ V)
8075, 77, 78, 79fvmptd 7022 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝐹𝑓) = (𝑓(.g‘(𝑅s 𝑈))𝑀))
81 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑔) → 𝑥 = 𝑔)
8281oveq1d 7447 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑔) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑔(.g‘(𝑅s 𝑈))𝑀))
83 simp2 1137 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝑔 ∈ ℤ)
84 ovexd 7467 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑔(.g‘(𝑅s 𝑈))𝑀) ∈ V)
8575, 82, 83, 84fvmptd 7022 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝐹𝑔) = (𝑔(.g‘(𝑅s 𝑈))𝑀))
8680, 85oveq12d 7450 . . . . . . . . . . . . 13 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝐹𝑓)(+g‘(𝑅s 𝑈))(𝐹𝑔)) = ((𝑓(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑔(.g‘(𝑅s 𝑈))𝑀)))
87113ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑅s 𝑈) ∈ Grp)
88223ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
8978, 83, 883jca 1128 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑓 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈))))
90 eqid 2736 . . . . . . . . . . . . . . . 16 (+g‘(𝑅s 𝑈)) = (+g‘(𝑅s 𝑈))
914, 5, 90mulgdir 19125 . . . . . . . . . . . . . . 15 (((𝑅s 𝑈) ∈ Grp ∧ (𝑓 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈)))) → ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) = ((𝑓(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑔(.g‘(𝑅s 𝑈))𝑀)))
9287, 89, 91syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) = ((𝑓(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑔(.g‘(𝑅s 𝑈))𝑀)))
9378, 83zaddcld 12728 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑓 + 𝑔) ∈ ℤ)
94 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ = (𝑓 + 𝑔)) → = (𝑓 + 𝑔))
9594fveqeq2d 6913 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ = (𝑓 + 𝑔)) → ((𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ↔ (𝐹‘(𝑓 + 𝑔)) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀)))
96 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = (𝑓 + 𝑔)) → 𝑥 = (𝑓 + 𝑔))
9796oveq1d 7447 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = (𝑓 + 𝑔)) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀))
98 ovexd 7467 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ V)
9975, 97, 93, 98fvmptd 7022 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝐹‘(𝑓 + 𝑔)) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀))
10093, 95, 99rspcedvd 3623 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ∃ ∈ ℤ (𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀))
101 fvelrnb 6968 . . . . . . . . . . . . . . . . 17 (𝐹 Fn ℤ → (((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀)))
10243, 101syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀)))
1031023ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀)))
104100, 103mpbird 257 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ ran 𝐹)
10592, 104eqeltrrd 2841 . . . . . . . . . . . . 13 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑔(.g‘(𝑅s 𝑈))𝑀)) ∈ ran 𝐹)
10686, 105eqeltrd 2840 . . . . . . . . . . . 12 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝐹𝑓)(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
10774, 106syl 17 . . . . . . . . . . 11 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((𝐹𝑓)(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
10869, 107eqeltrd 2840 . . . . . . . . . 10 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
109 simpl2 1192 . . . . . . . . . . 11 (((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦)
110 nfv 1913 . . . . . . . . . . . . 13 𝑓(𝐹𝑑) = 𝑦
111 nfv 1913 . . . . . . . . . . . . 13 𝑑(𝐹𝑓) = 𝑦
112 fveqeq2 6914 . . . . . . . . . . . . 13 (𝑑 = 𝑓 → ((𝐹𝑑) = 𝑦 ↔ (𝐹𝑓) = 𝑦))
113110, 111, 112cbvrexw 3306 . . . . . . . . . . . 12 (∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ↔ ∃𝑓 ∈ ℤ (𝐹𝑓) = 𝑦)
114113biimpi 216 . . . . . . . . . . 11 (∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 → ∃𝑓 ∈ ℤ (𝐹𝑓) = 𝑦)
115109, 114syl 17 . . . . . . . . . 10 (((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) → ∃𝑓 ∈ ℤ (𝐹𝑓) = 𝑦)
116108, 115r19.29a 3161 . . . . . . . . 9 (((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) → (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
117116adantr 480 . . . . . . . 8 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
11866, 117eqeltrd 2840 . . . . . . 7 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
119 simp3 1138 . . . . . . . 8 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧)
120 nfv 1913 . . . . . . . . . 10 𝑔(𝐹𝑒) = 𝑧
121 nfv 1913 . . . . . . . . . 10 𝑒(𝐹𝑔) = 𝑧
122 fveqeq2 6914 . . . . . . . . . 10 (𝑒 = 𝑔 → ((𝐹𝑒) = 𝑧 ↔ (𝐹𝑔) = 𝑧))
123120, 121, 122cbvrexw 3306 . . . . . . . . 9 (∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧 ↔ ∃𝑔 ∈ ℤ (𝐹𝑔) = 𝑧)
124123biimpi 216 . . . . . . . 8 (∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧 → ∃𝑔 ∈ ℤ (𝐹𝑔) = 𝑧)
125119, 124syl 17 . . . . . . 7 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → ∃𝑔 ∈ ℤ (𝐹𝑔) = 𝑧)
126118, 125r19.29a 3161 . . . . . 6 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
12763, 126syl 17 . . . . 5 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
128127ex 412 . . . 4 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → (∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧 → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹))
12959, 128mpd 15 . . 3 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
13051, 129mpdan 687 . 2 ((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
131 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝐹𝑓) = 𝑦)
132131eqcomd 2742 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑦 = (𝐹𝑓))
133132fveq2d 6909 . . . . . . . 8 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((invg‘(𝑅s 𝑈))‘𝑦) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
134 simplll 774 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝜑)
135 simplr 768 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑓 ∈ ℤ)
136134, 135jca 511 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝜑𝑓 ∈ ℤ))
137 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ℤ) → 𝑓 ∈ ℤ)
138137znegcld 12726 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ ℤ) → -𝑓 ∈ ℤ)
139 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ℤ) ∧ = -𝑓) → = -𝑓)
140139fveqeq2d 6913 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ℤ) ∧ = -𝑓) → ((𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ↔ (𝐹‘-𝑓) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓))))
14125a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
142 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ ℤ) ∧ 𝑥 = -𝑓) → 𝑥 = -𝑓)
143142oveq1d 7447 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ ℤ) ∧ 𝑥 = -𝑓) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (-𝑓(.g‘(𝑅s 𝑈))𝑀))
144 ovexd 7467 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ ℤ) → (-𝑓(.g‘(𝑅s 𝑈))𝑀) ∈ V)
145141, 143, 138, 144fvmptd 7022 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ℤ) → (𝐹‘-𝑓) = (-𝑓(.g‘(𝑅s 𝑈))𝑀))
14611adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑓 ∈ ℤ) → (𝑅s 𝑈) ∈ Grp)
14722adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑓 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
148 eqid 2736 . . . . . . . . . . . . . . . 16 (invg‘(𝑅s 𝑈)) = (invg‘(𝑅s 𝑈))
1494, 5, 148mulgneg 19111 . . . . . . . . . . . . . . 15 (((𝑅s 𝑈) ∈ Grp ∧ 𝑓 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈))) → (-𝑓(.g‘(𝑅s 𝑈))𝑀) = ((invg‘(𝑅s 𝑈))‘(𝑓(.g‘(𝑅s 𝑈))𝑀)))
150146, 137, 147, 149syl3anc 1372 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ ℤ) → (-𝑓(.g‘(𝑅s 𝑈))𝑀) = ((invg‘(𝑅s 𝑈))‘(𝑓(.g‘(𝑅s 𝑈))𝑀)))
151 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → 𝑥 = 𝑓)
152151oveq1d 7447 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑓(.g‘(𝑅s 𝑈))𝑀))
153 ovexd 7467 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ ℤ) → (𝑓(.g‘(𝑅s 𝑈))𝑀) ∈ V)
154141, 152, 137, 153fvmptd 7022 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ ℤ) → (𝐹𝑓) = (𝑓(.g‘(𝑅s 𝑈))𝑀))
155154eqcomd 2742 . . . . . . . . . . . . . . 15 ((𝜑𝑓 ∈ ℤ) → (𝑓(.g‘(𝑅s 𝑈))𝑀) = (𝐹𝑓))
156155fveq2d 6909 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ ℤ) → ((invg‘(𝑅s 𝑈))‘(𝑓(.g‘(𝑅s 𝑈))𝑀)) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
157150, 156eqtrd 2776 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ℤ) → (-𝑓(.g‘(𝑅s 𝑈))𝑀) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
158145, 157eqtrd 2776 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ ℤ) → (𝐹‘-𝑓) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
159138, 140, 158rspcedvd 3623 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℤ) → ∃ ∈ ℤ (𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
160 fvelrnb 6968 . . . . . . . . . . . . 13 (𝐹 Fn ℤ → (((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓))))
16143, 160syl 17 . . . . . . . . . . . 12 (𝜑 → (((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓))))
162161adantr 480 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℤ) → (((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓))))
163159, 162mpbird 257 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℤ) → ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹)
164163a1i 11 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((𝜑𝑓 ∈ ℤ) → ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹))
165136, 164mpd 15 . . . . . . . 8 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹)
166133, 165eqeltrd 2840 . . . . . . 7 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹)
167114adantl 481 . . . . . . 7 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → ∃𝑓 ∈ ℤ (𝐹𝑓) = 𝑦)
168166, 167r19.29a 3161 . . . . . 6 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹)
169168ex 412 . . . . 5 (𝜑 → (∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹))
170169adantr 480 . . . 4 ((𝜑𝑦 ∈ ran 𝐹) → (∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹))
171170imp 406 . . 3 (((𝜑𝑦 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹)
17250, 171mpdan 687 . 2 ((𝜑𝑦 ∈ ran 𝐹) → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹)
1731, 2, 3, 28, 46, 130, 172, 11issubgrpd 19162 1 (𝜑 → ((𝑅s 𝑈) ↾s ran 𝐹) ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  wrex 3069  {crab 3435  Vcvv 3479  wss 3950   class class class wbr 5142  cmpt 5224  ran crn 5685   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  0cc0 11156   + caddc 11159  -cneg 11494  cn 12267  0cn0 12528  cz 12615  cdvds 16291  Basecbs 17248  s cress 17275  +gcplusg 17298  0gc0g 17485  Grpcgrp 18952  invgcminusg 18953  .gcmg 19086  CMndccmn 19799  Abelcabl 19800   PrimRoots cprimroots 42093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-seq 14044  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-grp 18955  df-minusg 18956  df-mulg 19087  df-subg 19142  df-cmn 19801  df-abl 19802  df-primroots 42094
This theorem is referenced by:  aks6d1c6isolem2  42177
  Copyright terms: Public domain W3C validator