| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2737 |
. 2
⊢ (𝜑 → ((𝑅 ↾s 𝑈) ↾s ran 𝐹) = ((𝑅 ↾s 𝑈) ↾s ran 𝐹)) |
| 2 | | eqidd 2737 |
. 2
⊢ (𝜑 →
(0g‘(𝑅
↾s 𝑈)) =
(0g‘(𝑅
↾s 𝑈))) |
| 3 | | eqidd 2737 |
. 2
⊢ (𝜑 →
(+g‘(𝑅
↾s 𝑈)) =
(+g‘(𝑅
↾s 𝑈))) |
| 4 | | eqid 2736 |
. . . . 5
⊢
(Base‘(𝑅
↾s 𝑈)) =
(Base‘(𝑅
↾s 𝑈)) |
| 5 | | eqid 2736 |
. . . . 5
⊢
(.g‘(𝑅 ↾s 𝑈)) = (.g‘(𝑅 ↾s 𝑈)) |
| 6 | | aks6d1c6isolem1.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 7 | | aks6d1c6isolem1.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 8 | | aks6d1c6isolem1.3 |
. . . . . . . . 9
⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} |
| 9 | 6, 7, 8 | primrootsunit 42100 |
. . . . . . . 8
⊢ (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ∧ (𝑅 ↾s 𝑈) ∈ Abel)) |
| 10 | 9 | simprd 495 |
. . . . . . 7
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Abel) |
| 11 | 10 | ablgrpd 19805 |
. . . . . 6
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Grp) |
| 12 | 11 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝑅 ↾s 𝑈) ∈ Grp) |
| 13 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) |
| 14 | | aks6d1c6isolem1.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
| 15 | 9 | simpld 494 |
. . . . . . . . 9
⊢ (𝜑 → (𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
| 16 | 14, 15 | eleqtrd 2842 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
| 17 | 10 | ablcmnd 19807 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ CMnd) |
| 18 | 7 | nnnn0d 12589 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 19 | 17, 18, 5 | isprimroot 42095 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
| 20 | 19 | biimpd 229 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
| 21 | 16, 20 | mpd 15 |
. . . . . . 7
⊢ (𝜑 → (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙))) |
| 22 | 21 | simp1d 1142 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
| 23 | 22 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
| 24 | 4, 5, 12, 13, 23 | mulgcld 19115 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ (Base‘(𝑅 ↾s 𝑈))) |
| 25 | | aks6d1c6isolem1.4 |
. . . 4
⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 26 | 24, 25 | fmptd 7133 |
. . 3
⊢ (𝜑 → 𝐹:ℤ⟶(Base‘(𝑅 ↾s 𝑈))) |
| 27 | | frn 6742 |
. . 3
⊢ (𝐹:ℤ⟶(Base‘(𝑅 ↾s 𝑈)) → ran 𝐹 ⊆ (Base‘(𝑅 ↾s 𝑈))) |
| 28 | 26, 27 | syl 17 |
. 2
⊢ (𝜑 → ran 𝐹 ⊆ (Base‘(𝑅 ↾s 𝑈))) |
| 29 | | 0zd 12627 |
. . . 4
⊢ (𝜑 → 0 ∈
ℤ) |
| 30 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 = 0) → 𝑐 = 0) |
| 31 | 30 | fveqeq2d 6913 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 = 0) → ((𝐹‘𝑐) = (0g‘(𝑅 ↾s 𝑈)) ↔ (𝐹‘0) = (0g‘(𝑅 ↾s 𝑈)))) |
| 32 | 25 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 33 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 0) → 𝑥 = 0) |
| 34 | 33 | oveq1d 7447 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 0) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (0(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 35 | | eqid 2736 |
. . . . . . . . 9
⊢
(0g‘(𝑅 ↾s 𝑈)) = (0g‘(𝑅 ↾s 𝑈)) |
| 36 | 4, 35, 5 | mulg0 19093 |
. . . . . . . 8
⊢ (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) →
(0(.g‘(𝑅
↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
| 37 | 22, 36 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(0(.g‘(𝑅
↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
| 38 | 37 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 0) → (0(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
| 39 | 34, 38 | eqtrd 2776 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 0) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
| 40 | | fvexd 6920 |
. . . . 5
⊢ (𝜑 →
(0g‘(𝑅
↾s 𝑈))
∈ V) |
| 41 | 32, 39, 29, 40 | fvmptd 7022 |
. . . 4
⊢ (𝜑 → (𝐹‘0) = (0g‘(𝑅 ↾s 𝑈))) |
| 42 | 29, 31, 41 | rspcedvd 3623 |
. . 3
⊢ (𝜑 → ∃𝑐 ∈ ℤ (𝐹‘𝑐) = (0g‘(𝑅 ↾s 𝑈))) |
| 43 | 26 | ffnd 6736 |
. . . 4
⊢ (𝜑 → 𝐹 Fn ℤ) |
| 44 | | fvelrnb 6968 |
. . . 4
⊢ (𝐹 Fn ℤ →
((0g‘(𝑅
↾s 𝑈))
∈ ran 𝐹 ↔
∃𝑐 ∈ ℤ
(𝐹‘𝑐) = (0g‘(𝑅 ↾s 𝑈)))) |
| 45 | 43, 44 | syl 17 |
. . 3
⊢ (𝜑 →
((0g‘(𝑅
↾s 𝑈))
∈ ran 𝐹 ↔
∃𝑐 ∈ ℤ
(𝐹‘𝑐) = (0g‘(𝑅 ↾s 𝑈)))) |
| 46 | 42, 45 | mpbird 257 |
. 2
⊢ (𝜑 →
(0g‘(𝑅
↾s 𝑈))
∈ ran 𝐹) |
| 47 | | fvelrnb 6968 |
. . . . . . 7
⊢ (𝐹 Fn ℤ → (𝑦 ∈ ran 𝐹 ↔ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦)) |
| 48 | 43, 47 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦)) |
| 49 | 48 | biimpd 229 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ ran 𝐹 → ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦)) |
| 50 | 49 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) |
| 51 | 50 | 3adant3 1132 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) → ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) |
| 52 | | simpl1 1191 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) → 𝜑) |
| 53 | | simpl3 1193 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) → 𝑧 ∈ ran 𝐹) |
| 54 | 52, 53 | jca 511 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) → (𝜑 ∧ 𝑧 ∈ ran 𝐹)) |
| 55 | | fvelrnb 6968 |
. . . . . . . 8
⊢ (𝐹 Fn ℤ → (𝑧 ∈ ran 𝐹 ↔ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧)) |
| 56 | 43, 55 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧)) |
| 57 | 56 | biimpd 229 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ ran 𝐹 → ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧)) |
| 58 | 57 | imp 406 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐹) → ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) |
| 59 | 54, 58 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) → ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) |
| 60 | | simpll1 1212 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) → 𝜑) |
| 61 | | simplr 768 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) → ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) |
| 62 | | simpr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) → ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) |
| 63 | 60, 61, 62 | 3jca 1128 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) → (𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧)) |
| 64 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹‘𝑔) = 𝑧) → (𝐹‘𝑔) = 𝑧) |
| 65 | 64 | eqcomd 2742 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹‘𝑔) = 𝑧) → 𝑧 = (𝐹‘𝑔)) |
| 66 | 65 | oveq2d 7448 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹‘𝑔) = 𝑧) → (𝑦(+g‘(𝑅 ↾s 𝑈))𝑧) = (𝑦(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑔))) |
| 67 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧
∃𝑑 ∈ ℤ
(𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → (𝐹‘𝑓) = 𝑦) |
| 68 | 67 | eqcomd 2742 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧
∃𝑑 ∈ ℤ
(𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → 𝑦 = (𝐹‘𝑓)) |
| 69 | 68 | oveq1d 7447 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧
∃𝑑 ∈ ℤ
(𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → (𝑦(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑔)) = ((𝐹‘𝑓)(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑔))) |
| 70 | | simpll1 1212 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) → 𝜑) |
| 71 | 70 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧
∃𝑑 ∈ ℤ
(𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → 𝜑) |
| 72 | | simpllr 775 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧
∃𝑑 ∈ ℤ
(𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → 𝑔 ∈ ℤ) |
| 73 | | simplr 768 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧
∃𝑑 ∈ ℤ
(𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → 𝑓 ∈ ℤ) |
| 74 | 71, 72, 73 | 3jca 1128 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧
∃𝑑 ∈ ℤ
(𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → (𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ)) |
| 75 | 25 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 76 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → 𝑥 = 𝑓) |
| 77 | 76 | oveq1d 7447 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 78 | | simp3 1138 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝑓 ∈ ℤ) |
| 79 | | ovexd 7467 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑓(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
| 80 | 75, 77, 78, 79 | fvmptd 7022 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝐹‘𝑓) = (𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 81 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑔) → 𝑥 = 𝑔) |
| 82 | 81 | oveq1d 7447 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑔) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑔(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 83 | | simp2 1137 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝑔 ∈ ℤ) |
| 84 | | ovexd 7467 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑔(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
| 85 | 75, 82, 83, 84 | fvmptd 7022 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝐹‘𝑔) = (𝑔(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 86 | 80, 85 | oveq12d 7450 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝐹‘𝑓)(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑔)) = ((𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑔(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 87 | 11 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑅 ↾s 𝑈) ∈ Grp) |
| 88 | 22 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
| 89 | 78, 83, 88 | 3jca 1128 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑓 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
| 90 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢
(+g‘(𝑅 ↾s 𝑈)) = (+g‘(𝑅 ↾s 𝑈)) |
| 91 | 4, 5, 90 | mulgdir 19125 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝑓 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) → ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑔(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 92 | 87, 89, 91 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑔(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 93 | 78, 83 | zaddcld 12728 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑓 + 𝑔) ∈ ℤ) |
| 94 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ ℎ = (𝑓 + 𝑔)) → ℎ = (𝑓 + 𝑔)) |
| 95 | 94 | fveqeq2d 6913 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ ℎ = (𝑓 + 𝑔)) → ((𝐹‘ℎ) = ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀) ↔ (𝐹‘(𝑓 + 𝑔)) = ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 96 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = (𝑓 + 𝑔)) → 𝑥 = (𝑓 + 𝑔)) |
| 97 | 96 | oveq1d 7447 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = (𝑓 + 𝑔)) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 98 | | ovexd 7467 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
| 99 | 75, 97, 93, 98 | fvmptd 7022 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝐹‘(𝑓 + 𝑔)) = ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 100 | 93, 95, 99 | rspcedvd 3623 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ∃ℎ ∈ ℤ (𝐹‘ℎ) = ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 101 | | fvelrnb 6968 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 Fn ℤ → (((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ ran 𝐹 ↔ ∃ℎ ∈ ℤ (𝐹‘ℎ) = ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 102 | 43, 101 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ ran 𝐹 ↔ ∃ℎ ∈ ℤ (𝐹‘ℎ) = ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 103 | 102 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ ran 𝐹 ↔ ∃ℎ ∈ ℤ (𝐹‘ℎ) = ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 104 | 100, 103 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓 + 𝑔)(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ ran 𝐹) |
| 105 | 92, 104 | eqeltrrd 2841 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑔(.g‘(𝑅 ↾s 𝑈))𝑀)) ∈ ran 𝐹) |
| 106 | 86, 105 | eqeltrd 2840 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝐹‘𝑓)(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑔)) ∈ ran 𝐹) |
| 107 | 74, 106 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧
∃𝑑 ∈ ℤ
(𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → ((𝐹‘𝑓)(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑔)) ∈ ran 𝐹) |
| 108 | 69, 107 | eqeltrd 2840 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧
∃𝑑 ∈ ℤ
(𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → (𝑦(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑔)) ∈ ran 𝐹) |
| 109 | | simpl2 1192 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) → ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) |
| 110 | | nfv 1913 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑓(𝐹‘𝑑) = 𝑦 |
| 111 | | nfv 1913 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑑(𝐹‘𝑓) = 𝑦 |
| 112 | | fveqeq2 6914 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑓 → ((𝐹‘𝑑) = 𝑦 ↔ (𝐹‘𝑓) = 𝑦)) |
| 113 | 110, 111,
112 | cbvrexw 3306 |
. . . . . . . . . . . 12
⊢
(∃𝑑 ∈
ℤ (𝐹‘𝑑) = 𝑦 ↔ ∃𝑓 ∈ ℤ (𝐹‘𝑓) = 𝑦) |
| 114 | 113 | biimpi 216 |
. . . . . . . . . . 11
⊢
(∃𝑑 ∈
ℤ (𝐹‘𝑑) = 𝑦 → ∃𝑓 ∈ ℤ (𝐹‘𝑓) = 𝑦) |
| 115 | 109, 114 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) → ∃𝑓 ∈ ℤ (𝐹‘𝑓) = 𝑦) |
| 116 | 108, 115 | r19.29a 3161 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) → (𝑦(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑔)) ∈ ran 𝐹) |
| 117 | 116 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹‘𝑔) = 𝑧) → (𝑦(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑔)) ∈ ran 𝐹) |
| 118 | 66, 117 | eqeltrd 2840 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹‘𝑔) = 𝑧) → (𝑦(+g‘(𝑅 ↾s 𝑈))𝑧) ∈ ran 𝐹) |
| 119 | | simp3 1138 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) → ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) |
| 120 | | nfv 1913 |
. . . . . . . . . 10
⊢
Ⅎ𝑔(𝐹‘𝑒) = 𝑧 |
| 121 | | nfv 1913 |
. . . . . . . . . 10
⊢
Ⅎ𝑒(𝐹‘𝑔) = 𝑧 |
| 122 | | fveqeq2 6914 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑔 → ((𝐹‘𝑒) = 𝑧 ↔ (𝐹‘𝑔) = 𝑧)) |
| 123 | 120, 121,
122 | cbvrexw 3306 |
. . . . . . . . 9
⊢
(∃𝑒 ∈
ℤ (𝐹‘𝑒) = 𝑧 ↔ ∃𝑔 ∈ ℤ (𝐹‘𝑔) = 𝑧) |
| 124 | 123 | biimpi 216 |
. . . . . . . 8
⊢
(∃𝑒 ∈
ℤ (𝐹‘𝑒) = 𝑧 → ∃𝑔 ∈ ℤ (𝐹‘𝑔) = 𝑧) |
| 125 | 119, 124 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) → ∃𝑔 ∈ ℤ (𝐹‘𝑔) = 𝑧) |
| 126 | 118, 125 | r19.29a 3161 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) → (𝑦(+g‘(𝑅 ↾s 𝑈))𝑧) ∈ ran 𝐹) |
| 127 | 63, 126 | syl 17 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧) → (𝑦(+g‘(𝑅 ↾s 𝑈))𝑧) ∈ ran 𝐹) |
| 128 | 127 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) → (∃𝑒 ∈ ℤ (𝐹‘𝑒) = 𝑧 → (𝑦(+g‘(𝑅 ↾s 𝑈))𝑧) ∈ ran 𝐹)) |
| 129 | 59, 128 | mpd 15 |
. . 3
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) → (𝑦(+g‘(𝑅 ↾s 𝑈))𝑧) ∈ ran 𝐹) |
| 130 | 51, 129 | mpdan 687 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹) → (𝑦(+g‘(𝑅 ↾s 𝑈))𝑧) ∈ ran 𝐹) |
| 131 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → (𝐹‘𝑓) = 𝑦) |
| 132 | 131 | eqcomd 2742 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → 𝑦 = (𝐹‘𝑓)) |
| 133 | 132 | fveq2d 6909 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → ((invg‘(𝑅 ↾s 𝑈))‘𝑦) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓))) |
| 134 | | simplll 774 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → 𝜑) |
| 135 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → 𝑓 ∈ ℤ) |
| 136 | 134, 135 | jca 511 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → (𝜑 ∧ 𝑓 ∈ ℤ)) |
| 137 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → 𝑓 ∈ ℤ) |
| 138 | 137 | znegcld 12726 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → -𝑓 ∈ ℤ) |
| 139 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ ℤ) ∧ ℎ = -𝑓) → ℎ = -𝑓) |
| 140 | 139 | fveqeq2d 6913 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ ℤ) ∧ ℎ = -𝑓) → ((𝐹‘ℎ) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓)) ↔ (𝐹‘-𝑓) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓)))) |
| 141 | 25 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 142 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = -𝑓) → 𝑥 = -𝑓) |
| 143 | 142 | oveq1d 7447 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = -𝑓) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (-𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 144 | | ovexd 7467 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → (-𝑓(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
| 145 | 141, 143,
138, 144 | fvmptd 7022 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → (𝐹‘-𝑓) = (-𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 146 | 11 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → (𝑅 ↾s 𝑈) ∈ Grp) |
| 147 | 22 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
| 148 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢
(invg‘(𝑅 ↾s 𝑈)) = (invg‘(𝑅 ↾s 𝑈)) |
| 149 | 4, 5, 148 | mulgneg 19111 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ 𝑓 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) → (-𝑓(.g‘(𝑅 ↾s 𝑈))𝑀) = ((invg‘(𝑅 ↾s 𝑈))‘(𝑓(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 150 | 146, 137,
147, 149 | syl3anc 1372 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → (-𝑓(.g‘(𝑅 ↾s 𝑈))𝑀) = ((invg‘(𝑅 ↾s 𝑈))‘(𝑓(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 151 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → 𝑥 = 𝑓) |
| 152 | 151 | oveq1d 7447 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 153 | | ovexd 7467 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → (𝑓(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
| 154 | 141, 152,
137, 153 | fvmptd 7022 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → (𝐹‘𝑓) = (𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 155 | 154 | eqcomd 2742 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → (𝑓(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝐹‘𝑓)) |
| 156 | 155 | fveq2d 6909 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) →
((invg‘(𝑅
↾s 𝑈))‘(𝑓(.g‘(𝑅 ↾s 𝑈))𝑀)) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓))) |
| 157 | 150, 156 | eqtrd 2776 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → (-𝑓(.g‘(𝑅 ↾s 𝑈))𝑀) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓))) |
| 158 | 145, 157 | eqtrd 2776 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → (𝐹‘-𝑓) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓))) |
| 159 | 138, 140,
158 | rspcedvd 3623 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → ∃ℎ ∈ ℤ (𝐹‘ℎ) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓))) |
| 160 | | fvelrnb 6968 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn ℤ →
(((invg‘(𝑅
↾s 𝑈))‘(𝐹‘𝑓)) ∈ ran 𝐹 ↔ ∃ℎ ∈ ℤ (𝐹‘ℎ) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓)))) |
| 161 | 43, 160 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(((invg‘(𝑅
↾s 𝑈))‘(𝐹‘𝑓)) ∈ ran 𝐹 ↔ ∃ℎ ∈ ℤ (𝐹‘ℎ) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓)))) |
| 162 | 161 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) →
(((invg‘(𝑅
↾s 𝑈))‘(𝐹‘𝑓)) ∈ ran 𝐹 ↔ ∃ℎ ∈ ℤ (𝐹‘ℎ) = ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓)))) |
| 163 | 159, 162 | mpbird 257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) →
((invg‘(𝑅
↾s 𝑈))‘(𝐹‘𝑓)) ∈ ran 𝐹) |
| 164 | 163 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → ((𝜑 ∧ 𝑓 ∈ ℤ) →
((invg‘(𝑅
↾s 𝑈))‘(𝐹‘𝑓)) ∈ ran 𝐹)) |
| 165 | 136, 164 | mpd 15 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → ((invg‘(𝑅 ↾s 𝑈))‘(𝐹‘𝑓)) ∈ ran 𝐹) |
| 166 | 133, 165 | eqeltrd 2840 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹‘𝑓) = 𝑦) → ((invg‘(𝑅 ↾s 𝑈))‘𝑦) ∈ ran 𝐹) |
| 167 | 114 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) → ∃𝑓 ∈ ℤ (𝐹‘𝑓) = 𝑦) |
| 168 | 166, 167 | r19.29a 3161 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) → ((invg‘(𝑅 ↾s 𝑈))‘𝑦) ∈ ran 𝐹) |
| 169 | 168 | ex 412 |
. . . . 5
⊢ (𝜑 → (∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 → ((invg‘(𝑅 ↾s 𝑈))‘𝑦) ∈ ran 𝐹)) |
| 170 | 169 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → (∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦 → ((invg‘(𝑅 ↾s 𝑈))‘𝑦) ∈ ran 𝐹)) |
| 171 | 170 | imp 406 |
. . 3
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹‘𝑑) = 𝑦) → ((invg‘(𝑅 ↾s 𝑈))‘𝑦) ∈ ran 𝐹) |
| 172 | 50, 171 | mpdan 687 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → ((invg‘(𝑅 ↾s 𝑈))‘𝑦) ∈ ran 𝐹) |
| 173 | 1, 2, 3, 28, 46, 130, 172, 11 | issubgrpd 19162 |
1
⊢ (𝜑 → ((𝑅 ↾s 𝑈) ↾s ran 𝐹) ∈ Grp) |