Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6isolem1 Structured version   Visualization version   GIF version

Theorem aks6d1c6isolem1 42162
Description: Lemma to construct the map out of the quotient for AKS. (Contributed by metakunt, 14-May-2025.)
Hypotheses
Ref Expression
aks6d1c6isolem1.1 (𝜑𝑅 ∈ CMnd)
aks6d1c6isolem1.2 (𝜑𝐾 ∈ ℕ)
aks6d1c6isolem1.3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
aks6d1c6isolem1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
aks6d1c6isolem1.5 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
Assertion
Ref Expression
aks6d1c6isolem1 (𝜑 → ((𝑅s 𝑈) ↾s ran 𝐹) ∈ Grp)
Distinct variable groups:   𝑥,𝑀   𝑅,𝑎,𝑖   𝑥,𝑅   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎)   𝑈(𝑖,𝑎)   𝐹(𝑥,𝑖,𝑎)   𝐾(𝑥,𝑖,𝑎)   𝑀(𝑖,𝑎)

Proof of Theorem aks6d1c6isolem1
Dummy variables 𝑐 𝑑 𝑓 𝑔 𝑦 𝑒 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . 2 (𝜑 → ((𝑅s 𝑈) ↾s ran 𝐹) = ((𝑅s 𝑈) ↾s ran 𝐹))
2 eqidd 2730 . 2 (𝜑 → (0g‘(𝑅s 𝑈)) = (0g‘(𝑅s 𝑈)))
3 eqidd 2730 . 2 (𝜑 → (+g‘(𝑅s 𝑈)) = (+g‘(𝑅s 𝑈)))
4 eqid 2729 . . . . 5 (Base‘(𝑅s 𝑈)) = (Base‘(𝑅s 𝑈))
5 eqid 2729 . . . . 5 (.g‘(𝑅s 𝑈)) = (.g‘(𝑅s 𝑈))
6 aks6d1c6isolem1.1 . . . . . . . . 9 (𝜑𝑅 ∈ CMnd)
7 aks6d1c6isolem1.2 . . . . . . . . 9 (𝜑𝐾 ∈ ℕ)
8 aks6d1c6isolem1.3 . . . . . . . . 9 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
96, 7, 8primrootsunit 42086 . . . . . . . 8 (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾) ∧ (𝑅s 𝑈) ∈ Abel))
109simprd 495 . . . . . . 7 (𝜑 → (𝑅s 𝑈) ∈ Abel)
1110ablgrpd 19716 . . . . . 6 (𝜑 → (𝑅s 𝑈) ∈ Grp)
1211adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℤ) → (𝑅s 𝑈) ∈ Grp)
13 simpr 484 . . . . 5 ((𝜑𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
14 aks6d1c6isolem1.5 . . . . . . . . 9 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
159simpld 494 . . . . . . . . 9 (𝜑 → (𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾))
1614, 15eleqtrd 2830 . . . . . . . 8 (𝜑𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾))
1710ablcmnd 19718 . . . . . . . . . 10 (𝜑 → (𝑅s 𝑈) ∈ CMnd)
187nnnn0d 12503 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
1917, 18, 5isprimroot 42081 . . . . . . . . 9 (𝜑 → (𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
2019biimpd 229 . . . . . . . 8 (𝜑 → (𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) → (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
2116, 20mpd 15 . . . . . . 7 (𝜑 → (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙)))
2221simp1d 1142 . . . . . 6 (𝜑𝑀 ∈ (Base‘(𝑅s 𝑈)))
2322adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
244, 5, 12, 13, 23mulgcld 19028 . . . 4 ((𝜑𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅s 𝑈))𝑀) ∈ (Base‘(𝑅s 𝑈)))
25 aks6d1c6isolem1.4 . . . 4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
2624, 25fmptd 7086 . . 3 (𝜑𝐹:ℤ⟶(Base‘(𝑅s 𝑈)))
27 frn 6695 . . 3 (𝐹:ℤ⟶(Base‘(𝑅s 𝑈)) → ran 𝐹 ⊆ (Base‘(𝑅s 𝑈)))
2826, 27syl 17 . 2 (𝜑 → ran 𝐹 ⊆ (Base‘(𝑅s 𝑈)))
29 0zd 12541 . . . 4 (𝜑 → 0 ∈ ℤ)
30 simpr 484 . . . . 5 ((𝜑𝑐 = 0) → 𝑐 = 0)
3130fveqeq2d 6866 . . . 4 ((𝜑𝑐 = 0) → ((𝐹𝑐) = (0g‘(𝑅s 𝑈)) ↔ (𝐹‘0) = (0g‘(𝑅s 𝑈))))
3225a1i 11 . . . . 5 (𝜑𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
33 simpr 484 . . . . . . 7 ((𝜑𝑥 = 0) → 𝑥 = 0)
3433oveq1d 7402 . . . . . 6 ((𝜑𝑥 = 0) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (0(.g‘(𝑅s 𝑈))𝑀))
35 eqid 2729 . . . . . . . . 9 (0g‘(𝑅s 𝑈)) = (0g‘(𝑅s 𝑈))
364, 35, 5mulg0 19006 . . . . . . . 8 (𝑀 ∈ (Base‘(𝑅s 𝑈)) → (0(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)))
3722, 36syl 17 . . . . . . 7 (𝜑 → (0(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)))
3837adantr 480 . . . . . 6 ((𝜑𝑥 = 0) → (0(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)))
3934, 38eqtrd 2764 . . . . 5 ((𝜑𝑥 = 0) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)))
40 fvexd 6873 . . . . 5 (𝜑 → (0g‘(𝑅s 𝑈)) ∈ V)
4132, 39, 29, 40fvmptd 6975 . . . 4 (𝜑 → (𝐹‘0) = (0g‘(𝑅s 𝑈)))
4229, 31, 41rspcedvd 3590 . . 3 (𝜑 → ∃𝑐 ∈ ℤ (𝐹𝑐) = (0g‘(𝑅s 𝑈)))
4326ffnd 6689 . . . 4 (𝜑𝐹 Fn ℤ)
44 fvelrnb 6921 . . . 4 (𝐹 Fn ℤ → ((0g‘(𝑅s 𝑈)) ∈ ran 𝐹 ↔ ∃𝑐 ∈ ℤ (𝐹𝑐) = (0g‘(𝑅s 𝑈))))
4543, 44syl 17 . . 3 (𝜑 → ((0g‘(𝑅s 𝑈)) ∈ ran 𝐹 ↔ ∃𝑐 ∈ ℤ (𝐹𝑐) = (0g‘(𝑅s 𝑈))))
4642, 45mpbird 257 . 2 (𝜑 → (0g‘(𝑅s 𝑈)) ∈ ran 𝐹)
47 fvelrnb 6921 . . . . . . 7 (𝐹 Fn ℤ → (𝑦 ∈ ran 𝐹 ↔ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦))
4843, 47syl 17 . . . . . 6 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦))
4948biimpd 229 . . . . 5 (𝜑 → (𝑦 ∈ ran 𝐹 → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦))
5049imp 406 . . . 4 ((𝜑𝑦 ∈ ran 𝐹) → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦)
51503adant3 1132 . . 3 ((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦)
52 simpl1 1192 . . . . . 6 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → 𝜑)
53 simpl3 1194 . . . . . 6 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → 𝑧 ∈ ran 𝐹)
5452, 53jca 511 . . . . 5 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → (𝜑𝑧 ∈ ran 𝐹))
55 fvelrnb 6921 . . . . . . . 8 (𝐹 Fn ℤ → (𝑧 ∈ ran 𝐹 ↔ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧))
5643, 55syl 17 . . . . . . 7 (𝜑 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧))
5756biimpd 229 . . . . . 6 (𝜑 → (𝑧 ∈ ran 𝐹 → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧))
5857imp 406 . . . . 5 ((𝜑𝑧 ∈ ran 𝐹) → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧)
5954, 58syl 17 . . . 4 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧)
60 simpll1 1213 . . . . . . 7 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → 𝜑)
61 simplr 768 . . . . . . 7 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦)
62 simpr 484 . . . . . . 7 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧)
6360, 61, 623jca 1128 . . . . . 6 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → (𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧))
64 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → (𝐹𝑔) = 𝑧)
6564eqcomd 2735 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → 𝑧 = (𝐹𝑔))
6665oveq2d 7403 . . . . . . . 8 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))𝑧) = (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)))
67 simpr 484 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝐹𝑓) = 𝑦)
6867eqcomd 2735 . . . . . . . . . . . 12 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑦 = (𝐹𝑓))
6968oveq1d 7402 . . . . . . . . . . 11 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)) = ((𝐹𝑓)(+g‘(𝑅s 𝑈))(𝐹𝑔)))
70 simpll1 1213 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) → 𝜑)
7170adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝜑)
72 simpllr 775 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑔 ∈ ℤ)
73 simplr 768 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑓 ∈ ℤ)
7471, 72, 733jca 1128 . . . . . . . . . . . 12 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ))
7525a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
76 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → 𝑥 = 𝑓)
7776oveq1d 7402 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑓(.g‘(𝑅s 𝑈))𝑀))
78 simp3 1138 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝑓 ∈ ℤ)
79 ovexd 7422 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑓(.g‘(𝑅s 𝑈))𝑀) ∈ V)
8075, 77, 78, 79fvmptd 6975 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝐹𝑓) = (𝑓(.g‘(𝑅s 𝑈))𝑀))
81 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑔) → 𝑥 = 𝑔)
8281oveq1d 7402 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑔) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑔(.g‘(𝑅s 𝑈))𝑀))
83 simp2 1137 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝑔 ∈ ℤ)
84 ovexd 7422 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑔(.g‘(𝑅s 𝑈))𝑀) ∈ V)
8575, 82, 83, 84fvmptd 6975 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝐹𝑔) = (𝑔(.g‘(𝑅s 𝑈))𝑀))
8680, 85oveq12d 7405 . . . . . . . . . . . . 13 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝐹𝑓)(+g‘(𝑅s 𝑈))(𝐹𝑔)) = ((𝑓(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑔(.g‘(𝑅s 𝑈))𝑀)))
87113ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑅s 𝑈) ∈ Grp)
88223ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
8978, 83, 883jca 1128 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑓 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈))))
90 eqid 2729 . . . . . . . . . . . . . . . 16 (+g‘(𝑅s 𝑈)) = (+g‘(𝑅s 𝑈))
914, 5, 90mulgdir 19038 . . . . . . . . . . . . . . 15 (((𝑅s 𝑈) ∈ Grp ∧ (𝑓 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈)))) → ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) = ((𝑓(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑔(.g‘(𝑅s 𝑈))𝑀)))
9287, 89, 91syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) = ((𝑓(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑔(.g‘(𝑅s 𝑈))𝑀)))
9378, 83zaddcld 12642 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑓 + 𝑔) ∈ ℤ)
94 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ = (𝑓 + 𝑔)) → = (𝑓 + 𝑔))
9594fveqeq2d 6866 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ = (𝑓 + 𝑔)) → ((𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ↔ (𝐹‘(𝑓 + 𝑔)) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀)))
96 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = (𝑓 + 𝑔)) → 𝑥 = (𝑓 + 𝑔))
9796oveq1d 7402 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = (𝑓 + 𝑔)) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀))
98 ovexd 7422 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ V)
9975, 97, 93, 98fvmptd 6975 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝐹‘(𝑓 + 𝑔)) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀))
10093, 95, 99rspcedvd 3590 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ∃ ∈ ℤ (𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀))
101 fvelrnb 6921 . . . . . . . . . . . . . . . . 17 (𝐹 Fn ℤ → (((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀)))
10243, 101syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀)))
1031023ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀)))
104100, 103mpbird 257 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ ran 𝐹)
10592, 104eqeltrrd 2829 . . . . . . . . . . . . 13 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑔(.g‘(𝑅s 𝑈))𝑀)) ∈ ran 𝐹)
10686, 105eqeltrd 2828 . . . . . . . . . . . 12 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝐹𝑓)(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
10774, 106syl 17 . . . . . . . . . . 11 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((𝐹𝑓)(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
10869, 107eqeltrd 2828 . . . . . . . . . 10 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
109 simpl2 1193 . . . . . . . . . . 11 (((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦)
110 nfv 1914 . . . . . . . . . . . . 13 𝑓(𝐹𝑑) = 𝑦
111 nfv 1914 . . . . . . . . . . . . 13 𝑑(𝐹𝑓) = 𝑦
112 fveqeq2 6867 . . . . . . . . . . . . 13 (𝑑 = 𝑓 → ((𝐹𝑑) = 𝑦 ↔ (𝐹𝑓) = 𝑦))
113110, 111, 112cbvrexw 3281 . . . . . . . . . . . 12 (∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ↔ ∃𝑓 ∈ ℤ (𝐹𝑓) = 𝑦)
114113biimpi 216 . . . . . . . . . . 11 (∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 → ∃𝑓 ∈ ℤ (𝐹𝑓) = 𝑦)
115109, 114syl 17 . . . . . . . . . 10 (((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) → ∃𝑓 ∈ ℤ (𝐹𝑓) = 𝑦)
116108, 115r19.29a 3141 . . . . . . . . 9 (((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) → (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
117116adantr 480 . . . . . . . 8 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
11866, 117eqeltrd 2828 . . . . . . 7 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
119 simp3 1138 . . . . . . . 8 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧)
120 nfv 1914 . . . . . . . . . 10 𝑔(𝐹𝑒) = 𝑧
121 nfv 1914 . . . . . . . . . 10 𝑒(𝐹𝑔) = 𝑧
122 fveqeq2 6867 . . . . . . . . . 10 (𝑒 = 𝑔 → ((𝐹𝑒) = 𝑧 ↔ (𝐹𝑔) = 𝑧))
123120, 121, 122cbvrexw 3281 . . . . . . . . 9 (∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧 ↔ ∃𝑔 ∈ ℤ (𝐹𝑔) = 𝑧)
124123biimpi 216 . . . . . . . 8 (∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧 → ∃𝑔 ∈ ℤ (𝐹𝑔) = 𝑧)
125119, 124syl 17 . . . . . . 7 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → ∃𝑔 ∈ ℤ (𝐹𝑔) = 𝑧)
126118, 125r19.29a 3141 . . . . . 6 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
12763, 126syl 17 . . . . 5 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
128127ex 412 . . . 4 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → (∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧 → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹))
12959, 128mpd 15 . . 3 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
13051, 129mpdan 687 . 2 ((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
131 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝐹𝑓) = 𝑦)
132131eqcomd 2735 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑦 = (𝐹𝑓))
133132fveq2d 6862 . . . . . . . 8 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((invg‘(𝑅s 𝑈))‘𝑦) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
134 simplll 774 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝜑)
135 simplr 768 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑓 ∈ ℤ)
136134, 135jca 511 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝜑𝑓 ∈ ℤ))
137 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ℤ) → 𝑓 ∈ ℤ)
138137znegcld 12640 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ ℤ) → -𝑓 ∈ ℤ)
139 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ℤ) ∧ = -𝑓) → = -𝑓)
140139fveqeq2d 6866 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ℤ) ∧ = -𝑓) → ((𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ↔ (𝐹‘-𝑓) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓))))
14125a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
142 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ ℤ) ∧ 𝑥 = -𝑓) → 𝑥 = -𝑓)
143142oveq1d 7402 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ ℤ) ∧ 𝑥 = -𝑓) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (-𝑓(.g‘(𝑅s 𝑈))𝑀))
144 ovexd 7422 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ ℤ) → (-𝑓(.g‘(𝑅s 𝑈))𝑀) ∈ V)
145141, 143, 138, 144fvmptd 6975 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ℤ) → (𝐹‘-𝑓) = (-𝑓(.g‘(𝑅s 𝑈))𝑀))
14611adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑓 ∈ ℤ) → (𝑅s 𝑈) ∈ Grp)
14722adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑓 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
148 eqid 2729 . . . . . . . . . . . . . . . 16 (invg‘(𝑅s 𝑈)) = (invg‘(𝑅s 𝑈))
1494, 5, 148mulgneg 19024 . . . . . . . . . . . . . . 15 (((𝑅s 𝑈) ∈ Grp ∧ 𝑓 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈))) → (-𝑓(.g‘(𝑅s 𝑈))𝑀) = ((invg‘(𝑅s 𝑈))‘(𝑓(.g‘(𝑅s 𝑈))𝑀)))
150146, 137, 147, 149syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ ℤ) → (-𝑓(.g‘(𝑅s 𝑈))𝑀) = ((invg‘(𝑅s 𝑈))‘(𝑓(.g‘(𝑅s 𝑈))𝑀)))
151 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → 𝑥 = 𝑓)
152151oveq1d 7402 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑓(.g‘(𝑅s 𝑈))𝑀))
153 ovexd 7422 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ ℤ) → (𝑓(.g‘(𝑅s 𝑈))𝑀) ∈ V)
154141, 152, 137, 153fvmptd 6975 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ ℤ) → (𝐹𝑓) = (𝑓(.g‘(𝑅s 𝑈))𝑀))
155154eqcomd 2735 . . . . . . . . . . . . . . 15 ((𝜑𝑓 ∈ ℤ) → (𝑓(.g‘(𝑅s 𝑈))𝑀) = (𝐹𝑓))
156155fveq2d 6862 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ ℤ) → ((invg‘(𝑅s 𝑈))‘(𝑓(.g‘(𝑅s 𝑈))𝑀)) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
157150, 156eqtrd 2764 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ℤ) → (-𝑓(.g‘(𝑅s 𝑈))𝑀) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
158145, 157eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ ℤ) → (𝐹‘-𝑓) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
159138, 140, 158rspcedvd 3590 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℤ) → ∃ ∈ ℤ (𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
160 fvelrnb 6921 . . . . . . . . . . . . 13 (𝐹 Fn ℤ → (((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓))))
16143, 160syl 17 . . . . . . . . . . . 12 (𝜑 → (((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓))))
162161adantr 480 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℤ) → (((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓))))
163159, 162mpbird 257 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℤ) → ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹)
164163a1i 11 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((𝜑𝑓 ∈ ℤ) → ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹))
165136, 164mpd 15 . . . . . . . 8 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹)
166133, 165eqeltrd 2828 . . . . . . 7 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹)
167114adantl 481 . . . . . . 7 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → ∃𝑓 ∈ ℤ (𝐹𝑓) = 𝑦)
168166, 167r19.29a 3141 . . . . . 6 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹)
169168ex 412 . . . . 5 (𝜑 → (∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹))
170169adantr 480 . . . 4 ((𝜑𝑦 ∈ ran 𝐹) → (∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹))
171170imp 406 . . 3 (((𝜑𝑦 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹)
17250, 171mpdan 687 . 2 ((𝜑𝑦 ∈ ran 𝐹) → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹)
1731, 2, 3, 28, 46, 130, 172, 11issubgrpd 19075 1 (𝜑 → ((𝑅s 𝑈) ↾s ran 𝐹) ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914   class class class wbr 5107  cmpt 5188  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  0cc0 11068   + caddc 11071  -cneg 11406  cn 12186  0cn0 12442  cz 12529  cdvds 16222  Basecbs 17179  s cress 17200  +gcplusg 17220  0gc0g 17402  Grpcgrp 18865  invgcminusg 18866  .gcmg 18999  CMndccmn 19710  Abelcabl 19711   PrimRoots cprimroots 42079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055  df-cmn 19712  df-abl 19713  df-primroots 42080
This theorem is referenced by:  aks6d1c6isolem2  42163
  Copyright terms: Public domain W3C validator