Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6isolem1 Structured version   Visualization version   GIF version

Theorem aks6d1c6isolem1 42192
Description: Lemma to construct the map out of the quotient for AKS. (Contributed by metakunt, 14-May-2025.)
Hypotheses
Ref Expression
aks6d1c6isolem1.1 (𝜑𝑅 ∈ CMnd)
aks6d1c6isolem1.2 (𝜑𝐾 ∈ ℕ)
aks6d1c6isolem1.3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
aks6d1c6isolem1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
aks6d1c6isolem1.5 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
Assertion
Ref Expression
aks6d1c6isolem1 (𝜑 → ((𝑅s 𝑈) ↾s ran 𝐹) ∈ Grp)
Distinct variable groups:   𝑥,𝑀   𝑅,𝑎,𝑖   𝑥,𝑅   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎)   𝑈(𝑖,𝑎)   𝐹(𝑥,𝑖,𝑎)   𝐾(𝑥,𝑖,𝑎)   𝑀(𝑖,𝑎)

Proof of Theorem aks6d1c6isolem1
Dummy variables 𝑐 𝑑 𝑓 𝑔 𝑦 𝑒 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2737 . 2 (𝜑 → ((𝑅s 𝑈) ↾s ran 𝐹) = ((𝑅s 𝑈) ↾s ran 𝐹))
2 eqidd 2737 . 2 (𝜑 → (0g‘(𝑅s 𝑈)) = (0g‘(𝑅s 𝑈)))
3 eqidd 2737 . 2 (𝜑 → (+g‘(𝑅s 𝑈)) = (+g‘(𝑅s 𝑈)))
4 eqid 2736 . . . . 5 (Base‘(𝑅s 𝑈)) = (Base‘(𝑅s 𝑈))
5 eqid 2736 . . . . 5 (.g‘(𝑅s 𝑈)) = (.g‘(𝑅s 𝑈))
6 aks6d1c6isolem1.1 . . . . . . . . 9 (𝜑𝑅 ∈ CMnd)
7 aks6d1c6isolem1.2 . . . . . . . . 9 (𝜑𝐾 ∈ ℕ)
8 aks6d1c6isolem1.3 . . . . . . . . 9 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
96, 7, 8primrootsunit 42116 . . . . . . . 8 (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾) ∧ (𝑅s 𝑈) ∈ Abel))
109simprd 495 . . . . . . 7 (𝜑 → (𝑅s 𝑈) ∈ Abel)
1110ablgrpd 19772 . . . . . 6 (𝜑 → (𝑅s 𝑈) ∈ Grp)
1211adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℤ) → (𝑅s 𝑈) ∈ Grp)
13 simpr 484 . . . . 5 ((𝜑𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
14 aks6d1c6isolem1.5 . . . . . . . . 9 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
159simpld 494 . . . . . . . . 9 (𝜑 → (𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾))
1614, 15eleqtrd 2837 . . . . . . . 8 (𝜑𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾))
1710ablcmnd 19774 . . . . . . . . . 10 (𝜑 → (𝑅s 𝑈) ∈ CMnd)
187nnnn0d 12567 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
1917, 18, 5isprimroot 42111 . . . . . . . . 9 (𝜑 → (𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
2019biimpd 229 . . . . . . . 8 (𝜑 → (𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) → (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
2116, 20mpd 15 . . . . . . 7 (𝜑 → (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙)))
2221simp1d 1142 . . . . . 6 (𝜑𝑀 ∈ (Base‘(𝑅s 𝑈)))
2322adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
244, 5, 12, 13, 23mulgcld 19084 . . . 4 ((𝜑𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅s 𝑈))𝑀) ∈ (Base‘(𝑅s 𝑈)))
25 aks6d1c6isolem1.4 . . . 4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
2624, 25fmptd 7109 . . 3 (𝜑𝐹:ℤ⟶(Base‘(𝑅s 𝑈)))
27 frn 6718 . . 3 (𝐹:ℤ⟶(Base‘(𝑅s 𝑈)) → ran 𝐹 ⊆ (Base‘(𝑅s 𝑈)))
2826, 27syl 17 . 2 (𝜑 → ran 𝐹 ⊆ (Base‘(𝑅s 𝑈)))
29 0zd 12605 . . . 4 (𝜑 → 0 ∈ ℤ)
30 simpr 484 . . . . 5 ((𝜑𝑐 = 0) → 𝑐 = 0)
3130fveqeq2d 6889 . . . 4 ((𝜑𝑐 = 0) → ((𝐹𝑐) = (0g‘(𝑅s 𝑈)) ↔ (𝐹‘0) = (0g‘(𝑅s 𝑈))))
3225a1i 11 . . . . 5 (𝜑𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
33 simpr 484 . . . . . . 7 ((𝜑𝑥 = 0) → 𝑥 = 0)
3433oveq1d 7425 . . . . . 6 ((𝜑𝑥 = 0) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (0(.g‘(𝑅s 𝑈))𝑀))
35 eqid 2736 . . . . . . . . 9 (0g‘(𝑅s 𝑈)) = (0g‘(𝑅s 𝑈))
364, 35, 5mulg0 19062 . . . . . . . 8 (𝑀 ∈ (Base‘(𝑅s 𝑈)) → (0(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)))
3722, 36syl 17 . . . . . . 7 (𝜑 → (0(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)))
3837adantr 480 . . . . . 6 ((𝜑𝑥 = 0) → (0(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)))
3934, 38eqtrd 2771 . . . . 5 ((𝜑𝑥 = 0) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)))
40 fvexd 6896 . . . . 5 (𝜑 → (0g‘(𝑅s 𝑈)) ∈ V)
4132, 39, 29, 40fvmptd 6998 . . . 4 (𝜑 → (𝐹‘0) = (0g‘(𝑅s 𝑈)))
4229, 31, 41rspcedvd 3608 . . 3 (𝜑 → ∃𝑐 ∈ ℤ (𝐹𝑐) = (0g‘(𝑅s 𝑈)))
4326ffnd 6712 . . . 4 (𝜑𝐹 Fn ℤ)
44 fvelrnb 6944 . . . 4 (𝐹 Fn ℤ → ((0g‘(𝑅s 𝑈)) ∈ ran 𝐹 ↔ ∃𝑐 ∈ ℤ (𝐹𝑐) = (0g‘(𝑅s 𝑈))))
4543, 44syl 17 . . 3 (𝜑 → ((0g‘(𝑅s 𝑈)) ∈ ran 𝐹 ↔ ∃𝑐 ∈ ℤ (𝐹𝑐) = (0g‘(𝑅s 𝑈))))
4642, 45mpbird 257 . 2 (𝜑 → (0g‘(𝑅s 𝑈)) ∈ ran 𝐹)
47 fvelrnb 6944 . . . . . . 7 (𝐹 Fn ℤ → (𝑦 ∈ ran 𝐹 ↔ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦))
4843, 47syl 17 . . . . . 6 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦))
4948biimpd 229 . . . . 5 (𝜑 → (𝑦 ∈ ran 𝐹 → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦))
5049imp 406 . . . 4 ((𝜑𝑦 ∈ ran 𝐹) → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦)
51503adant3 1132 . . 3 ((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦)
52 simpl1 1192 . . . . . 6 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → 𝜑)
53 simpl3 1194 . . . . . 6 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → 𝑧 ∈ ran 𝐹)
5452, 53jca 511 . . . . 5 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → (𝜑𝑧 ∈ ran 𝐹))
55 fvelrnb 6944 . . . . . . . 8 (𝐹 Fn ℤ → (𝑧 ∈ ran 𝐹 ↔ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧))
5643, 55syl 17 . . . . . . 7 (𝜑 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧))
5756biimpd 229 . . . . . 6 (𝜑 → (𝑧 ∈ ran 𝐹 → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧))
5857imp 406 . . . . 5 ((𝜑𝑧 ∈ ran 𝐹) → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧)
5954, 58syl 17 . . . 4 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧)
60 simpll1 1213 . . . . . . 7 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → 𝜑)
61 simplr 768 . . . . . . 7 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦)
62 simpr 484 . . . . . . 7 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧)
6360, 61, 623jca 1128 . . . . . 6 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → (𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧))
64 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → (𝐹𝑔) = 𝑧)
6564eqcomd 2742 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → 𝑧 = (𝐹𝑔))
6665oveq2d 7426 . . . . . . . 8 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))𝑧) = (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)))
67 simpr 484 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝐹𝑓) = 𝑦)
6867eqcomd 2742 . . . . . . . . . . . 12 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑦 = (𝐹𝑓))
6968oveq1d 7425 . . . . . . . . . . 11 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)) = ((𝐹𝑓)(+g‘(𝑅s 𝑈))(𝐹𝑔)))
70 simpll1 1213 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) → 𝜑)
7170adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝜑)
72 simpllr 775 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑔 ∈ ℤ)
73 simplr 768 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑓 ∈ ℤ)
7471, 72, 733jca 1128 . . . . . . . . . . . 12 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ))
7525a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
76 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → 𝑥 = 𝑓)
7776oveq1d 7425 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑓(.g‘(𝑅s 𝑈))𝑀))
78 simp3 1138 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝑓 ∈ ℤ)
79 ovexd 7445 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑓(.g‘(𝑅s 𝑈))𝑀) ∈ V)
8075, 77, 78, 79fvmptd 6998 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝐹𝑓) = (𝑓(.g‘(𝑅s 𝑈))𝑀))
81 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑔) → 𝑥 = 𝑔)
8281oveq1d 7425 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = 𝑔) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑔(.g‘(𝑅s 𝑈))𝑀))
83 simp2 1137 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝑔 ∈ ℤ)
84 ovexd 7445 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑔(.g‘(𝑅s 𝑈))𝑀) ∈ V)
8575, 82, 83, 84fvmptd 6998 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝐹𝑔) = (𝑔(.g‘(𝑅s 𝑈))𝑀))
8680, 85oveq12d 7428 . . . . . . . . . . . . 13 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝐹𝑓)(+g‘(𝑅s 𝑈))(𝐹𝑔)) = ((𝑓(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑔(.g‘(𝑅s 𝑈))𝑀)))
87113ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑅s 𝑈) ∈ Grp)
88223ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
8978, 83, 883jca 1128 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑓 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈))))
90 eqid 2736 . . . . . . . . . . . . . . . 16 (+g‘(𝑅s 𝑈)) = (+g‘(𝑅s 𝑈))
914, 5, 90mulgdir 19094 . . . . . . . . . . . . . . 15 (((𝑅s 𝑈) ∈ Grp ∧ (𝑓 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈)))) → ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) = ((𝑓(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑔(.g‘(𝑅s 𝑈))𝑀)))
9287, 89, 91syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) = ((𝑓(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑔(.g‘(𝑅s 𝑈))𝑀)))
9378, 83zaddcld 12706 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝑓 + 𝑔) ∈ ℤ)
94 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ = (𝑓 + 𝑔)) → = (𝑓 + 𝑔))
9594fveqeq2d 6889 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ = (𝑓 + 𝑔)) → ((𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ↔ (𝐹‘(𝑓 + 𝑔)) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀)))
96 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = (𝑓 + 𝑔)) → 𝑥 = (𝑓 + 𝑔))
9796oveq1d 7425 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) ∧ 𝑥 = (𝑓 + 𝑔)) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀))
98 ovexd 7445 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ V)
9975, 97, 93, 98fvmptd 6998 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (𝐹‘(𝑓 + 𝑔)) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀))
10093, 95, 99rspcedvd 3608 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ∃ ∈ ℤ (𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀))
101 fvelrnb 6944 . . . . . . . . . . . . . . . . 17 (𝐹 Fn ℤ → (((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀)))
10243, 101syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀)))
1031023ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → (((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀)))
104100, 103mpbird 257 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓 + 𝑔)(.g‘(𝑅s 𝑈))𝑀) ∈ ran 𝐹)
10592, 104eqeltrrd 2836 . . . . . . . . . . . . 13 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝑓(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑔(.g‘(𝑅s 𝑈))𝑀)) ∈ ran 𝐹)
10686, 105eqeltrd 2835 . . . . . . . . . . . 12 ((𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ) → ((𝐹𝑓)(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
10774, 106syl 17 . . . . . . . . . . 11 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((𝐹𝑓)(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
10869, 107eqeltrd 2835 . . . . . . . . . 10 (((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
109 simpl2 1193 . . . . . . . . . . 11 (((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) → ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦)
110 nfv 1914 . . . . . . . . . . . . 13 𝑓(𝐹𝑑) = 𝑦
111 nfv 1914 . . . . . . . . . . . . 13 𝑑(𝐹𝑓) = 𝑦
112 fveqeq2 6890 . . . . . . . . . . . . 13 (𝑑 = 𝑓 → ((𝐹𝑑) = 𝑦 ↔ (𝐹𝑓) = 𝑦))
113110, 111, 112cbvrexw 3291 . . . . . . . . . . . 12 (∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ↔ ∃𝑓 ∈ ℤ (𝐹𝑓) = 𝑦)
114113biimpi 216 . . . . . . . . . . 11 (∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 → ∃𝑓 ∈ ℤ (𝐹𝑓) = 𝑦)
115109, 114syl 17 . . . . . . . . . 10 (((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) → ∃𝑓 ∈ ℤ (𝐹𝑓) = 𝑦)
116108, 115r19.29a 3149 . . . . . . . . 9 (((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) → (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
117116adantr 480 . . . . . . . 8 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))(𝐹𝑔)) ∈ ran 𝐹)
11866, 117eqeltrd 2835 . . . . . . 7 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) ∧ 𝑔 ∈ ℤ) ∧ (𝐹𝑔) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
119 simp3 1138 . . . . . . . 8 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧)
120 nfv 1914 . . . . . . . . . 10 𝑔(𝐹𝑒) = 𝑧
121 nfv 1914 . . . . . . . . . 10 𝑒(𝐹𝑔) = 𝑧
122 fveqeq2 6890 . . . . . . . . . 10 (𝑒 = 𝑔 → ((𝐹𝑒) = 𝑧 ↔ (𝐹𝑔) = 𝑧))
123120, 121, 122cbvrexw 3291 . . . . . . . . 9 (∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧 ↔ ∃𝑔 ∈ ℤ (𝐹𝑔) = 𝑧)
124123biimpi 216 . . . . . . . 8 (∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧 → ∃𝑔 ∈ ℤ (𝐹𝑔) = 𝑧)
125119, 124syl 17 . . . . . . 7 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → ∃𝑔 ∈ ℤ (𝐹𝑔) = 𝑧)
126118, 125r19.29a 3149 . . . . . 6 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
12763, 126syl 17 . . . . 5 ((((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ ∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
128127ex 412 . . . 4 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → (∃𝑒 ∈ ℤ (𝐹𝑒) = 𝑧 → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹))
12959, 128mpd 15 . . 3 (((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
13051, 129mpdan 687 . 2 ((𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹) → (𝑦(+g‘(𝑅s 𝑈))𝑧) ∈ ran 𝐹)
131 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝐹𝑓) = 𝑦)
132131eqcomd 2742 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑦 = (𝐹𝑓))
133132fveq2d 6885 . . . . . . . 8 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((invg‘(𝑅s 𝑈))‘𝑦) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
134 simplll 774 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝜑)
135 simplr 768 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → 𝑓 ∈ ℤ)
136134, 135jca 511 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → (𝜑𝑓 ∈ ℤ))
137 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ℤ) → 𝑓 ∈ ℤ)
138137znegcld 12704 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ ℤ) → -𝑓 ∈ ℤ)
139 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ℤ) ∧ = -𝑓) → = -𝑓)
140139fveqeq2d 6889 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ℤ) ∧ = -𝑓) → ((𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ↔ (𝐹‘-𝑓) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓))))
14125a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
142 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ ℤ) ∧ 𝑥 = -𝑓) → 𝑥 = -𝑓)
143142oveq1d 7425 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ ℤ) ∧ 𝑥 = -𝑓) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (-𝑓(.g‘(𝑅s 𝑈))𝑀))
144 ovexd 7445 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ ℤ) → (-𝑓(.g‘(𝑅s 𝑈))𝑀) ∈ V)
145141, 143, 138, 144fvmptd 6998 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ℤ) → (𝐹‘-𝑓) = (-𝑓(.g‘(𝑅s 𝑈))𝑀))
14611adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑓 ∈ ℤ) → (𝑅s 𝑈) ∈ Grp)
14722adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑓 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
148 eqid 2736 . . . . . . . . . . . . . . . 16 (invg‘(𝑅s 𝑈)) = (invg‘(𝑅s 𝑈))
1494, 5, 148mulgneg 19080 . . . . . . . . . . . . . . 15 (((𝑅s 𝑈) ∈ Grp ∧ 𝑓 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈))) → (-𝑓(.g‘(𝑅s 𝑈))𝑀) = ((invg‘(𝑅s 𝑈))‘(𝑓(.g‘(𝑅s 𝑈))𝑀)))
150146, 137, 147, 149syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ ℤ) → (-𝑓(.g‘(𝑅s 𝑈))𝑀) = ((invg‘(𝑅s 𝑈))‘(𝑓(.g‘(𝑅s 𝑈))𝑀)))
151 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → 𝑥 = 𝑓)
152151oveq1d 7425 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ ℤ) ∧ 𝑥 = 𝑓) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑓(.g‘(𝑅s 𝑈))𝑀))
153 ovexd 7445 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ ℤ) → (𝑓(.g‘(𝑅s 𝑈))𝑀) ∈ V)
154141, 152, 137, 153fvmptd 6998 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ ℤ) → (𝐹𝑓) = (𝑓(.g‘(𝑅s 𝑈))𝑀))
155154eqcomd 2742 . . . . . . . . . . . . . . 15 ((𝜑𝑓 ∈ ℤ) → (𝑓(.g‘(𝑅s 𝑈))𝑀) = (𝐹𝑓))
156155fveq2d 6885 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ ℤ) → ((invg‘(𝑅s 𝑈))‘(𝑓(.g‘(𝑅s 𝑈))𝑀)) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
157150, 156eqtrd 2771 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ℤ) → (-𝑓(.g‘(𝑅s 𝑈))𝑀) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
158145, 157eqtrd 2771 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ ℤ) → (𝐹‘-𝑓) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
159138, 140, 158rspcedvd 3608 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℤ) → ∃ ∈ ℤ (𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)))
160 fvelrnb 6944 . . . . . . . . . . . . 13 (𝐹 Fn ℤ → (((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓))))
16143, 160syl 17 . . . . . . . . . . . 12 (𝜑 → (((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓))))
162161adantr 480 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℤ) → (((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹 ↔ ∃ ∈ ℤ (𝐹) = ((invg‘(𝑅s 𝑈))‘(𝐹𝑓))))
163159, 162mpbird 257 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℤ) → ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹)
164163a1i 11 . . . . . . . . 9 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((𝜑𝑓 ∈ ℤ) → ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹))
165136, 164mpd 15 . . . . . . . 8 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((invg‘(𝑅s 𝑈))‘(𝐹𝑓)) ∈ ran 𝐹)
166133, 165eqeltrd 2835 . . . . . . 7 ((((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) ∧ 𝑓 ∈ ℤ) ∧ (𝐹𝑓) = 𝑦) → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹)
167114adantl 481 . . . . . . 7 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → ∃𝑓 ∈ ℤ (𝐹𝑓) = 𝑦)
168166, 167r19.29a 3149 . . . . . 6 ((𝜑 ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹)
169168ex 412 . . . . 5 (𝜑 → (∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹))
170169adantr 480 . . . 4 ((𝜑𝑦 ∈ ran 𝐹) → (∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦 → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹))
171170imp 406 . . 3 (((𝜑𝑦 ∈ ran 𝐹) ∧ ∃𝑑 ∈ ℤ (𝐹𝑑) = 𝑦) → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹)
17250, 171mpdan 687 . 2 ((𝜑𝑦 ∈ ran 𝐹) → ((invg‘(𝑅s 𝑈))‘𝑦) ∈ ran 𝐹)
1731, 2, 3, 28, 46, 130, 172, 11issubgrpd 19131 1 (𝜑 → ((𝑅s 𝑈) ↾s ran 𝐹) ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  wss 3931   class class class wbr 5124  cmpt 5206  ran crn 5660   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  0cc0 11134   + caddc 11137  -cneg 11472  cn 12245  0cn0 12506  cz 12593  cdvds 16277  Basecbs 17233  s cress 17256  +gcplusg 17276  0gc0g 17458  Grpcgrp 18921  invgcminusg 18922  .gcmg 19055  CMndccmn 19766  Abelcabl 19767   PrimRoots cprimroots 42109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-seq 14025  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-mulg 19056  df-subg 19111  df-cmn 19768  df-abl 19769  df-primroots 42110
This theorem is referenced by:  aks6d1c6isolem2  42193
  Copyright terms: Public domain W3C validator