Step | Hyp | Ref
| Expression |
1 | | simplr 767 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → 𝑁 = ((𝑥 · 𝐾) + 𝑦)) |
2 | 1 | oveq1d 7434 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑁(.g‘(𝑅 ↾s 𝑈))𝑀) = (((𝑥 · 𝐾) + 𝑦)(.g‘(𝑅 ↾s 𝑈))𝑀)) |
3 | | primrootspoweq0.1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ CMnd) |
4 | | primrootspoweq0.2 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ ℕ) |
5 | | primrootspoweq0.4 |
. . . . . . . . . . . . . 14
⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} |
6 | 3, 4, 5 | primrootsunit 41700 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ∧ (𝑅 ↾s 𝑈) ∈ Abel)) |
7 | 6 | simprd 494 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Abel) |
8 | 7 | ad4antr 730 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑅 ↾s 𝑈) ∈ Abel) |
9 | 8 | ablgrpd 19753 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑅 ↾s 𝑈) ∈ Grp) |
10 | | simp-4r 782 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → 𝑥 ∈ ℤ) |
11 | 4 | nnzd 12618 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ ℤ) |
12 | 11 | ad4antr 730 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → 𝐾 ∈ ℤ) |
13 | 10, 12 | zmulcld 12705 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑥 · 𝐾) ∈ ℤ) |
14 | | simpllr 774 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → 𝑦 ∈ (0...(𝐾 − 1))) |
15 | 14 | elfzelzd 13537 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → 𝑦 ∈ ℤ) |
16 | | primrootspoweq0.3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
17 | 6 | simpld 493 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
18 | 16, 17 | eleqtrd 2827 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
19 | | ablcmn 19754 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ↾s 𝑈) ∈ Abel → (𝑅 ↾s 𝑈) ∈ CMnd) |
20 | 7, 19 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ CMnd) |
21 | 4 | nnnn0d 12565 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
22 | | eqid 2725 |
. . . . . . . . . . . . . . . 16
⊢
(.g‘(𝑅 ↾s 𝑈)) = (.g‘(𝑅 ↾s 𝑈)) |
23 | 20, 21, 22 | isprimroot 41696 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
24 | 23 | biimpd 228 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
25 | 18, 24 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙))) |
26 | 25 | simp1d 1139 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
27 | 26 | ad4antr 730 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
28 | 13, 15, 27 | 3jca 1125 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → ((𝑥 · 𝐾) ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
29 | | eqid 2725 |
. . . . . . . . . . 11
⊢
(Base‘(𝑅
↾s 𝑈)) =
(Base‘(𝑅
↾s 𝑈)) |
30 | | eqid 2725 |
. . . . . . . . . . 11
⊢
(+g‘(𝑅 ↾s 𝑈)) = (+g‘(𝑅 ↾s 𝑈)) |
31 | 29, 22, 30 | mulgdir 19069 |
. . . . . . . . . 10
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ ((𝑥 · 𝐾) ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) → (((𝑥 · 𝐾) + 𝑦)(.g‘(𝑅 ↾s 𝑈))𝑀) = (((𝑥 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑦(.g‘(𝑅 ↾s 𝑈))𝑀))) |
32 | 9, 28, 31 | syl2anc 582 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (((𝑥 · 𝐾) + 𝑦)(.g‘(𝑅 ↾s 𝑈))𝑀) = (((𝑥 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑦(.g‘(𝑅 ↾s 𝑈))𝑀))) |
33 | 10, 12, 27 | 3jca 1125 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
34 | 29, 22 | mulgass 19074 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) → ((𝑥 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑥(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑀))) |
35 | 9, 33, 34 | syl2anc 582 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → ((𝑥 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑥(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑀))) |
36 | 25 | simp2d 1140 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
37 | 36 | ad4antr 730 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
38 | 37 | oveq2d 7435 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑥(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑀)) = (𝑥(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈)))) |
39 | | eqid 2725 |
. . . . . . . . . . . . . . 15
⊢
(0g‘(𝑅 ↾s 𝑈)) = (0g‘(𝑅 ↾s 𝑈)) |
40 | 29, 22, 39 | mulgz 19065 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) =
(0g‘(𝑅
↾s 𝑈))) |
41 | 9, 10, 40 | syl2anc 582 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑥(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) = (0g‘(𝑅 ↾s 𝑈))) |
42 | 38, 41 | eqtrd 2765 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑥(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑀)) = (0g‘(𝑅 ↾s 𝑈))) |
43 | 35, 42 | eqtrd 2765 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → ((𝑥 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
44 | 43 | oveq1d 7434 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (((𝑥 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)) = ((0g‘(𝑅 ↾s 𝑈))(+g‘(𝑅 ↾s 𝑈))(𝑦(.g‘(𝑅 ↾s 𝑈))𝑀))) |
45 | 29, 22, 9, 15, 27 | mulgcld 19059 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑦(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ (Base‘(𝑅 ↾s 𝑈))) |
46 | 29, 30, 39, 9, 45 | grplidd 18934 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → ((0g‘(𝑅 ↾s 𝑈))(+g‘(𝑅 ↾s 𝑈))(𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)) = (𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)) |
47 | 44, 46 | eqtrd 2765 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (((𝑥 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)) = (𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)) |
48 | 32, 47 | eqtrd 2765 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (((𝑥 · 𝐾) + 𝑦)(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)) |
49 | 2, 48 | eqtrd 2765 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑁(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)) |
50 | 8, 19 | syl 17 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑅 ↾s 𝑈) ∈ CMnd) |
51 | 4 | ad4antr 730 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → 𝐾 ∈ ℕ) |
52 | 16 | ad4antr 730 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
53 | 17 | ad4antr 730 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
54 | 52, 53 | eleqtrd 2827 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → 𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
55 | | 1cnd 11241 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 1 ∈
ℂ) |
56 | 55 | addlidd 11447 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (0 + 1) =
1) |
57 | 4 | nnge1d 12293 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ≤ 𝐾) |
58 | 56, 57 | eqbrtrd 5171 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (0 + 1) ≤ 𝐾) |
59 | | 0red 11249 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ∈
ℝ) |
60 | | 1red 11247 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ∈
ℝ) |
61 | 4 | nnred 12260 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈ ℝ) |
62 | | leaddsub 11722 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((0 + 1) ≤ 𝐾 ↔ 0 ≤ (𝐾 − 1))) |
63 | 59, 60, 61, 62 | syl3anc 1368 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((0 + 1) ≤ 𝐾 ↔ 0 ≤ (𝐾 − 1))) |
64 | 58, 63 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ≤ (𝐾 − 1)) |
65 | | 0zd 12603 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ∈
ℤ) |
66 | | 1zzd 12626 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ∈
ℤ) |
67 | 11, 66 | zsubcld 12704 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐾 − 1) ∈ ℤ) |
68 | | eluz 12869 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℤ ∧ (𝐾
− 1) ∈ ℤ) → ((𝐾 − 1) ∈
(ℤ≥‘0) ↔ 0 ≤ (𝐾 − 1))) |
69 | 65, 67, 68 | syl2anc 582 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐾 − 1) ∈
(ℤ≥‘0) ↔ 0 ≤ (𝐾 − 1))) |
70 | 64, 69 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾 − 1) ∈
(ℤ≥‘0)) |
71 | | elfzp12 13615 |
. . . . . . . . . . . . 13
⊢ ((𝐾 − 1) ∈
(ℤ≥‘0) → (𝑦 ∈ (0...(𝐾 − 1)) ↔ (𝑦 = 0 ∨ 𝑦 ∈ ((0 + 1)...(𝐾 − 1))))) |
72 | 70, 71 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 ∈ (0...(𝐾 − 1)) ↔ (𝑦 = 0 ∨ 𝑦 ∈ ((0 + 1)...(𝐾 − 1))))) |
73 | 72 | ad4antr 730 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑦 ∈ (0...(𝐾 − 1)) ↔ (𝑦 = 0 ∨ 𝑦 ∈ ((0 + 1)...(𝐾 − 1))))) |
74 | 73 | biimpd 228 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑦 ∈ (0...(𝐾 − 1)) → (𝑦 = 0 ∨ 𝑦 ∈ ((0 + 1)...(𝐾 − 1))))) |
75 | 14, 74 | mpd 15 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑦 = 0 ∨ 𝑦 ∈ ((0 + 1)...(𝐾 − 1)))) |
76 | | simp-5r 784 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → 𝑥 ∈ ℤ) |
77 | 51 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → 𝐾 ∈ ℕ) |
78 | 77 | nnzd 12618 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → 𝐾 ∈ ℤ) |
79 | | dvdsmul2 16259 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∥ (𝑥 · 𝐾)) |
80 | 76, 78, 79 | syl2anc 582 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → 𝐾 ∥ (𝑥 · 𝐾)) |
81 | 76 | zcnd 12700 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → 𝑥 ∈ ℂ) |
82 | 77 | nncnd 12261 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → 𝐾 ∈ ℂ) |
83 | 81, 82 | mulcld 11266 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → (𝑥 · 𝐾) ∈ ℂ) |
84 | 83 | addridd 11446 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → ((𝑥 · 𝐾) + 0) = (𝑥 · 𝐾)) |
85 | 84 | eqcomd 2731 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → (𝑥 · 𝐾) = ((𝑥 · 𝐾) + 0)) |
86 | | simpr 483 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → 𝑦 = 0) |
87 | 86 | eqcomd 2731 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → 0 = 𝑦) |
88 | 87 | oveq2d 7435 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → ((𝑥 · 𝐾) + 0) = ((𝑥 · 𝐾) + 𝑦)) |
89 | 85, 88 | eqtrd 2765 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → (𝑥 · 𝐾) = ((𝑥 · 𝐾) + 𝑦)) |
90 | 80, 89 | breqtrd 5175 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → 𝐾 ∥ ((𝑥 · 𝐾) + 𝑦)) |
91 | 1 | adantr 479 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → 𝑁 = ((𝑥 · 𝐾) + 𝑦)) |
92 | 91 | eqcomd 2731 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → ((𝑥 · 𝐾) + 𝑦) = 𝑁) |
93 | 90, 92 | breqtrd 5175 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → 𝐾 ∥ 𝑁) |
94 | | simplr 767 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → ¬ 𝐾 ∥ 𝑁) |
95 | 93, 94 | pm2.21dd 194 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) ∧ 𝑦 = 0) → 𝑦 ∈ (1...(𝐾 − 1))) |
96 | 95 | ex 411 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑦 = 0 → 𝑦 ∈ (1...(𝐾 − 1)))) |
97 | | 1cnd 11241 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → 1 ∈ ℂ) |
98 | 97 | addlidd 11447 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (0 + 1) = 1) |
99 | 98 | oveq1d 7434 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → ((0 + 1)...(𝐾 − 1)) = (1...(𝐾 − 1))) |
100 | | ssidd 4000 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (1...(𝐾 − 1)) ⊆ (1...(𝐾 − 1))) |
101 | 99, 100 | eqsstrd 4015 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → ((0 + 1)...(𝐾 − 1)) ⊆ (1...(𝐾 − 1))) |
102 | 101 | sseld 3975 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑦 ∈ ((0 + 1)...(𝐾 − 1)) → 𝑦 ∈ (1...(𝐾 − 1)))) |
103 | 96, 102 | jaod 857 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → ((𝑦 = 0 ∨ 𝑦 ∈ ((0 + 1)...(𝐾 − 1))) → 𝑦 ∈ (1...(𝐾 − 1)))) |
104 | 75, 103 | mpd 15 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → 𝑦 ∈ (1...(𝐾 − 1))) |
105 | 50, 51, 54, 104 | primrootlekpowne0 41708 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑦(.g‘(𝑅 ↾s 𝑈))𝑀) ≠ (0g‘(𝑅 ↾s 𝑈))) |
106 | 49, 105 | eqnetrd 2997 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → (𝑁(.g‘(𝑅 ↾s 𝑈))𝑀) ≠ (0g‘(𝑅 ↾s 𝑈))) |
107 | 106 | neneqd 2934 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ ¬ 𝐾 ∥ 𝑁) → ¬ (𝑁(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
108 | 107 | ex 411 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) → (¬ 𝐾 ∥ 𝑁 → ¬ (𝑁(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)))) |
109 | 108 | con4d 115 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) → ((𝑁(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑁)) |
110 | | simp-4l 781 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ 𝐾 ∥ 𝑁) → 𝜑) |
111 | | simpr 483 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ 𝑁) |
112 | 110, 111 | jca 510 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ 𝐾 ∥ 𝑁) → (𝜑 ∧ 𝐾 ∥ 𝑁)) |
113 | | primrootspoweq0.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℤ) |
114 | | divides 16236 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ 𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁)) |
115 | 11, 113, 114 | syl2anc 582 |
. . . . . . . 8
⊢ (𝜑 → (𝐾 ∥ 𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁)) |
116 | 115 | biimpd 228 |
. . . . . . 7
⊢ (𝜑 → (𝐾 ∥ 𝑁 → ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁)) |
117 | 116 | imp 405 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∥ 𝑁) → ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) |
118 | | simpr 483 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 𝐾) = 𝑁) → (𝑦 · 𝐾) = 𝑁) |
119 | 118 | eqcomd 2731 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 𝐾) = 𝑁) → 𝑁 = (𝑦 · 𝐾)) |
120 | 119 | oveq1d 7434 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 𝐾) = 𝑁) → (𝑁(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝑦 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀)) |
121 | 7 | ad3antrrr 728 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 𝐾) = 𝑁) → (𝑅 ↾s 𝑈) ∈ Abel) |
122 | | ablgrp 19752 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ↾s 𝑈) ∈ Abel → (𝑅 ↾s 𝑈) ∈ Grp) |
123 | 121, 122 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 𝐾) = 𝑁) → (𝑅 ↾s 𝑈) ∈ Grp) |
124 | | simplr 767 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 𝐾) = 𝑁) → 𝑦 ∈ ℤ) |
125 | 11 | ad3antrrr 728 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 𝐾) = 𝑁) → 𝐾 ∈ ℤ) |
126 | 26 | ad3antrrr 728 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 𝐾) = 𝑁) → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
127 | 124, 125,
126 | 3jca 1125 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 𝐾) = 𝑁) → (𝑦 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
128 | 29, 22 | mulgass 19074 |
. . . . . . . . . . . 12
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝑦 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) → ((𝑦 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑦(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑀))) |
129 | 123, 127,
128 | syl2anc 582 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 𝐾) = 𝑁) → ((𝑦 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑦(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑀))) |
130 | 36 | ad3antrrr 728 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 𝐾) = 𝑁) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
131 | 130 | oveq2d 7435 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 𝐾) = 𝑁) → (𝑦(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑀)) = (𝑦(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈)))) |
132 | 29, 22, 39 | mulgz 19065 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ 𝑦 ∈ ℤ) → (𝑦(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) =
(0g‘(𝑅
↾s 𝑈))) |
133 | 123, 124,
132 | syl2anc 582 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 𝐾) = 𝑁) → (𝑦(.g‘(𝑅 ↾s 𝑈))(0g‘(𝑅 ↾s 𝑈))) = (0g‘(𝑅 ↾s 𝑈))) |
134 | 131, 133 | eqtrd 2765 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 𝐾) = 𝑁) → (𝑦(.g‘(𝑅 ↾s 𝑈))(𝐾(.g‘(𝑅 ↾s 𝑈))𝑀)) = (0g‘(𝑅 ↾s 𝑈))) |
135 | 129, 134 | eqtrd 2765 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 𝐾) = 𝑁) → ((𝑦 · 𝐾)(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
136 | 120, 135 | eqtrd 2765 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 𝐾) = 𝑁) → (𝑁(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
137 | | nfv 1909 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(𝑥 · 𝐾) = 𝑁 |
138 | | nfv 1909 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑦 · 𝐾) = 𝑁 |
139 | | oveq1 7426 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑥 · 𝐾) = (𝑦 · 𝐾)) |
140 | 139 | eqeq1d 2727 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝑥 · 𝐾) = 𝑁 ↔ (𝑦 · 𝐾) = 𝑁)) |
141 | 137, 138,
140 | cbvrexw 3294 |
. . . . . . . . . . 11
⊢
(∃𝑥 ∈
ℤ (𝑥 · 𝐾) = 𝑁 ↔ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝑁) |
142 | 141 | biimpi 215 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
ℤ (𝑥 · 𝐾) = 𝑁 → ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝑁) |
143 | 142 | adantl 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) → ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝑁) |
144 | 136, 143 | r19.29a 3151 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁) → (𝑁(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
145 | 144 | ex 411 |
. . . . . . 7
⊢ (𝜑 → (∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁 → (𝑁(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)))) |
146 | 145 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∥ 𝑁) → (∃𝑥 ∈ ℤ (𝑥 · 𝐾) = 𝑁 → (𝑁(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)))) |
147 | 117, 146 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∥ 𝑁) → (𝑁(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
148 | 112, 147 | syl 17 |
. . . 4
⊢
(((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) ∧ 𝐾 ∥ 𝑁) → (𝑁(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈))) |
149 | 148 | ex 411 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) → (𝐾 ∥ 𝑁 → (𝑁(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)))) |
150 | 109, 149 | impbid 211 |
. 2
⊢ ((((𝜑 ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...(𝐾 − 1))) ∧ 𝑁 = ((𝑥 · 𝐾) + 𝑦)) → ((𝑁(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ↔ 𝐾 ∥ 𝑁)) |
151 | 113, 4 | remexz 41707 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (0...(𝐾 − 1))𝑁 = ((𝑥 · 𝐾) + 𝑦)) |
152 | 150, 151 | r19.29vva 3203 |
1
⊢ (𝜑 → ((𝑁(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ↔ 𝐾 ∥ 𝑁)) |