Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6lem5 Structured version   Visualization version   GIF version

Theorem aks6d1c6lem5 42210
Description: Eliminate the size hypothesis. Claim 6. (Contributed by metakunt, 15-May-2025.)
Hypotheses
Ref Expression
aks6d1c6lem5.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c6lem5.2 𝑃 = (chr‘𝐾)
aks6d1c6lem5.3 (𝜑𝐾 ∈ Field)
aks6d1c6lem5.4 (𝜑𝑃 ∈ ℙ)
aks6d1c6lem5.5 (𝜑𝑅 ∈ ℕ)
aks6d1c6lem5.6 (𝜑𝑁 ∈ ℕ)
aks6d1c6lem5.7 (𝜑𝑃𝑁)
aks6d1c6lem5.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c6lem5.9 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks6d1c6lem5.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c6lem5.11 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aksaks6dlem5.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c6lem5.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c6lem5.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c6lem5.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c6lem5.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c6lem5.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c6lem5.18 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c6lem5.19 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
aks6d1c6lem5.20 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
aks6d1c6lem5.22 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}
aks6d1c6lem5.23 𝑋 = (𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ↦ (𝐽𝑏))
Assertion
Ref Expression
aks6d1c6lem5 (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑏   𝐴,𝑔,𝑖,𝑥   𝐴,,𝑗   𝐴,𝑠,𝑡   𝐷,𝑠   𝑒,𝐸,𝑓,𝑦   𝑗,𝐸,𝑦   𝑥,𝐸,𝑦   𝑒,𝐺,𝑓,𝑦   𝑔,𝐺,𝑖,𝑦   ,𝐺   𝑡,𝐺,𝑖,𝑦   𝐻,𝑎   𝑔,𝐻,𝑖,𝑥,𝑦   ,𝐻,𝑗   𝐻,𝑠,𝑡   𝐽,𝑏   𝑦,𝐽   𝐾,𝑎   𝐾,𝑏   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖,𝑥   ,𝐾,𝑗   𝐾,𝑙,𝑥,𝑦   𝑚,𝐾,𝑛   𝑡,𝐾,𝑥   ,𝑀,𝑗   𝑀,𝑙,𝑦   𝑁,𝑎   𝑁,𝑏   𝑒,𝑁,𝑓   𝑗,𝑁   𝑘,𝑁,𝑙,𝑠   𝑥,𝑁,𝑘   𝑃,𝑏   𝑃,𝑒,𝑓   𝑃,𝑗   𝑃,𝑘,𝑙,𝑠   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑅,𝑗   𝑅,𝑙,𝑥   𝑆,𝑎   𝑆,𝑔,𝑖,𝑥,𝑦   𝑆,,𝑗   𝑆,𝑠,𝑡   𝑈,𝑏   𝑈,𝑗   𝑈,𝑙   𝑋,𝑏   𝜑,𝑎   𝜑,𝑏   𝜑,𝑔,𝑖,𝑥,𝑦   𝜑,,𝑗   𝜑,𝑘,𝑙,𝑠   𝑦,𝑘   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑚,𝑛)   𝐴(𝑦,𝑒,𝑓,𝑘,𝑚,𝑛,𝑙)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑎,𝑏,𝑙)   𝑃(𝑦,𝑡,𝑔,,𝑖,𝑚,𝑛,𝑎)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏,𝑙)   𝑅(𝑡,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏)   𝑆(𝑒,𝑓,𝑘,𝑚,𝑛,𝑏,𝑙)   𝑈(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎)   𝐸(𝑡,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐺(𝑥,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐻(𝑒,𝑓,𝑘,𝑚,𝑛,𝑏,𝑙)   𝐽(𝑥,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑙)   𝐾(𝑘,𝑠)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝑀(𝑥,𝑡,𝑒,𝑓,𝑔,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏)   𝑁(𝑦,𝑡,𝑔,,𝑖,𝑚,𝑛)   𝑋(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑙)

Proof of Theorem aks6d1c6lem5
Dummy variables 𝑐 𝑑 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c6lem5.1 . 2 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
2 aks6d1c6lem5.2 . 2 𝑃 = (chr‘𝐾)
3 aks6d1c6lem5.3 . 2 (𝜑𝐾 ∈ Field)
4 aks6d1c6lem5.4 . 2 (𝜑𝑃 ∈ ℙ)
5 aks6d1c6lem5.5 . 2 (𝜑𝑅 ∈ ℕ)
6 aks6d1c6lem5.6 . 2 (𝜑𝑁 ∈ ℕ)
7 aks6d1c6lem5.7 . 2 (𝜑𝑃𝑁)
8 aks6d1c6lem5.8 . 2 (𝜑 → (𝑁 gcd 𝑅) = 1)
9 aks6d1c6lem5.9 . 2 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
10 aks6d1c6lem5.10 . 2 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
11 aks6d1c6lem5.11 . 2 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
12 aksaks6dlem5.12 . 2 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
13 aks6d1c6lem5.13 . 2 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
14 aks6d1c6lem5.14 . 2 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
15 aks6d1c6lem5.15 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
16 aks6d1c6lem5.16 . 2 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
17 aks6d1c6lem5.17 . 2 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
18 aks6d1c6lem5.18 . 2 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
19 aks6d1c6lem5.19 . 2 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
20 aks6d1c6lem5.20 . 2 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
21 eqid 2731 . . . . . . . . . . 11 (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) = (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))
223fldcrngd 20652 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ CRing)
23 eqid 2731 . . . . . . . . . . . . . 14 (mulGrp‘𝐾) = (mulGrp‘𝐾)
2423crngmgp 20154 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
2522, 24syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
26 aks6d1c6lem5.22 . . . . . . . . . . . 12 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}
2725, 5, 26, 20, 16aks6d1c6isolem2 42208 . . . . . . . . . . 11 (𝜑𝐽 ∈ (ℤring GrpHom (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
28 eqid 2731 . . . . . . . . . . 11 (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}) = (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})
29 eqid 2731 . . . . . . . . . . 11 (ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
30 aks6d1c6lem5.23 . . . . . . . . . . 11 𝑋 = (𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ↦ (𝐽𝑏))
31 zringbas 21385 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
32 nfcv 2894 . . . . . . . . . . . 12 𝑐[𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
33 nfcv 2894 . . . . . . . . . . . 12 𝑑[𝑐](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
34 eceq1 8656 . . . . . . . . . . . 12 (𝑑 = 𝑐 → [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = [𝑐](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
3532, 33, 34cbvmpt 5188 . . . . . . . . . . 11 (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (𝑐 ∈ ℤ ↦ [𝑐](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
3621, 27, 28, 29, 30, 31, 35ghmquskerco 19191 . . . . . . . . . 10 (𝜑𝐽 = (𝑋 ∘ (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))
37 eqid 2731 . . . . . . . . . . . . . . . . 17 (RSpan‘ℤring) = (RSpan‘ℤring)
3825, 5, 26, 20, 16, 37aks6d1c6isolem3 42209 . . . . . . . . . . . . . . . 16 (𝜑 → ((RSpan‘ℤring)‘{𝑅}) = (𝐽 “ {(0g‘((mulGrp‘𝐾) ↾s 𝑈))}))
3925, 5, 26primrootsunit 42131 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ∧ ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel))
4039simprd 495 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel)
4140ablgrpd 19693 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp)
4241grpmndd 18854 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Mnd)
43 0zd 12475 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ∈ ℤ)
44 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 = 0) → 𝑤 = 0)
4544fveqeq2d 6825 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 = 0) → ((𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ↔ (𝐽‘0) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))))
4620a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
47 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 = 0) → 𝑗 = 0)
4847oveq1d 7356 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 = 0) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
4939simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅))
5016, 49eleqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅))
5140ablcmnd 19695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ CMnd)
525nnnn0d 12437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑅 ∈ ℕ0)
53 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (.g‘((mulGrp‘𝐾) ↾s 𝑈)) = (.g‘((mulGrp‘𝐾) ↾s 𝑈))
5451, 52, 53isprimroot 42126 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑙))))
5554biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑙))))
5650, 55mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑙)))
5756simp1d 1142 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
58 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Base‘((mulGrp‘𝐾) ↾s 𝑈)) = (Base‘((mulGrp‘𝐾) ↾s 𝑈))
59 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0g‘((mulGrp‘𝐾) ↾s 𝑈)) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))
6058, 59, 53mulg0 18982 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) → (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6157, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6261adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 = 0) → (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6348, 62eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 = 0) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
64 fvexd 6832 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ V)
6546, 63, 43, 64fvmptd 6931 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐽‘0) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6643, 45, 65rspcedvd 3574 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∃𝑤 ∈ ℤ (𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6741adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℤ) → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp)
68 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℤ) → 𝑗 ∈ ℤ)
6957adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℤ) → 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
7058, 53, 67, 68, 69mulgcld 19004 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℤ) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
7170, 20fmptd 7042 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽:ℤ⟶(Base‘((mulGrp‘𝐾) ↾s 𝑈)))
7271ffnd 6647 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 Fn ℤ)
73 fvelrnb 6877 . . . . . . . . . . . . . . . . . . . . 21 (𝐽 Fn ℤ → ((0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ↔ ∃𝑤 ∈ ℤ (𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))))
7472, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ↔ ∃𝑤 ∈ ℤ (𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))))
7566, 74mpbird 257 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽)
7671frnd 6654 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
77 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽) = (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)
7877, 58, 59ress0g 18665 . . . . . . . . . . . . . . . . . . 19 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Mnd ∧ (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ∧ ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) = (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
7942, 75, 76, 78syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) = (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
8079sneqd 4583 . . . . . . . . . . . . . . . . 17 (𝜑 → {(0g‘((mulGrp‘𝐾) ↾s 𝑈))} = {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})
8180imaeq2d 6004 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽 “ {(0g‘((mulGrp‘𝐾) ↾s 𝑈))}) = (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
8238, 81eqtr2d 2767 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}) = ((RSpan‘ℤring)‘{𝑅}))
8382oveq2d 7357 . . . . . . . . . . . . . 14 (𝜑 → (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))
8483eceq2d 8660 . . . . . . . . . . . . 13 (𝜑 → [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))
8584mpteq2dv 5180 . . . . . . . . . . . 12 (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))))
86 eqid 2731 . . . . . . . . . . . . . . 15 (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))
87 eqid 2731 . . . . . . . . . . . . . . 15 (ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅)
8837, 86, 87, 13znzrh2 21477 . . . . . . . . . . . . . 14 (𝑅 ∈ ℕ0𝐿 = (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))))
8952, 88syl 17 . . . . . . . . . . . . 13 (𝜑𝐿 = (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))))
9089eqcomd 2737 . . . . . . . . . . . 12 (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))) = 𝐿)
9185, 90eqtrd 2766 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = 𝐿)
9291coeq2d 5797 . . . . . . . . . 10 (𝜑 → (𝑋 ∘ (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) = (𝑋𝐿))
9336, 92eqtrd 2766 . . . . . . . . 9 (𝜑𝐽 = (𝑋𝐿))
9493coeq2d 5797 . . . . . . . 8 (𝜑 → (𝑋𝐽) = (𝑋 ∘ (𝑋𝐿)))
95 coass 6208 . . . . . . . . 9 ((𝑋𝑋) ∘ 𝐿) = (𝑋 ∘ (𝑋𝐿))
9695eqcomi 2740 . . . . . . . 8 (𝑋 ∘ (𝑋𝐿)) = ((𝑋𝑋) ∘ 𝐿)
9794, 96eqtrdi 2782 . . . . . . 7 (𝜑 → (𝑋𝐽) = ((𝑋𝑋) ∘ 𝐿))
9877, 58ressbas2 17144 . . . . . . . . . . . . 13 (ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) → ran 𝐽 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
9976, 98syl 17 . . . . . . . . . . . 12 (𝜑 → ran 𝐽 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
10021, 27, 28, 29, 30, 99ghmqusker 19194 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) GrpIso (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
101 eqid 2731 . . . . . . . . . . . 12 (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) = (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))
102 eqid 2731 . . . . . . . . . . . 12 (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))
103101, 102gimf1o 19170 . . . . . . . . . . 11 (𝑋 ∈ ((ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) GrpIso (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → 𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
104100, 103syl 17 . . . . . . . . . 10 (𝜑𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
105 f1ococnv1 6787 . . . . . . . . . 10 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → (𝑋𝑋) = ( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))))
106104, 105syl 17 . . . . . . . . 9 (𝜑 → (𝑋𝑋) = ( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))))
107106coeq1d 5796 . . . . . . . 8 (𝜑 → ((𝑋𝑋) ∘ 𝐿) = (( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿))
10887zncrng 21476 . . . . . . . . . . . . 13 (𝑅 ∈ ℕ0 → (ℤ/nℤ‘𝑅) ∈ CRing)
10952, 108syl 17 . . . . . . . . . . . 12 (𝜑 → (ℤ/nℤ‘𝑅) ∈ CRing)
110 crngring 20158 . . . . . . . . . . . 12 ((ℤ/nℤ‘𝑅) ∈ CRing → (ℤ/nℤ‘𝑅) ∈ Ring)
11113zrhrhm 21443 . . . . . . . . . . . 12 ((ℤ/nℤ‘𝑅) ∈ Ring → 𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)))
112 eqid 2731 . . . . . . . . . . . . 13 (Base‘(ℤ/nℤ‘𝑅)) = (Base‘(ℤ/nℤ‘𝑅))
11331, 112rhmf 20397 . . . . . . . . . . . 12 (𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)) → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
114109, 110, 111, 1134syl 19 . . . . . . . . . . 11 (𝜑𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
115 eqid 2731 . . . . . . . . . . . . . 14 (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))
11637, 115, 87znbas2 21471 . . . . . . . . . . . . 13 (𝑅 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) = (Base‘(ℤ/nℤ‘𝑅)))
11752, 116syl 17 . . . . . . . . . . . 12 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) = (Base‘(ℤ/nℤ‘𝑅)))
118117feq3d 6631 . . . . . . . . . . 11 (𝜑 → (𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) ↔ 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅))))
119114, 118mpbird 257 . . . . . . . . . 10 (𝜑𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))))
12082eqcomd 2737 . . . . . . . . . . . . . 14 (𝜑 → ((RSpan‘ℤring)‘{𝑅}) = (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
121120oveq2d 7357 . . . . . . . . . . . . 13 (𝜑 → (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})) = (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
122121oveq2d 7357 . . . . . . . . . . . 12 (𝜑 → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))) = (ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))
123122fveq2d 6821 . . . . . . . . . . 11 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) = (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))
124123feq3d 6631 . . . . . . . . . 10 (𝜑 → (𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) ↔ 𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))))
125119, 124mpbid 232 . . . . . . . . 9 (𝜑𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))
126 fcoi2 6693 . . . . . . . . 9 (𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) → (( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿) = 𝐿)
127125, 126syl 17 . . . . . . . 8 (𝜑 → (( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿) = 𝐿)
128107, 127eqtrd 2766 . . . . . . 7 (𝜑 → ((𝑋𝑋) ∘ 𝐿) = 𝐿)
12997, 128eqtr2d 2767 . . . . . 6 (𝜑𝐿 = (𝑋𝐽))
130129imaeq1d 6003 . . . . 5 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) = ((𝑋𝐽) “ (𝐸 “ (ℕ0 × ℕ0))))
131 imaco 6193 . . . . . 6 ((𝑋𝐽) “ (𝐸 “ (ℕ0 × ℕ0))) = (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))
132131a1i 11 . . . . 5 (𝜑 → ((𝑋𝐽) “ (𝐸 “ (ℕ0 × ℕ0))) = (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
133130, 132eqtrd 2766 . . . 4 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) = (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
134133fveq2d 6821 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = (♯‘(𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))))
135 simplll 774 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → 𝜑)
136 simplr 768 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → 𝑢 ∈ ℤ)
137135, 136jca 511 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → (𝜑𝑢 ∈ ℤ))
138 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑧 ∈ (0...(𝑅 − 1)))
139 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑣 = 𝑧) → 𝑣 = 𝑧)
140139fveqeq2d 6825 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑣 = 𝑧) → ((𝐽𝑣) = (𝐽𝑢) ↔ (𝐽𝑧) = (𝐽𝑢)))
14120a1i 11 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
142 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑧) → 𝑗 = 𝑧)
143142oveq1d 7356 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑧) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
144 fzssz 13421 . . . . . . . . . . . . . . . . . . 19 (0...(𝑅 − 1)) ⊆ ℤ
145144, 138sselid 3927 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑧 ∈ ℤ)
146 ovexd 7376 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V)
147141, 143, 145, 146fvmptd 6931 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽𝑧) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
148 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑢) → 𝑗 = 𝑢)
149148oveq1d 7356 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑢) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
150 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ ℤ) → 𝑢 ∈ ℤ)
151150ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑢 ∈ ℤ)
152 ovexd 7376 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V)
153141, 149, 151, 152fvmptd 6931 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽𝑢) = (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
154 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑢 = ((𝑦 · 𝑅) + 𝑧))
155154oveq1d 7356 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
15641ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp)
157 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑦 ∈ ℤ)
1585adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ ℤ) → 𝑅 ∈ ℕ)
159158ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑅 ∈ ℕ)
160159nnzd 12490 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑅 ∈ ℤ)
161157, 160zmulcld 12578 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦 · 𝑅) ∈ ℤ)
162144sseli 3925 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ (0...(𝑅 − 1)) → 𝑧 ∈ ℤ)
163162adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑧 ∈ ℤ)
16457ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
165161, 163, 1643jca 1128 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))))
166 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (+g‘((mulGrp‘𝐾) ↾s 𝑈)) = (+g‘((mulGrp‘𝐾) ↾s 𝑈))
16758, 53, 166mulgdir 19014 . . . . . . . . . . . . . . . . . . . . . 22 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp ∧ ((𝑦 · 𝑅) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
168156, 165, 167syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
169157, 160, 1643jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))))
17058, 53mulgass 19019 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp ∧ (𝑦 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
171156, 169, 170syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
17256simp2d 1143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
173172adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ ℤ) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
174173adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
175174adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
176175oveq2d 7357 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))))
17758, 53, 59mulgz 19010 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp ∧ 𝑦 ∈ ℤ) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
178156, 157, 177syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
179176, 178eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
180171, 179eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
181180oveq1d 7356 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = ((0g‘((mulGrp‘𝐾) ↾s 𝑈))(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
18258, 53, 156, 163, 164mulgcld 19004 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
18358, 166, 59, 156, 182grplidd 18877 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((0g‘((mulGrp‘𝐾) ↾s 𝑈))(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
184181, 183eqtrd 2766 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
185168, 184eqtrd 2766 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
186185adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
187155, 186eqtrd 2766 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
188153, 187eqtr2d 2767 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝐽𝑢))
189147, 188eqtrd 2766 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽𝑧) = (𝐽𝑢))
190138, 140, 189rspcedvd 3574 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢))
191150, 158remexz 42137 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ ℤ) → ∃𝑦 ∈ ℤ ∃𝑧 ∈ (0...(𝑅 − 1))𝑢 = ((𝑦 · 𝑅) + 𝑧))
192190, 191r19.29vva 3192 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ ℤ) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢))
193137, 192syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢))
194 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → (𝐽𝑢) = 𝑤)
195194eqcomd 2737 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → 𝑤 = (𝐽𝑢))
196195eqeq2d 2742 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → ((𝐽𝑣) = 𝑤 ↔ (𝐽𝑣) = (𝐽𝑢)))
197196rexbidv 3156 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → (∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤 ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢)))
198193, 197mpbird 257 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤)
199 ssidd 3953 . . . . . . . . . . . . . . 15 (𝜑 → ℤ ⊆ ℤ)
200 fvelimab 6889 . . . . . . . . . . . . . . 15 ((𝐽 Fn ℤ ∧ ℤ ⊆ ℤ) → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤))
20172, 199, 200syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤))
202201biimpd 229 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) → ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤))
203202imp 406 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤)
204198, 203r19.29a 3140 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤)
205144a1i 11 . . . . . . . . . . . . 13 (𝜑 → (0...(𝑅 − 1)) ⊆ ℤ)
206 fvelimab 6889 . . . . . . . . . . . . 13 ((𝐽 Fn ℤ ∧ (0...(𝑅 − 1)) ⊆ ℤ) → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
20772, 205, 206syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
208207adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
209204, 208mpbird 257 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))))
210209ex 412 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) → 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))))
211210ssrdv 3935 . . . . . . . 8 (𝜑 → (𝐽 “ ℤ) ⊆ (𝐽 “ (0...(𝑅 − 1))))
212207biimpd 229 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
213212imp 406 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤)
214144sseli 3925 . . . . . . . . . . . . . 14 (𝑣 ∈ (0...(𝑅 − 1)) → 𝑣 ∈ ℤ)
215214adantr 480 . . . . . . . . . . . . 13 ((𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽𝑣) = 𝑤) → 𝑣 ∈ ℤ)
216215adantl 481 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) ∧ (𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽𝑣) = 𝑤)) → 𝑣 ∈ ℤ)
217 simprr 772 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) ∧ (𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽𝑣) = 𝑤)) → (𝐽𝑣) = 𝑤)
218213, 216, 217reximssdv 3150 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ∃𝑣 ∈ ℤ (𝐽𝑣) = 𝑤)
21972adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → 𝐽 Fn ℤ)
220 ssidd 3953 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ℤ ⊆ ℤ)
221 fvelimab 6889 . . . . . . . . . . . 12 ((𝐽 Fn ℤ ∧ ℤ ⊆ ℤ) → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑣 ∈ ℤ (𝐽𝑣) = 𝑤))
222219, 220, 221syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑣 ∈ ℤ (𝐽𝑣) = 𝑤))
223218, 222mpbird 257 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → 𝑤 ∈ (𝐽 “ ℤ))
224223ex 412 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) → 𝑤 ∈ (𝐽 “ ℤ)))
225224ssrdv 3935 . . . . . . . 8 (𝜑 → (𝐽 “ (0...(𝑅 − 1))) ⊆ (𝐽 “ ℤ))
226211, 225eqssd 3947 . . . . . . 7 (𝜑 → (𝐽 “ ℤ) = (𝐽 “ (0...(𝑅 − 1))))
22772fnfund 6577 . . . . . . . 8 (𝜑 → Fun 𝐽)
228 fzfid 13875 . . . . . . . 8 (𝜑 → (0...(𝑅 − 1)) ∈ Fin)
229 imafi 9194 . . . . . . . 8 ((Fun 𝐽 ∧ (0...(𝑅 − 1)) ∈ Fin) → (𝐽 “ (0...(𝑅 − 1))) ∈ Fin)
230227, 228, 229syl2anc 584 . . . . . . 7 (𝜑 → (𝐽 “ (0...(𝑅 − 1))) ∈ Fin)
231226, 230eqeltrd 2831 . . . . . 6 (𝜑 → (𝐽 “ ℤ) ∈ Fin)
2326, 4, 7, 12aks6d1c2p1 42151 . . . . . . . . . . 11 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
233 nnssz 12485 . . . . . . . . . . . 12 ℕ ⊆ ℤ
234233a1i 11 . . . . . . . . . . 11 (𝜑 → ℕ ⊆ ℤ)
235232, 234jca 511 . . . . . . . . . 10 (𝜑 → (𝐸:(ℕ0 × ℕ0)⟶ℕ ∧ ℕ ⊆ ℤ))
236 fss 6662 . . . . . . . . . 10 ((𝐸:(ℕ0 × ℕ0)⟶ℕ ∧ ℕ ⊆ ℤ) → 𝐸:(ℕ0 × ℕ0)⟶ℤ)
237235, 236syl 17 . . . . . . . . 9 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℤ)
238237frnd 6654 . . . . . . . 8 (𝜑 → ran 𝐸 ⊆ ℤ)
239232ffnd 6647 . . . . . . . . . 10 (𝜑𝐸 Fn (ℕ0 × ℕ0))
240 fnima 6606 . . . . . . . . . 10 (𝐸 Fn (ℕ0 × ℕ0) → (𝐸 “ (ℕ0 × ℕ0)) = ran 𝐸)
241239, 240syl 17 . . . . . . . . 9 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) = ran 𝐸)
242241sseq1d 3961 . . . . . . . 8 (𝜑 → ((𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ ↔ ran 𝐸 ⊆ ℤ))
243238, 242mpbird 257 . . . . . . 7 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ)
244 imass2 6046 . . . . . . 7 ((𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (𝐽 “ ℤ))
245243, 244syl 17 . . . . . 6 (𝜑 → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (𝐽 “ ℤ))
246231, 245ssfid 9148 . . . . 5 (𝜑 → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ Fin)
247 dff1o2 6763 . . . . . . . 8 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) ↔ (𝑋 Fn (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ∧ Fun 𝑋 ∧ ran 𝑋 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))))
248247biimpi 216 . . . . . . 7 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → (𝑋 Fn (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ∧ Fun 𝑋 ∧ ran 𝑋 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))))
249248simp2d 1143 . . . . . 6 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → Fun 𝑋)
250104, 249syl 17 . . . . 5 (𝜑 → Fun 𝑋)
251 imadomfi 42035 . . . . 5 (((𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ Fin ∧ Fun 𝑋) → (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))
252246, 250, 251syl2anc 584 . . . 4 (𝜑 → (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))
253 hashdomi 14282 . . . 4 ((𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) → (♯‘(𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
254252, 253syl 17 . . 3 (𝜑 → (♯‘(𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
255134, 254eqbrtrd 5108 . 2 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
2561, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 255, 26aks6d1c6lem4 42206 1 (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  {csn 4571   cuni 4854   class class class wbr 5086  {copab 5148  cmpt 5167   I cid 5505   × cxp 5609  ccnv 5610  ran crn 5612  cres 5613  cima 5614  ccom 5615  Fun wfun 6470   Fn wfn 6471  wf 6472  1-1-ontowf1o 6475  cfv 6476  (class class class)co 7341  cmpo 7343  [cec 8615  m cmap 8745  cdom 8862  Fincfn 8864  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006  cle 11142  cmin 11339   / cdiv 11769  cn 12120  2c2 12175  0cn0 12376  cz 12463  ...cfz 13402  cfl 13689  cexp 13963  Ccbc 14204  chash 14232  csqrt 15135  Σcsu 15588  cdvds 16158   gcd cgcd 16400  cprime 16577  ϕcphi 16670  Basecbs 17115  s cress 17136  +gcplusg 17156  0gc0g 17338   Σg cgsu 17339   /s cqus 17404  Mndcmnd 18637  Grpcgrp 18841  .gcmg 18975   ~QG cqg 19030   GrpIso cgim 19164  CMndccmn 19687  Abelcabl 19688  mulGrpcmgp 20053  Ringcrg 20146  CRingccrg 20147   RingHom crh 20382   RingIso crs 20383  Fieldcfield 20640  RSpancrsp 21139  ringczring 21378  ℤRHomczrh 21431  chrcchr 21433  ℤ/nczn 21434  algSccascl 21784  var1cv1 22083  Poly1cpl1 22084  eval1ce1 22224   logb clogb 26696   PrimRoots cprimroots 42124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080  ax-mulf 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-ec 8619  df-qs 8623  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-sin 15971  df-cos 15972  df-pi 15974  df-dvds 16159  df-gcd 16401  df-prm 16578  df-phi 16672  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-pws 17348  df-xrs 17401  df-qtop 17406  df-imas 17407  df-qus 17408  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-nsg 19032  df-eqg 19033  df-ghm 19120  df-gim 19166  df-cntz 19224  df-od 19435  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-srg 20100  df-ring 20148  df-cring 20149  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-dvr 20314  df-rhm 20385  df-rim 20386  df-nzr 20423  df-subrng 20456  df-subrg 20480  df-rlreg 20604  df-domn 20605  df-idom 20606  df-drng 20641  df-field 20642  df-lmod 20790  df-lss 20860  df-lsp 20900  df-sra 21102  df-rgmod 21103  df-lidl 21140  df-rsp 21141  df-2idl 21182  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-zring 21379  df-zrh 21435  df-chr 21437  df-zn 21438  df-assa 21785  df-asp 21786  df-ascl 21787  df-psr 21841  df-mvr 21842  df-mpl 21843  df-opsr 21845  df-evls 22004  df-evl 22005  df-psr1 22087  df-vr1 22088  df-ply1 22089  df-coe1 22090  df-evl1 22226  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790  df-mdeg 25982  df-deg1 25983  df-mon1 26058  df-uc1p 26059  df-q1p 26060  df-r1p 26061  df-log 26487  df-logb 26697  df-primroots 42125
This theorem is referenced by:  aks6d1c7lem2  42214
  Copyright terms: Public domain W3C validator