Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6lem5 Structured version   Visualization version   GIF version

Theorem aks6d1c6lem5 41780
Description: Eliminate the size hypothesis. Claim 6. (Contributed by metakunt, 15-May-2025.)
Hypotheses
Ref Expression
aks6d1c6lem5.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c6lem5.2 𝑃 = (chr‘𝐾)
aks6d1c6lem5.3 (𝜑𝐾 ∈ Field)
aks6d1c6lem5.4 (𝜑𝑃 ∈ ℙ)
aks6d1c6lem5.5 (𝜑𝑅 ∈ ℕ)
aks6d1c6lem5.6 (𝜑𝑁 ∈ ℕ)
aks6d1c6lem5.7 (𝜑𝑃𝑁)
aks6d1c6lem5.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c6lem5.9 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks6d1c6lem5.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c6lem5.11 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aksaks6dlem5.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c6lem5.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c6lem5.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c6lem5.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c6lem5.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c6lem5.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c6lem5.18 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c6lem5.19 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
aks6d1c6lem5.20 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
aks6d1c6lem5.22 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}
aks6d1c6lem5.23 𝑋 = (𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ↦ (𝐽𝑏))
Assertion
Ref Expression
aks6d1c6lem5 (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑏   𝐴,𝑔,𝑖,𝑥   𝐴,,𝑗   𝐴,𝑠,𝑡   𝐷,𝑠   𝑒,𝐸,𝑓,𝑦   𝑗,𝐸,𝑦   𝑥,𝐸,𝑦   𝑒,𝐺,𝑓,𝑦   𝑔,𝐺,𝑖,𝑦   ,𝐺   𝑡,𝐺,𝑖,𝑦   𝐻,𝑎   𝑔,𝐻,𝑖,𝑥,𝑦   ,𝐻,𝑗   𝐻,𝑠,𝑡   𝐽,𝑏   𝑦,𝐽   𝐾,𝑎   𝐾,𝑏   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖,𝑥   ,𝐾,𝑗   𝐾,𝑙,𝑥,𝑦   𝑚,𝐾,𝑛   𝑡,𝐾,𝑥   ,𝑀,𝑗   𝑀,𝑙,𝑦   𝑁,𝑎   𝑁,𝑏   𝑒,𝑁,𝑓   𝑗,𝑁   𝑘,𝑁,𝑙,𝑠   𝑥,𝑁,𝑘   𝑃,𝑏   𝑃,𝑒,𝑓   𝑃,𝑗   𝑃,𝑘,𝑙,𝑠   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑅,𝑗   𝑅,𝑙,𝑥   𝑆,𝑎   𝑆,𝑔,𝑖,𝑥,𝑦   𝑆,,𝑗   𝑆,𝑠,𝑡   𝑈,𝑏   𝑈,𝑗   𝑈,𝑙   𝑋,𝑏   𝜑,𝑎   𝜑,𝑏   𝜑,𝑔,𝑖,𝑥,𝑦   𝜑,,𝑗   𝜑,𝑘,𝑙,𝑠   𝑦,𝑘   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑚,𝑛)   𝐴(𝑦,𝑒,𝑓,𝑘,𝑚,𝑛,𝑙)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑎,𝑏,𝑙)   𝑃(𝑦,𝑡,𝑔,,𝑖,𝑚,𝑛,𝑎)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏,𝑙)   𝑅(𝑡,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏)   𝑆(𝑒,𝑓,𝑘,𝑚,𝑛,𝑏,𝑙)   𝑈(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎)   𝐸(𝑡,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐺(𝑥,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐻(𝑒,𝑓,𝑘,𝑚,𝑛,𝑏,𝑙)   𝐽(𝑥,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑙)   𝐾(𝑘,𝑠)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝑀(𝑥,𝑡,𝑒,𝑓,𝑔,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏)   𝑁(𝑦,𝑡,𝑔,,𝑖,𝑚,𝑛)   𝑋(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑙)

Proof of Theorem aks6d1c6lem5
Dummy variables 𝑐 𝑑 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c6lem5.1 . 2 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
2 aks6d1c6lem5.2 . 2 𝑃 = (chr‘𝐾)
3 aks6d1c6lem5.3 . 2 (𝜑𝐾 ∈ Field)
4 aks6d1c6lem5.4 . 2 (𝜑𝑃 ∈ ℙ)
5 aks6d1c6lem5.5 . 2 (𝜑𝑅 ∈ ℕ)
6 aks6d1c6lem5.6 . 2 (𝜑𝑁 ∈ ℕ)
7 aks6d1c6lem5.7 . 2 (𝜑𝑃𝑁)
8 aks6d1c6lem5.8 . 2 (𝜑 → (𝑁 gcd 𝑅) = 1)
9 aks6d1c6lem5.9 . 2 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
10 aks6d1c6lem5.10 . 2 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
11 aks6d1c6lem5.11 . 2 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
12 aksaks6dlem5.12 . 2 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
13 aks6d1c6lem5.13 . 2 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
14 aks6d1c6lem5.14 . 2 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
15 aks6d1c6lem5.15 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
16 aks6d1c6lem5.16 . 2 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
17 aks6d1c6lem5.17 . 2 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
18 aks6d1c6lem5.18 . 2 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
19 aks6d1c6lem5.19 . 2 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
20 aks6d1c6lem5.20 . 2 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
21 eqid 2725 . . . . . . . . . . 11 (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) = (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))
223fldcrngd 20649 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ CRing)
23 eqid 2725 . . . . . . . . . . . . . 14 (mulGrp‘𝐾) = (mulGrp‘𝐾)
2423crngmgp 20193 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
2522, 24syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
26 aks6d1c6lem5.22 . . . . . . . . . . . 12 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}
2725, 5, 26, 20, 16aks6d1c6isolem2 41778 . . . . . . . . . . 11 (𝜑𝐽 ∈ (ℤring GrpHom (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
28 eqid 2725 . . . . . . . . . . 11 (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}) = (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})
29 eqid 2725 . . . . . . . . . . 11 (ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
30 aks6d1c6lem5.23 . . . . . . . . . . 11 𝑋 = (𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ↦ (𝐽𝑏))
31 zringbas 21396 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
32 nfcv 2891 . . . . . . . . . . . 12 𝑐[𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
33 nfcv 2891 . . . . . . . . . . . 12 𝑑[𝑐](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
34 eceq1 8763 . . . . . . . . . . . 12 (𝑑 = 𝑐 → [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = [𝑐](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
3532, 33, 34cbvmpt 5260 . . . . . . . . . . 11 (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (𝑐 ∈ ℤ ↦ [𝑐](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
3621, 27, 28, 29, 30, 31, 35ghmquskerco 19247 . . . . . . . . . 10 (𝜑𝐽 = (𝑋 ∘ (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))
37 eqid 2725 . . . . . . . . . . . . . . . . 17 (RSpan‘ℤring) = (RSpan‘ℤring)
3825, 5, 26, 20, 16, 37aks6d1c6isolem3 41779 . . . . . . . . . . . . . . . 16 (𝜑 → ((RSpan‘ℤring)‘{𝑅}) = (𝐽 “ {(0g‘((mulGrp‘𝐾) ↾s 𝑈))}))
3925, 5, 26primrootsunit 41700 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ∧ ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel))
4039simprd 494 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel)
4140ablgrpd 19753 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp)
4241grpmndd 18911 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Mnd)
43 0zd 12603 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ∈ ℤ)
44 simpr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 = 0) → 𝑤 = 0)
4544fveqeq2d 6904 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 = 0) → ((𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ↔ (𝐽‘0) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))))
4620a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
47 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 = 0) → 𝑗 = 0)
4847oveq1d 7434 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 = 0) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
4939simpld 493 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅))
5016, 49eleqtrd 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅))
5140ablcmnd 19755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ CMnd)
525nnnn0d 12565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑅 ∈ ℕ0)
53 eqid 2725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (.g‘((mulGrp‘𝐾) ↾s 𝑈)) = (.g‘((mulGrp‘𝐾) ↾s 𝑈))
5451, 52, 53isprimroot 41696 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑙))))
5554biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑙))))
5650, 55mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑙)))
5756simp1d 1139 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
58 eqid 2725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Base‘((mulGrp‘𝐾) ↾s 𝑈)) = (Base‘((mulGrp‘𝐾) ↾s 𝑈))
59 eqid 2725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0g‘((mulGrp‘𝐾) ↾s 𝑈)) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))
6058, 59, 53mulg0 19038 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) → (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6157, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6261adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 = 0) → (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6348, 62eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 = 0) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
64 fvexd 6911 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ V)
6546, 63, 43, 64fvmptd 7011 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐽‘0) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6643, 45, 65rspcedvd 3608 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∃𝑤 ∈ ℤ (𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6741adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℤ) → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp)
68 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℤ) → 𝑗 ∈ ℤ)
6957adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℤ) → 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
7058, 53, 67, 68, 69mulgcld 19059 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℤ) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
7170, 20fmptd 7123 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽:ℤ⟶(Base‘((mulGrp‘𝐾) ↾s 𝑈)))
7271ffnd 6724 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 Fn ℤ)
73 fvelrnb 6958 . . . . . . . . . . . . . . . . . . . . 21 (𝐽 Fn ℤ → ((0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ↔ ∃𝑤 ∈ ℤ (𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))))
7472, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ↔ ∃𝑤 ∈ ℤ (𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))))
7566, 74mpbird 256 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽)
7671frnd 6731 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
77 eqid 2725 . . . . . . . . . . . . . . . . . . . 20 (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽) = (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)
7877, 58, 59ress0g 18725 . . . . . . . . . . . . . . . . . . 19 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Mnd ∧ (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ∧ ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) = (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
7942, 75, 76, 78syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) = (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
8079sneqd 4642 . . . . . . . . . . . . . . . . 17 (𝜑 → {(0g‘((mulGrp‘𝐾) ↾s 𝑈))} = {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})
8180imaeq2d 6064 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽 “ {(0g‘((mulGrp‘𝐾) ↾s 𝑈))}) = (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
8238, 81eqtr2d 2766 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}) = ((RSpan‘ℤring)‘{𝑅}))
8382oveq2d 7435 . . . . . . . . . . . . . 14 (𝜑 → (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))
8483eceq2d 8767 . . . . . . . . . . . . 13 (𝜑 → [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))
8584mpteq2dv 5251 . . . . . . . . . . . 12 (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))))
86 eqid 2725 . . . . . . . . . . . . . . 15 (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))
87 eqid 2725 . . . . . . . . . . . . . . 15 (ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅)
8837, 86, 87, 13znzrh2 21496 . . . . . . . . . . . . . 14 (𝑅 ∈ ℕ0𝐿 = (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))))
8952, 88syl 17 . . . . . . . . . . . . 13 (𝜑𝐿 = (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))))
9089eqcomd 2731 . . . . . . . . . . . 12 (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))) = 𝐿)
9185, 90eqtrd 2765 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = 𝐿)
9291coeq2d 5865 . . . . . . . . . 10 (𝜑 → (𝑋 ∘ (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) = (𝑋𝐿))
9336, 92eqtrd 2765 . . . . . . . . 9 (𝜑𝐽 = (𝑋𝐿))
9493coeq2d 5865 . . . . . . . 8 (𝜑 → (𝑋𝐽) = (𝑋 ∘ (𝑋𝐿)))
95 coass 6271 . . . . . . . . 9 ((𝑋𝑋) ∘ 𝐿) = (𝑋 ∘ (𝑋𝐿))
9695eqcomi 2734 . . . . . . . 8 (𝑋 ∘ (𝑋𝐿)) = ((𝑋𝑋) ∘ 𝐿)
9794, 96eqtrdi 2781 . . . . . . 7 (𝜑 → (𝑋𝐽) = ((𝑋𝑋) ∘ 𝐿))
9877, 58ressbas2 17221 . . . . . . . . . . . . 13 (ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) → ran 𝐽 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
9976, 98syl 17 . . . . . . . . . . . 12 (𝜑 → ran 𝐽 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
10021, 27, 28, 29, 30, 99ghmqusker 19250 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) GrpIso (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
101 eqid 2725 . . . . . . . . . . . 12 (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) = (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))
102 eqid 2725 . . . . . . . . . . . 12 (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))
103101, 102gimf1o 19226 . . . . . . . . . . 11 (𝑋 ∈ ((ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) GrpIso (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → 𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
104100, 103syl 17 . . . . . . . . . 10 (𝜑𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
105 f1ococnv1 6867 . . . . . . . . . 10 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → (𝑋𝑋) = ( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))))
106104, 105syl 17 . . . . . . . . 9 (𝜑 → (𝑋𝑋) = ( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))))
107106coeq1d 5864 . . . . . . . 8 (𝜑 → ((𝑋𝑋) ∘ 𝐿) = (( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿))
10887zncrng 21495 . . . . . . . . . . . . 13 (𝑅 ∈ ℕ0 → (ℤ/nℤ‘𝑅) ∈ CRing)
10952, 108syl 17 . . . . . . . . . . . 12 (𝜑 → (ℤ/nℤ‘𝑅) ∈ CRing)
110 crngring 20197 . . . . . . . . . . . 12 ((ℤ/nℤ‘𝑅) ∈ CRing → (ℤ/nℤ‘𝑅) ∈ Ring)
11113zrhrhm 21454 . . . . . . . . . . . 12 ((ℤ/nℤ‘𝑅) ∈ Ring → 𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)))
112 eqid 2725 . . . . . . . . . . . . 13 (Base‘(ℤ/nℤ‘𝑅)) = (Base‘(ℤ/nℤ‘𝑅))
11331, 112rhmf 20436 . . . . . . . . . . . 12 (𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)) → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
114109, 110, 111, 1134syl 19 . . . . . . . . . . 11 (𝜑𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
115 eqid 2725 . . . . . . . . . . . . . 14 (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))
11637, 115, 87znbas2 21487 . . . . . . . . . . . . 13 (𝑅 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) = (Base‘(ℤ/nℤ‘𝑅)))
11752, 116syl 17 . . . . . . . . . . . 12 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) = (Base‘(ℤ/nℤ‘𝑅)))
118117feq3d 6710 . . . . . . . . . . 11 (𝜑 → (𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) ↔ 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅))))
119114, 118mpbird 256 . . . . . . . . . 10 (𝜑𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))))
12082eqcomd 2731 . . . . . . . . . . . . . 14 (𝜑 → ((RSpan‘ℤring)‘{𝑅}) = (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
121120oveq2d 7435 . . . . . . . . . . . . 13 (𝜑 → (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})) = (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
122121oveq2d 7435 . . . . . . . . . . . 12 (𝜑 → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))) = (ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))
123122fveq2d 6900 . . . . . . . . . . 11 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) = (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))
124123feq3d 6710 . . . . . . . . . 10 (𝜑 → (𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) ↔ 𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))))
125119, 124mpbid 231 . . . . . . . . 9 (𝜑𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))
126 fcoi2 6772 . . . . . . . . 9 (𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) → (( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿) = 𝐿)
127125, 126syl 17 . . . . . . . 8 (𝜑 → (( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿) = 𝐿)
128107, 127eqtrd 2765 . . . . . . 7 (𝜑 → ((𝑋𝑋) ∘ 𝐿) = 𝐿)
12997, 128eqtr2d 2766 . . . . . 6 (𝜑𝐿 = (𝑋𝐽))
130129imaeq1d 6063 . . . . 5 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) = ((𝑋𝐽) “ (𝐸 “ (ℕ0 × ℕ0))))
131 imaco 6257 . . . . . 6 ((𝑋𝐽) “ (𝐸 “ (ℕ0 × ℕ0))) = (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))
132131a1i 11 . . . . 5 (𝜑 → ((𝑋𝐽) “ (𝐸 “ (ℕ0 × ℕ0))) = (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
133130, 132eqtrd 2765 . . . 4 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) = (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
134133fveq2d 6900 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = (♯‘(𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))))
135 simplll 773 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → 𝜑)
136 simplr 767 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → 𝑢 ∈ ℤ)
137135, 136jca 510 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → (𝜑𝑢 ∈ ℤ))
138 simplr 767 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑧 ∈ (0...(𝑅 − 1)))
139 simpr 483 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑣 = 𝑧) → 𝑣 = 𝑧)
140139fveqeq2d 6904 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑣 = 𝑧) → ((𝐽𝑣) = (𝐽𝑢) ↔ (𝐽𝑧) = (𝐽𝑢)))
14120a1i 11 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
142 simpr 483 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑧) → 𝑗 = 𝑧)
143142oveq1d 7434 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑧) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
144 fzssz 13538 . . . . . . . . . . . . . . . . . . 19 (0...(𝑅 − 1)) ⊆ ℤ
145144, 138sselid 3974 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑧 ∈ ℤ)
146 ovexd 7454 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V)
147141, 143, 145, 146fvmptd 7011 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽𝑧) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
148 simpr 483 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑢) → 𝑗 = 𝑢)
149148oveq1d 7434 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑢) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
150 simpr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ ℤ) → 𝑢 ∈ ℤ)
151150ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑢 ∈ ℤ)
152 ovexd 7454 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V)
153141, 149, 151, 152fvmptd 7011 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽𝑢) = (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
154 simpr 483 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑢 = ((𝑦 · 𝑅) + 𝑧))
155154oveq1d 7434 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
15641ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp)
157 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑦 ∈ ℤ)
1585adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ ℤ) → 𝑅 ∈ ℕ)
159158ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑅 ∈ ℕ)
160159nnzd 12618 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑅 ∈ ℤ)
161157, 160zmulcld 12705 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦 · 𝑅) ∈ ℤ)
162144sseli 3972 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ (0...(𝑅 − 1)) → 𝑧 ∈ ℤ)
163162adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑧 ∈ ℤ)
16457ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
165161, 163, 1643jca 1125 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))))
166 eqid 2725 . . . . . . . . . . . . . . . . . . . . . . 23 (+g‘((mulGrp‘𝐾) ↾s 𝑈)) = (+g‘((mulGrp‘𝐾) ↾s 𝑈))
16758, 53, 166mulgdir 19069 . . . . . . . . . . . . . . . . . . . . . 22 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp ∧ ((𝑦 · 𝑅) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
168156, 165, 167syl2anc 582 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
169157, 160, 1643jca 1125 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))))
17058, 53mulgass 19074 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp ∧ (𝑦 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
171156, 169, 170syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
17256simp2d 1140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
173172adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ ℤ) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
174173adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
175174adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
176175oveq2d 7435 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))))
17758, 53, 59mulgz 19065 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp ∧ 𝑦 ∈ ℤ) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
178156, 157, 177syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
179176, 178eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
180171, 179eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
181180oveq1d 7434 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = ((0g‘((mulGrp‘𝐾) ↾s 𝑈))(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
18258, 53, 156, 163, 164mulgcld 19059 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
18358, 166, 59, 156, 182grplidd 18934 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((0g‘((mulGrp‘𝐾) ↾s 𝑈))(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
184181, 183eqtrd 2765 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
185168, 184eqtrd 2765 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
186185adantr 479 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
187155, 186eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
188153, 187eqtr2d 2766 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝐽𝑢))
189147, 188eqtrd 2765 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽𝑧) = (𝐽𝑢))
190138, 140, 189rspcedvd 3608 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢))
191150, 158remexz 41707 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ ℤ) → ∃𝑦 ∈ ℤ ∃𝑧 ∈ (0...(𝑅 − 1))𝑢 = ((𝑦 · 𝑅) + 𝑧))
192190, 191r19.29vva 3203 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ ℤ) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢))
193137, 192syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢))
194 simpr 483 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → (𝐽𝑢) = 𝑤)
195194eqcomd 2731 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → 𝑤 = (𝐽𝑢))
196195eqeq2d 2736 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → ((𝐽𝑣) = 𝑤 ↔ (𝐽𝑣) = (𝐽𝑢)))
197196rexbidv 3168 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → (∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤 ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢)))
198193, 197mpbird 256 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤)
199 ssidd 4000 . . . . . . . . . . . . . . 15 (𝜑 → ℤ ⊆ ℤ)
200 fvelimab 6970 . . . . . . . . . . . . . . 15 ((𝐽 Fn ℤ ∧ ℤ ⊆ ℤ) → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤))
20172, 199, 200syl2anc 582 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤))
202201biimpd 228 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) → ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤))
203202imp 405 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤)
204198, 203r19.29a 3151 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤)
205144a1i 11 . . . . . . . . . . . . 13 (𝜑 → (0...(𝑅 − 1)) ⊆ ℤ)
206 fvelimab 6970 . . . . . . . . . . . . 13 ((𝐽 Fn ℤ ∧ (0...(𝑅 − 1)) ⊆ ℤ) → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
20772, 205, 206syl2anc 582 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
208207adantr 479 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
209204, 208mpbird 256 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))))
210209ex 411 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) → 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))))
211210ssrdv 3982 . . . . . . . 8 (𝜑 → (𝐽 “ ℤ) ⊆ (𝐽 “ (0...(𝑅 − 1))))
212207biimpd 228 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
213212imp 405 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤)
214144sseli 3972 . . . . . . . . . . . . . 14 (𝑣 ∈ (0...(𝑅 − 1)) → 𝑣 ∈ ℤ)
215214adantr 479 . . . . . . . . . . . . 13 ((𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽𝑣) = 𝑤) → 𝑣 ∈ ℤ)
216215adantl 480 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) ∧ (𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽𝑣) = 𝑤)) → 𝑣 ∈ ℤ)
217 simprr 771 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) ∧ (𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽𝑣) = 𝑤)) → (𝐽𝑣) = 𝑤)
218213, 216, 217reximssdv 3162 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ∃𝑣 ∈ ℤ (𝐽𝑣) = 𝑤)
21972adantr 479 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → 𝐽 Fn ℤ)
220 ssidd 4000 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ℤ ⊆ ℤ)
221 fvelimab 6970 . . . . . . . . . . . 12 ((𝐽 Fn ℤ ∧ ℤ ⊆ ℤ) → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑣 ∈ ℤ (𝐽𝑣) = 𝑤))
222219, 220, 221syl2anc 582 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑣 ∈ ℤ (𝐽𝑣) = 𝑤))
223218, 222mpbird 256 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → 𝑤 ∈ (𝐽 “ ℤ))
224223ex 411 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) → 𝑤 ∈ (𝐽 “ ℤ)))
225224ssrdv 3982 . . . . . . . 8 (𝜑 → (𝐽 “ (0...(𝑅 − 1))) ⊆ (𝐽 “ ℤ))
226211, 225eqssd 3994 . . . . . . 7 (𝜑 → (𝐽 “ ℤ) = (𝐽 “ (0...(𝑅 − 1))))
22772fnfund 6656 . . . . . . . 8 (𝜑 → Fun 𝐽)
228 fzfid 13974 . . . . . . . 8 (𝜑 → (0...(𝑅 − 1)) ∈ Fin)
229 imafi 9200 . . . . . . . 8 ((Fun 𝐽 ∧ (0...(𝑅 − 1)) ∈ Fin) → (𝐽 “ (0...(𝑅 − 1))) ∈ Fin)
230227, 228, 229syl2anc 582 . . . . . . 7 (𝜑 → (𝐽 “ (0...(𝑅 − 1))) ∈ Fin)
231226, 230eqeltrd 2825 . . . . . 6 (𝜑 → (𝐽 “ ℤ) ∈ Fin)
2326, 4, 7, 12aks6d1c2p1 41721 . . . . . . . . . . 11 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
233 nnssz 12613 . . . . . . . . . . . 12 ℕ ⊆ ℤ
234233a1i 11 . . . . . . . . . . 11 (𝜑 → ℕ ⊆ ℤ)
235232, 234jca 510 . . . . . . . . . 10 (𝜑 → (𝐸:(ℕ0 × ℕ0)⟶ℕ ∧ ℕ ⊆ ℤ))
236 fss 6739 . . . . . . . . . 10 ((𝐸:(ℕ0 × ℕ0)⟶ℕ ∧ ℕ ⊆ ℤ) → 𝐸:(ℕ0 × ℕ0)⟶ℤ)
237235, 236syl 17 . . . . . . . . 9 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℤ)
238237frnd 6731 . . . . . . . 8 (𝜑 → ran 𝐸 ⊆ ℤ)
239232ffnd 6724 . . . . . . . . . 10 (𝜑𝐸 Fn (ℕ0 × ℕ0))
240 fnima 6686 . . . . . . . . . 10 (𝐸 Fn (ℕ0 × ℕ0) → (𝐸 “ (ℕ0 × ℕ0)) = ran 𝐸)
241239, 240syl 17 . . . . . . . . 9 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) = ran 𝐸)
242241sseq1d 4008 . . . . . . . 8 (𝜑 → ((𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ ↔ ran 𝐸 ⊆ ℤ))
243238, 242mpbird 256 . . . . . . 7 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ)
244 imass2 6107 . . . . . . 7 ((𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (𝐽 “ ℤ))
245243, 244syl 17 . . . . . 6 (𝜑 → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (𝐽 “ ℤ))
246231, 245ssfid 9292 . . . . 5 (𝜑 → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ Fin)
247 dff1o2 6843 . . . . . . . 8 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) ↔ (𝑋 Fn (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ∧ Fun 𝑋 ∧ ran 𝑋 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))))
248247biimpi 215 . . . . . . 7 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → (𝑋 Fn (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ∧ Fun 𝑋 ∧ ran 𝑋 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))))
249248simp2d 1140 . . . . . 6 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → Fun 𝑋)
250104, 249syl 17 . . . . 5 (𝜑 → Fun 𝑋)
251 imadomfi 41605 . . . . 5 (((𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ Fin ∧ Fun 𝑋) → (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))
252246, 250, 251syl2anc 582 . . . 4 (𝜑 → (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))
253 hashdomi 14375 . . . 4 ((𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) → (♯‘(𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
254252, 253syl 17 . . 3 (𝜑 → (♯‘(𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
255134, 254eqbrtrd 5171 . 2 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
2561, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 255, 26aks6d1c6lem4 41776 1 (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wrex 3059  {crab 3418  Vcvv 3461  wss 3944  {csn 4630   cuni 4909   class class class wbr 5149  {copab 5211  cmpt 5232   I cid 5575   × cxp 5676  ccnv 5677  ran crn 5679  cres 5680  cima 5681  ccom 5682  Fun wfun 6543   Fn wfn 6544  wf 6545  1-1-ontowf1o 6548  cfv 6549  (class class class)co 7419  cmpo 7421  [cec 8723  m cmap 8845  cdom 8962  Fincfn 8964  0cc0 11140  1c1 11141   + caddc 11143   · cmul 11145  cle 11281  cmin 11476   / cdiv 11903  cn 12245  2c2 12300  0cn0 12505  cz 12591  ...cfz 13519  cfl 13791  cexp 14062  Ccbc 14297  chash 14325  csqrt 15216  Σcsu 15668  cdvds 16234   gcd cgcd 16472  cprime 16645  ϕcphi 16736  Basecbs 17183  s cress 17212  +gcplusg 17236  0gc0g 17424   Σg cgsu 17425   /s cqus 17490  Mndcmnd 18697  Grpcgrp 18898  .gcmg 19031   ~QG cqg 19085   GrpIso cgim 19220  CMndccmn 19747  Abelcabl 19748  mulGrpcmgp 20086  Ringcrg 20185  CRingccrg 20186   RingHom crh 20420   RingIso crs 20421  Fieldcfield 20637  RSpancrsp 21115  ringczring 21389  ℤRHomczrh 21442  chrcchr 21444  ℤ/nczn 21445  algSccascl 21803  var1cv1 22118  Poly1cpl1 22119  eval1ce1 22258   logb clogb 26741   PrimRoots cprimroots 41694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219  ax-mulf 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8725  df-ec 8727  df-qs 8731  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-xnn0 12578  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-fac 14269  df-bc 14298  df-hash 14326  df-shft 15050  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-sum 15669  df-ef 16047  df-sin 16049  df-cos 16050  df-pi 16052  df-dvds 16235  df-gcd 16473  df-prm 16646  df-phi 16738  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-pws 17434  df-xrs 17487  df-qtop 17492  df-imas 17493  df-qus 17494  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mulg 19032  df-subg 19086  df-nsg 19087  df-eqg 19088  df-ghm 19176  df-gim 19222  df-cntz 19280  df-od 19495  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-srg 20139  df-ring 20187  df-cring 20188  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-dvr 20352  df-rhm 20423  df-rim 20424  df-nzr 20464  df-subrng 20495  df-subrg 20520  df-drng 20638  df-field 20639  df-lmod 20757  df-lss 20828  df-lsp 20868  df-sra 21070  df-rgmod 21071  df-lidl 21116  df-rsp 21117  df-2idl 21157  df-rlreg 21247  df-domn 21248  df-idom 21249  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-zring 21390  df-zrh 21446  df-chr 21448  df-zn 21449  df-assa 21804  df-asp 21805  df-ascl 21806  df-psr 21859  df-mvr 21860  df-mpl 21861  df-opsr 21863  df-evls 22040  df-evl 22041  df-psr1 22122  df-vr1 22123  df-ply1 22124  df-coe1 22125  df-evl1 22260  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-limc 25839  df-dv 25840  df-mdeg 26032  df-deg1 26033  df-mon1 26111  df-uc1p 26112  df-q1p 26113  df-r1p 26114  df-log 26535  df-logb 26742  df-primroots 41695
This theorem is referenced by:  aks6d1c7lem2  41784
  Copyright terms: Public domain W3C validator