Step | Hyp | Ref
| Expression |
1 | | aks6d1c6lem5.1 |
. 2
⊢ ∼ =
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈
(Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} |
2 | | aks6d1c6lem5.2 |
. 2
⊢ 𝑃 = (chr‘𝐾) |
3 | | aks6d1c6lem5.3 |
. 2
⊢ (𝜑 → 𝐾 ∈ Field) |
4 | | aks6d1c6lem5.4 |
. 2
⊢ (𝜑 → 𝑃 ∈ ℙ) |
5 | | aks6d1c6lem5.5 |
. 2
⊢ (𝜑 → 𝑅 ∈ ℕ) |
6 | | aks6d1c6lem5.6 |
. 2
⊢ (𝜑 → 𝑁 ∈ ℕ) |
7 | | aks6d1c6lem5.7 |
. 2
⊢ (𝜑 → 𝑃 ∥ 𝑁) |
8 | | aks6d1c6lem5.8 |
. 2
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
9 | | aks6d1c6lem5.9 |
. 2
⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) |
10 | | aks6d1c6lem5.10 |
. 2
⊢ 𝐺 = (𝑔 ∈ (ℕ0
↑m (0...𝐴))
↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) |
11 | | aks6d1c6lem5.11 |
. 2
⊢ 𝐴 =
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
12 | | aksaks6dlem5.12 |
. 2
⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
13 | | aks6d1c6lem5.13 |
. 2
⊢ 𝐿 =
(ℤRHom‘(ℤ/nℤ‘𝑅)) |
14 | | aks6d1c6lem5.14 |
. 2
⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
15 | | aks6d1c6lem5.15 |
. 2
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
16 | | aks6d1c6lem5.16 |
. 2
⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
17 | | aks6d1c6lem5.17 |
. 2
⊢ 𝐻 = (ℎ ∈ (ℕ0
↑m (0...𝐴))
↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀)) |
18 | | aks6d1c6lem5.18 |
. 2
⊢ 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) |
19 | | aks6d1c6lem5.19 |
. 2
⊢ 𝑆 = {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} |
20 | | aks6d1c6lem5.20 |
. 2
⊢ 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) |
21 | | eqid 2725 |
. . . . . . . . . . 11
⊢
(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) =
(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) |
22 | 3 | fldcrngd 20649 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ CRing) |
23 | | eqid 2725 |
. . . . . . . . . . . . . 14
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) |
24 | 23 | crngmgp 20193 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ CRing →
(mulGrp‘𝐾) ∈
CMnd) |
25 | 22, 24 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (mulGrp‘𝐾) ∈ CMnd) |
26 | | aks6d1c6lem5.22 |
. . . . . . . . . . . 12
⊢ 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈
(Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))} |
27 | 25, 5, 26, 20, 16 | aks6d1c6isolem2 41778 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (ℤring GrpHom
(((mulGrp‘𝐾)
↾s 𝑈)
↾s ran 𝐽))) |
28 | | eqid 2725 |
. . . . . . . . . . 11
⊢ (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}) = (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}) |
29 | | eqid 2725 |
. . . . . . . . . . 11
⊢
(ℤring /s (ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) |
30 | | aks6d1c6lem5.23 |
. . . . . . . . . . 11
⊢ 𝑋 = (𝑏 ∈ (Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ↦ ∪
(𝐽 “ 𝑏)) |
31 | | zringbas 21396 |
. . . . . . . . . . 11
⊢ ℤ =
(Base‘ℤring) |
32 | | nfcv 2891 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑐[𝑑](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) |
33 | | nfcv 2891 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑑[𝑐](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) |
34 | | eceq1 8763 |
. . . . . . . . . . . 12
⊢ (𝑑 = 𝑐 → [𝑑](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = [𝑐](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) |
35 | 32, 33, 34 | cbvmpt 5260 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ ℤ ↦ [𝑑](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (𝑐 ∈ ℤ ↦ [𝑐](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) |
36 | 21, 27, 28, 29, 30, 31, 35 | ghmquskerco 19247 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 = (𝑋 ∘ (𝑑 ∈ ℤ ↦ [𝑑](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) |
37 | | eqid 2725 |
. . . . . . . . . . . . . . . . 17
⊢
(RSpan‘ℤring) =
(RSpan‘ℤring) |
38 | 25, 5, 26, 20, 16, 37 | aks6d1c6isolem3 41779 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
((RSpan‘ℤring)‘{𝑅}) = (◡𝐽 “
{(0g‘((mulGrp‘𝐾) ↾s 𝑈))})) |
39 | 25, 5, 26 | primrootsunit 41700 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ∧ ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel)) |
40 | 39 | simprd 494 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel) |
41 | 40 | ablgrpd 19753 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp) |
42 | 41 | grpmndd 18911 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Mnd) |
43 | | 0zd 12603 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 0 ∈
ℤ) |
44 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑤 = 0) → 𝑤 = 0) |
45 | 44 | fveqeq2d 6904 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑤 = 0) → ((𝐽‘𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ↔ (𝐽‘0) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈)))) |
46 | 20 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))) |
47 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 = 0) → 𝑗 = 0) |
48 | 47 | oveq1d 7434 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 = 0) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) |
49 | 39 | simpld 493 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → ((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅)) |
50 | 16, 49 | eleqtrd 2827 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅)) |
51 | 40 | ablcmnd 19755 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ CMnd) |
52 | 5 | nnnn0d 12565 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
53 | | eqid 2725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(.g‘((mulGrp‘𝐾) ↾s 𝑈)) =
(.g‘((mulGrp‘𝐾) ↾s 𝑈)) |
54 | 51, 52, 53 | isprimroot 41696 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅 ∥ 𝑙)))) |
55 | 54 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅 ∥ 𝑙)))) |
56 | 50, 55 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅 ∥ 𝑙))) |
57 | 56 | simp1d 1139 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) |
58 | | eqid 2725 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(Base‘((mulGrp‘𝐾) ↾s 𝑈)) = (Base‘((mulGrp‘𝐾) ↾s 𝑈)) |
59 | | eqid 2725 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) |
60 | 58, 59, 53 | mulg0 19038 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑀 ∈
(Base‘((mulGrp‘𝐾) ↾s 𝑈)) →
(0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) |
61 | 57, 60 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 →
(0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) |
62 | 61 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 = 0) →
(0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) |
63 | 48, 62 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 = 0) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) |
64 | | fvexd 6911 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 →
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ V) |
65 | 46, 63, 43, 64 | fvmptd 7011 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐽‘0) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) |
66 | 43, 45, 65 | rspcedvd 3608 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ∃𝑤 ∈ ℤ (𝐽‘𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))) |
67 | 41 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ) → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp) |
68 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ ℤ) |
69 | 57 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ) → 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) |
70 | 58, 53, 67, 68, 69 | mulgcld 19059 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) |
71 | 70, 20 | fmptd 7123 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐽:ℤ⟶(Base‘((mulGrp‘𝐾) ↾s 𝑈))) |
72 | 71 | ffnd 6724 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐽 Fn ℤ) |
73 | | fvelrnb 6958 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐽 Fn ℤ →
((0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ↔ ∃𝑤 ∈ ℤ (𝐽‘𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))) |
74 | 72, 73 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 →
((0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ↔ ∃𝑤 ∈ ℤ (𝐽‘𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))) |
75 | 66, 74 | mpbird 256 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽) |
76 | 71 | frnd 6731 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) |
77 | | eqid 2725 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((mulGrp‘𝐾)
↾s 𝑈)
↾s ran 𝐽)
= (((mulGrp‘𝐾)
↾s 𝑈)
↾s ran 𝐽) |
78 | 77, 58, 59 | ress0g 18725 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((mulGrp‘𝐾)
↾s 𝑈)
∈ Mnd ∧ (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ∧ ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) →
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) =
(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))) |
79 | 42, 75, 76, 78 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) =
(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))) |
80 | 79 | sneqd 4642 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
{(0g‘((mulGrp‘𝐾) ↾s 𝑈))} =
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}) |
81 | 80 | imaeq2d 6064 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (◡𝐽 “
{(0g‘((mulGrp‘𝐾) ↾s 𝑈))}) = (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) |
82 | 38, 81 | eqtr2d 2766 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}) =
((RSpan‘ℤring)‘{𝑅})) |
83 | 82 | oveq2d 7435 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = (ℤring
~QG ((RSpan‘ℤring)‘{𝑅}))) |
84 | 83 | eceq2d 8767 |
. . . . . . . . . . . . 13
⊢ (𝜑 → [𝑑](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = [𝑑](ℤring
~QG ((RSpan‘ℤring)‘{𝑅}))) |
85 | 84 | mpteq2dv 5251 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (𝑑 ∈ ℤ ↦ [𝑑](ℤring
~QG ((RSpan‘ℤring)‘{𝑅})))) |
86 | | eqid 2725 |
. . . . . . . . . . . . . . 15
⊢
(ℤring ~QG
((RSpan‘ℤring)‘{𝑅})) = (ℤring
~QG ((RSpan‘ℤring)‘{𝑅})) |
87 | | eqid 2725 |
. . . . . . . . . . . . . . 15
⊢
(ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅) |
88 | 37, 86, 87, 13 | znzrh2 21496 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℕ0
→ 𝐿 = (𝑑 ∈ ℤ ↦ [𝑑](ℤring
~QG ((RSpan‘ℤring)‘{𝑅})))) |
89 | 52, 88 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐿 = (𝑑 ∈ ℤ ↦ [𝑑](ℤring
~QG ((RSpan‘ℤring)‘{𝑅})))) |
90 | 89 | eqcomd 2731 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring
~QG ((RSpan‘ℤring)‘{𝑅}))) = 𝐿) |
91 | 85, 90 | eqtrd 2765 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = 𝐿) |
92 | 91 | coeq2d 5865 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 ∘ (𝑑 ∈ ℤ ↦ [𝑑](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) = (𝑋 ∘ 𝐿)) |
93 | 36, 92 | eqtrd 2765 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 = (𝑋 ∘ 𝐿)) |
94 | 93 | coeq2d 5865 |
. . . . . . . 8
⊢ (𝜑 → (◡𝑋 ∘ 𝐽) = (◡𝑋 ∘ (𝑋 ∘ 𝐿))) |
95 | | coass 6271 |
. . . . . . . . 9
⊢ ((◡𝑋 ∘ 𝑋) ∘ 𝐿) = (◡𝑋 ∘ (𝑋 ∘ 𝐿)) |
96 | 95 | eqcomi 2734 |
. . . . . . . 8
⊢ (◡𝑋 ∘ (𝑋 ∘ 𝐿)) = ((◡𝑋 ∘ 𝑋) ∘ 𝐿) |
97 | 94, 96 | eqtrdi 2781 |
. . . . . . 7
⊢ (𝜑 → (◡𝑋 ∘ 𝐽) = ((◡𝑋 ∘ 𝑋) ∘ 𝐿)) |
98 | 77, 58 | ressbas2 17221 |
. . . . . . . . . . . . 13
⊢ (ran
𝐽 ⊆
(Base‘((mulGrp‘𝐾) ↾s 𝑈)) → ran 𝐽 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))) |
99 | 76, 98 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran 𝐽 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))) |
100 | 21, 27, 28, 29, 30, 99 | ghmqusker 19250 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ ((ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) GrpIso (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))) |
101 | | eqid 2725 |
. . . . . . . . . . . 12
⊢
(Base‘(ℤring /s
(ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) =
(Base‘(ℤring /s
(ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) |
102 | | eqid 2725 |
. . . . . . . . . . . 12
⊢
(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) |
103 | 101, 102 | gimf1o 19226 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ((ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) GrpIso (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → 𝑋:(Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))) |
104 | 100, 103 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋:(Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))) |
105 | | f1ococnv1 6867 |
. . . . . . . . . 10
⊢ (𝑋:(Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → (◡𝑋 ∘ 𝑋) = ( I ↾
(Base‘(ℤring /s
(ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))) |
106 | 104, 105 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝑋 ∘ 𝑋) = ( I ↾
(Base‘(ℤring /s
(ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))) |
107 | 106 | coeq1d 5864 |
. . . . . . . 8
⊢ (𝜑 → ((◡𝑋 ∘ 𝑋) ∘ 𝐿) = (( I ↾
(Base‘(ℤring /s
(ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿)) |
108 | 87 | zncrng 21495 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℕ0
→ (ℤ/nℤ‘𝑅) ∈ CRing) |
109 | 52, 108 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(ℤ/nℤ‘𝑅) ∈ CRing) |
110 | | crngring 20197 |
. . . . . . . . . . . 12
⊢
((ℤ/nℤ‘𝑅) ∈ CRing →
(ℤ/nℤ‘𝑅) ∈ Ring) |
111 | 13 | zrhrhm 21454 |
. . . . . . . . . . . 12
⊢
((ℤ/nℤ‘𝑅) ∈ Ring → 𝐿 ∈ (ℤring RingHom
(ℤ/nℤ‘𝑅))) |
112 | | eqid 2725 |
. . . . . . . . . . . . 13
⊢
(Base‘(ℤ/nℤ‘𝑅)) =
(Base‘(ℤ/nℤ‘𝑅)) |
113 | 31, 112 | rhmf 20436 |
. . . . . . . . . . . 12
⊢ (𝐿 ∈ (ℤring
RingHom (ℤ/nℤ‘𝑅)) → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅))) |
114 | 109, 110,
111, 113 | 4syl 19 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅))) |
115 | | eqid 2725 |
. . . . . . . . . . . . . 14
⊢
(ℤring /s (ℤring
~QG ((RSpan‘ℤring)‘{𝑅}))) = (ℤring
/s (ℤring ~QG
((RSpan‘ℤring)‘{𝑅}))) |
116 | 37, 115, 87 | znbas2 21487 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℕ0
→ (Base‘(ℤring /s
(ℤring ~QG
((RSpan‘ℤring)‘{𝑅})))) =
(Base‘(ℤ/nℤ‘𝑅))) |
117 | 52, 116 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(Base‘(ℤring /s
(ℤring ~QG
((RSpan‘ℤring)‘{𝑅})))) =
(Base‘(ℤ/nℤ‘𝑅))) |
118 | 117 | feq3d 6710 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐿:ℤ⟶(Base‘(ℤring
/s (ℤring ~QG
((RSpan‘ℤring)‘{𝑅})))) ↔ 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))) |
119 | 114, 118 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿:ℤ⟶(Base‘(ℤring
/s (ℤring ~QG
((RSpan‘ℤring)‘{𝑅}))))) |
120 | 82 | eqcomd 2731 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
((RSpan‘ℤring)‘{𝑅}) = (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) |
121 | 120 | oveq2d 7435 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℤring
~QG ((RSpan‘ℤring)‘{𝑅})) = (ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) |
122 | 121 | oveq2d 7435 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℤring
/s (ℤring ~QG
((RSpan‘ℤring)‘{𝑅}))) = (ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) |
123 | 122 | fveq2d 6900 |
. . . . . . . . . . 11
⊢ (𝜑 →
(Base‘(ℤring /s
(ℤring ~QG
((RSpan‘ℤring)‘{𝑅})))) = (Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) |
124 | 123 | feq3d 6710 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐿:ℤ⟶(Base‘(ℤring
/s (ℤring ~QG
((RSpan‘ℤring)‘{𝑅})))) ↔ 𝐿:ℤ⟶(Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))) |
125 | 119, 124 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → 𝐿:ℤ⟶(Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) |
126 | | fcoi2 6772 |
. . . . . . . . 9
⊢ (𝐿:ℤ⟶(Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) → (( I ↾
(Base‘(ℤring /s (ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿) = 𝐿) |
127 | 125, 126 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (( I ↾
(Base‘(ℤring /s
(ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿) = 𝐿) |
128 | 107, 127 | eqtrd 2765 |
. . . . . . 7
⊢ (𝜑 → ((◡𝑋 ∘ 𝑋) ∘ 𝐿) = 𝐿) |
129 | 97, 128 | eqtr2d 2766 |
. . . . . 6
⊢ (𝜑 → 𝐿 = (◡𝑋 ∘ 𝐽)) |
130 | 129 | imaeq1d 6063 |
. . . . 5
⊢ (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) = ((◡𝑋 ∘ 𝐽) “ (𝐸 “ (ℕ0 ×
ℕ0)))) |
131 | | imaco 6257 |
. . . . . 6
⊢ ((◡𝑋 ∘ 𝐽) “ (𝐸 “ (ℕ0 ×
ℕ0))) = (◡𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0)))) |
132 | 131 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((◡𝑋 ∘ 𝐽) “ (𝐸 “ (ℕ0 ×
ℕ0))) = (◡𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))))) |
133 | 130, 132 | eqtrd 2765 |
. . . 4
⊢ (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) = (◡𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))))) |
134 | 133 | fveq2d 6900 |
. . 3
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) = (♯‘(◡𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) |
135 | | simplll 773 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽‘𝑢) = 𝑤) → 𝜑) |
136 | | simplr 767 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽‘𝑢) = 𝑤) → 𝑢 ∈ ℤ) |
137 | 135, 136 | jca 510 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽‘𝑢) = 𝑤) → (𝜑 ∧ 𝑢 ∈ ℤ)) |
138 | | simplr 767 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑧 ∈ (0...(𝑅 − 1))) |
139 | | simpr 483 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑣 = 𝑧) → 𝑣 = 𝑧) |
140 | 139 | fveqeq2d 6904 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑣 = 𝑧) → ((𝐽‘𝑣) = (𝐽‘𝑢) ↔ (𝐽‘𝑧) = (𝐽‘𝑢))) |
141 | 20 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))) |
142 | | simpr 483 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑧) → 𝑗 = 𝑧) |
143 | 142 | oveq1d 7434 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑧) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) |
144 | | fzssz 13538 |
. . . . . . . . . . . . . . . . . . 19
⊢
(0...(𝑅 − 1))
⊆ ℤ |
145 | 144, 138 | sselid 3974 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑧 ∈ ℤ) |
146 | | ovexd 7454 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V) |
147 | 141, 143,
145, 146 | fvmptd 7011 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽‘𝑧) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) |
148 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑢) → 𝑗 = 𝑢) |
149 | 148 | oveq1d 7434 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑢) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) |
150 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ ℤ) → 𝑢 ∈ ℤ) |
151 | 150 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑢 ∈ ℤ) |
152 | | ovexd 7454 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V) |
153 | 141, 149,
151, 152 | fvmptd 7011 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽‘𝑢) = (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) |
154 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑢 = ((𝑦 · 𝑅) + 𝑧)) |
155 | 154 | oveq1d 7434 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) |
156 | 41 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp) |
157 | | simplr 767 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑦 ∈ ℤ) |
158 | 5 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑢 ∈ ℤ) → 𝑅 ∈ ℕ) |
159 | 158 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑅 ∈ ℕ) |
160 | 159 | nnzd 12618 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑅 ∈ ℤ) |
161 | 157, 160 | zmulcld 12705 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦 · 𝑅) ∈ ℤ) |
162 | 144 | sseli 3972 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 ∈ (0...(𝑅 − 1)) → 𝑧 ∈ ℤ) |
163 | 162 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑧 ∈ ℤ) |
164 | 57 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) |
165 | 161, 163,
164 | 3jca 1125 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))) |
166 | | eqid 2725 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(+g‘((mulGrp‘𝐾) ↾s 𝑈)) =
(+g‘((mulGrp‘𝐾) ↾s 𝑈)) |
167 | 58, 53, 166 | mulgdir 19069 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((mulGrp‘𝐾)
↾s 𝑈)
∈ Grp ∧ ((𝑦
· 𝑅) ∈ ℤ
∧ 𝑧 ∈ ℤ
∧ 𝑀 ∈
(Base‘((mulGrp‘𝐾) ↾s 𝑈)))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))) |
168 | 156, 165,
167 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))) |
169 | 157, 160,
164 | 3jca 1125 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))) |
170 | 58, 53 | mulgass 19074 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((mulGrp‘𝐾)
↾s 𝑈)
∈ Grp ∧ (𝑦 ∈
ℤ ∧ 𝑅 ∈
ℤ ∧ 𝑀 ∈
(Base‘((mulGrp‘𝐾) ↾s 𝑈)))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))) |
171 | 156, 169,
170 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))) |
172 | 56 | simp2d 1140 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) |
173 | 172 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑢 ∈ ℤ) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) |
174 | 173 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) |
175 | 174 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) |
176 | 175 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈)))) |
177 | 58, 53, 59 | mulgz 19065 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((mulGrp‘𝐾)
↾s 𝑈)
∈ Grp ∧ 𝑦 ∈
ℤ) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) |
178 | 156, 157,
177 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) |
179 | 176, 178 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) |
180 | 171, 179 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) |
181 | 180 | oveq1d 7434 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) =
((0g‘((mulGrp‘𝐾) ↾s 𝑈))(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))) |
182 | 58, 53, 156, 163, 164 | mulgcld 19059 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) |
183 | 58, 166, 59, 156, 182 | grplidd 18934 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) →
((0g‘((mulGrp‘𝐾) ↾s 𝑈))(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) |
184 | 181, 183 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) |
185 | 168, 184 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) |
186 | 185 | adantr 479 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) |
187 | 155, 186 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) |
188 | 153, 187 | eqtr2d 2766 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝐽‘𝑢)) |
189 | 147, 188 | eqtrd 2765 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽‘𝑧) = (𝐽‘𝑢)) |
190 | 138, 140,
189 | rspcedvd 3608 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = (𝐽‘𝑢)) |
191 | 150, 158 | remexz 41707 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ ℤ) → ∃𝑦 ∈ ℤ ∃𝑧 ∈ (0...(𝑅 − 1))𝑢 = ((𝑦 · 𝑅) + 𝑧)) |
192 | 190, 191 | r19.29vva 3203 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ ℤ) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = (𝐽‘𝑢)) |
193 | 137, 192 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽‘𝑢) = 𝑤) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = (𝐽‘𝑢)) |
194 | | simpr 483 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽‘𝑢) = 𝑤) → (𝐽‘𝑢) = 𝑤) |
195 | 194 | eqcomd 2731 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽‘𝑢) = 𝑤) → 𝑤 = (𝐽‘𝑢)) |
196 | 195 | eqeq2d 2736 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽‘𝑢) = 𝑤) → ((𝐽‘𝑣) = 𝑤 ↔ (𝐽‘𝑣) = (𝐽‘𝑢))) |
197 | 196 | rexbidv 3168 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽‘𝑢) = 𝑤) → (∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = 𝑤 ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = (𝐽‘𝑢))) |
198 | 193, 197 | mpbird 256 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽‘𝑢) = 𝑤) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = 𝑤) |
199 | | ssidd 4000 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ℤ ⊆
ℤ) |
200 | | fvelimab 6970 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 Fn ℤ ∧ ℤ
⊆ ℤ) → (𝑤
∈ (𝐽 “ ℤ)
↔ ∃𝑢 ∈
ℤ (𝐽‘𝑢) = 𝑤)) |
201 | 72, 199, 200 | syl2anc 582 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑢 ∈ ℤ (𝐽‘𝑢) = 𝑤)) |
202 | 201 | biimpd 228 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) → ∃𝑢 ∈ ℤ (𝐽‘𝑢) = 𝑤)) |
203 | 202 | imp 405 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) → ∃𝑢 ∈ ℤ (𝐽‘𝑢) = 𝑤) |
204 | 198, 203 | r19.29a 3151 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = 𝑤) |
205 | 144 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0...(𝑅 − 1)) ⊆
ℤ) |
206 | | fvelimab 6970 |
. . . . . . . . . . . . 13
⊢ ((𝐽 Fn ℤ ∧ (0...(𝑅 − 1)) ⊆ ℤ)
→ (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = 𝑤)) |
207 | 72, 205, 206 | syl2anc 582 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = 𝑤)) |
208 | 207 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = 𝑤)) |
209 | 204, 208 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) → 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) |
210 | 209 | ex 411 |
. . . . . . . . 9
⊢ (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) → 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))))) |
211 | 210 | ssrdv 3982 |
. . . . . . . 8
⊢ (𝜑 → (𝐽 “ ℤ) ⊆ (𝐽 “ (0...(𝑅 − 1)))) |
212 | 207 | biimpd 228 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = 𝑤)) |
213 | 212 | imp 405 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = 𝑤) |
214 | 144 | sseli 3972 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ (0...(𝑅 − 1)) → 𝑣 ∈ ℤ) |
215 | 214 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽‘𝑣) = 𝑤) → 𝑣 ∈ ℤ) |
216 | 215 | adantl 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) ∧ (𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽‘𝑣) = 𝑤)) → 𝑣 ∈ ℤ) |
217 | | simprr 771 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) ∧ (𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽‘𝑣) = 𝑤)) → (𝐽‘𝑣) = 𝑤) |
218 | 213, 216,
217 | reximssdv 3162 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ∃𝑣 ∈ ℤ (𝐽‘𝑣) = 𝑤) |
219 | 72 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → 𝐽 Fn ℤ) |
220 | | ssidd 4000 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ℤ ⊆
ℤ) |
221 | | fvelimab 6970 |
. . . . . . . . . . . 12
⊢ ((𝐽 Fn ℤ ∧ ℤ
⊆ ℤ) → (𝑤
∈ (𝐽 “ ℤ)
↔ ∃𝑣 ∈
ℤ (𝐽‘𝑣) = 𝑤)) |
222 | 219, 220,
221 | syl2anc 582 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑣 ∈ ℤ (𝐽‘𝑣) = 𝑤)) |
223 | 218, 222 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → 𝑤 ∈ (𝐽 “ ℤ)) |
224 | 223 | ex 411 |
. . . . . . . . 9
⊢ (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) → 𝑤 ∈ (𝐽 “ ℤ))) |
225 | 224 | ssrdv 3982 |
. . . . . . . 8
⊢ (𝜑 → (𝐽 “ (0...(𝑅 − 1))) ⊆ (𝐽 “ ℤ)) |
226 | 211, 225 | eqssd 3994 |
. . . . . . 7
⊢ (𝜑 → (𝐽 “ ℤ) = (𝐽 “ (0...(𝑅 − 1)))) |
227 | 72 | fnfund 6656 |
. . . . . . . 8
⊢ (𝜑 → Fun 𝐽) |
228 | | fzfid 13974 |
. . . . . . . 8
⊢ (𝜑 → (0...(𝑅 − 1)) ∈ Fin) |
229 | | imafi 9200 |
. . . . . . . 8
⊢ ((Fun
𝐽 ∧ (0...(𝑅 − 1)) ∈ Fin) →
(𝐽 “ (0...(𝑅 − 1))) ∈
Fin) |
230 | 227, 228,
229 | syl2anc 582 |
. . . . . . 7
⊢ (𝜑 → (𝐽 “ (0...(𝑅 − 1))) ∈ Fin) |
231 | 226, 230 | eqeltrd 2825 |
. . . . . 6
⊢ (𝜑 → (𝐽 “ ℤ) ∈
Fin) |
232 | 6, 4, 7, 12 | aks6d1c2p1 41721 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸:(ℕ0 ×
ℕ0)⟶ℕ) |
233 | | nnssz 12613 |
. . . . . . . . . . . 12
⊢ ℕ
⊆ ℤ |
234 | 233 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ℕ ⊆
ℤ) |
235 | 232, 234 | jca 510 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸:(ℕ0 ×
ℕ0)⟶ℕ ∧ ℕ ⊆
ℤ)) |
236 | | fss 6739 |
. . . . . . . . . 10
⊢ ((𝐸:(ℕ0 ×
ℕ0)⟶ℕ ∧ ℕ ⊆ ℤ) → 𝐸:(ℕ0 ×
ℕ0)⟶ℤ) |
237 | 235, 236 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸:(ℕ0 ×
ℕ0)⟶ℤ) |
238 | 237 | frnd 6731 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐸 ⊆ ℤ) |
239 | 232 | ffnd 6724 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 Fn (ℕ0 ×
ℕ0)) |
240 | | fnima 6686 |
. . . . . . . . . 10
⊢ (𝐸 Fn (ℕ0 ×
ℕ0) → (𝐸 “ (ℕ0 ×
ℕ0)) = ran 𝐸) |
241 | 239, 240 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 “ (ℕ0 ×
ℕ0)) = ran 𝐸) |
242 | 241 | sseq1d 4008 |
. . . . . . . 8
⊢ (𝜑 → ((𝐸 “ (ℕ0 ×
ℕ0)) ⊆ ℤ ↔ ran 𝐸 ⊆ ℤ)) |
243 | 238, 242 | mpbird 256 |
. . . . . . 7
⊢ (𝜑 → (𝐸 “ (ℕ0 ×
ℕ0)) ⊆ ℤ) |
244 | | imass2 6107 |
. . . . . . 7
⊢ ((𝐸 “ (ℕ0
× ℕ0)) ⊆ ℤ → (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))) ⊆ (𝐽 “ ℤ)) |
245 | 243, 244 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))) ⊆ (𝐽 “ ℤ)) |
246 | 231, 245 | ssfid 9292 |
. . . . 5
⊢ (𝜑 → (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))) ∈ Fin) |
247 | | dff1o2 6843 |
. . . . . . . 8
⊢ (𝑋:(Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) ↔ (𝑋 Fn (Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ∧ Fun ◡𝑋 ∧ ran 𝑋 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))) |
248 | 247 | biimpi 215 |
. . . . . . 7
⊢ (𝑋:(Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → (𝑋 Fn (Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ∧ Fun ◡𝑋 ∧ ran 𝑋 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))) |
249 | 248 | simp2d 1140 |
. . . . . 6
⊢ (𝑋:(Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → Fun ◡𝑋) |
250 | 104, 249 | syl 17 |
. . . . 5
⊢ (𝜑 → Fun ◡𝑋) |
251 | | imadomfi 41605 |
. . . . 5
⊢ (((𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))) ∈ Fin ∧ Fun ◡𝑋) → (◡𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0)))) |
252 | 246, 250,
251 | syl2anc 582 |
. . . 4
⊢ (𝜑 → (◡𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0)))) |
253 | | hashdomi 14375 |
. . . 4
⊢ ((◡𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))) → (♯‘(◡𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))))) |
254 | 252, 253 | syl 17 |
. . 3
⊢ (𝜑 → (♯‘(◡𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))))) |
255 | 134, 254 | eqbrtrd 5171 |
. 2
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))))) |
256 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 255, 26 | aks6d1c6lem4 41776 |
1
⊢ (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴))))) |