Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6lem5 Structured version   Visualization version   GIF version

Theorem aks6d1c6lem5 42179
Description: Eliminate the size hypothesis. Claim 6. (Contributed by metakunt, 15-May-2025.)
Hypotheses
Ref Expression
aks6d1c6lem5.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c6lem5.2 𝑃 = (chr‘𝐾)
aks6d1c6lem5.3 (𝜑𝐾 ∈ Field)
aks6d1c6lem5.4 (𝜑𝑃 ∈ ℙ)
aks6d1c6lem5.5 (𝜑𝑅 ∈ ℕ)
aks6d1c6lem5.6 (𝜑𝑁 ∈ ℕ)
aks6d1c6lem5.7 (𝜑𝑃𝑁)
aks6d1c6lem5.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c6lem5.9 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks6d1c6lem5.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c6lem5.11 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aksaks6dlem5.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c6lem5.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c6lem5.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c6lem5.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c6lem5.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c6lem5.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c6lem5.18 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c6lem5.19 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
aks6d1c6lem5.20 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
aks6d1c6lem5.22 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}
aks6d1c6lem5.23 𝑋 = (𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ↦ (𝐽𝑏))
Assertion
Ref Expression
aks6d1c6lem5 (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑏   𝐴,𝑔,𝑖,𝑥   𝐴,,𝑗   𝐴,𝑠,𝑡   𝐷,𝑠   𝑒,𝐸,𝑓,𝑦   𝑗,𝐸,𝑦   𝑥,𝐸,𝑦   𝑒,𝐺,𝑓,𝑦   𝑔,𝐺,𝑖,𝑦   ,𝐺   𝑡,𝐺,𝑖,𝑦   𝐻,𝑎   𝑔,𝐻,𝑖,𝑥,𝑦   ,𝐻,𝑗   𝐻,𝑠,𝑡   𝐽,𝑏   𝑦,𝐽   𝐾,𝑎   𝐾,𝑏   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖,𝑥   ,𝐾,𝑗   𝐾,𝑙,𝑥,𝑦   𝑚,𝐾,𝑛   𝑡,𝐾,𝑥   ,𝑀,𝑗   𝑀,𝑙,𝑦   𝑁,𝑎   𝑁,𝑏   𝑒,𝑁,𝑓   𝑗,𝑁   𝑘,𝑁,𝑙,𝑠   𝑥,𝑁,𝑘   𝑃,𝑏   𝑃,𝑒,𝑓   𝑃,𝑗   𝑃,𝑘,𝑙,𝑠   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑅,𝑗   𝑅,𝑙,𝑥   𝑆,𝑎   𝑆,𝑔,𝑖,𝑥,𝑦   𝑆,,𝑗   𝑆,𝑠,𝑡   𝑈,𝑏   𝑈,𝑗   𝑈,𝑙   𝑋,𝑏   𝜑,𝑎   𝜑,𝑏   𝜑,𝑔,𝑖,𝑥,𝑦   𝜑,,𝑗   𝜑,𝑘,𝑙,𝑠   𝑦,𝑘   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑚,𝑛)   𝐴(𝑦,𝑒,𝑓,𝑘,𝑚,𝑛,𝑙)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑎,𝑏,𝑙)   𝑃(𝑦,𝑡,𝑔,,𝑖,𝑚,𝑛,𝑎)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏,𝑙)   𝑅(𝑡,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏)   𝑆(𝑒,𝑓,𝑘,𝑚,𝑛,𝑏,𝑙)   𝑈(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎)   𝐸(𝑡,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐺(𝑥,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐻(𝑒,𝑓,𝑘,𝑚,𝑛,𝑏,𝑙)   𝐽(𝑥,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑙)   𝐾(𝑘,𝑠)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝑀(𝑥,𝑡,𝑒,𝑓,𝑔,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏)   𝑁(𝑦,𝑡,𝑔,,𝑖,𝑚,𝑛)   𝑋(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑙)

Proof of Theorem aks6d1c6lem5
Dummy variables 𝑐 𝑑 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c6lem5.1 . 2 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
2 aks6d1c6lem5.2 . 2 𝑃 = (chr‘𝐾)
3 aks6d1c6lem5.3 . 2 (𝜑𝐾 ∈ Field)
4 aks6d1c6lem5.4 . 2 (𝜑𝑃 ∈ ℙ)
5 aks6d1c6lem5.5 . 2 (𝜑𝑅 ∈ ℕ)
6 aks6d1c6lem5.6 . 2 (𝜑𝑁 ∈ ℕ)
7 aks6d1c6lem5.7 . 2 (𝜑𝑃𝑁)
8 aks6d1c6lem5.8 . 2 (𝜑 → (𝑁 gcd 𝑅) = 1)
9 aks6d1c6lem5.9 . 2 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
10 aks6d1c6lem5.10 . 2 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
11 aks6d1c6lem5.11 . 2 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
12 aksaks6dlem5.12 . 2 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
13 aks6d1c6lem5.13 . 2 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
14 aks6d1c6lem5.14 . 2 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
15 aks6d1c6lem5.15 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
16 aks6d1c6lem5.16 . 2 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
17 aks6d1c6lem5.17 . 2 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
18 aks6d1c6lem5.18 . 2 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
19 aks6d1c6lem5.19 . 2 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
20 aks6d1c6lem5.20 . 2 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
21 eqid 2736 . . . . . . . . . . 11 (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) = (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))
223fldcrngd 20743 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ CRing)
23 eqid 2736 . . . . . . . . . . . . . 14 (mulGrp‘𝐾) = (mulGrp‘𝐾)
2423crngmgp 20239 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
2522, 24syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
26 aks6d1c6lem5.22 . . . . . . . . . . . 12 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}
2725, 5, 26, 20, 16aks6d1c6isolem2 42177 . . . . . . . . . . 11 (𝜑𝐽 ∈ (ℤring GrpHom (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
28 eqid 2736 . . . . . . . . . . 11 (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}) = (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})
29 eqid 2736 . . . . . . . . . . 11 (ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
30 aks6d1c6lem5.23 . . . . . . . . . . 11 𝑋 = (𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ↦ (𝐽𝑏))
31 zringbas 21465 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
32 nfcv 2904 . . . . . . . . . . . 12 𝑐[𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
33 nfcv 2904 . . . . . . . . . . . 12 𝑑[𝑐](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
34 eceq1 8785 . . . . . . . . . . . 12 (𝑑 = 𝑐 → [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = [𝑐](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
3532, 33, 34cbvmpt 5252 . . . . . . . . . . 11 (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (𝑐 ∈ ℤ ↦ [𝑐](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
3621, 27, 28, 29, 30, 31, 35ghmquskerco 19303 . . . . . . . . . 10 (𝜑𝐽 = (𝑋 ∘ (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))
37 eqid 2736 . . . . . . . . . . . . . . . . 17 (RSpan‘ℤring) = (RSpan‘ℤring)
3825, 5, 26, 20, 16, 37aks6d1c6isolem3 42178 . . . . . . . . . . . . . . . 16 (𝜑 → ((RSpan‘ℤring)‘{𝑅}) = (𝐽 “ {(0g‘((mulGrp‘𝐾) ↾s 𝑈))}))
3925, 5, 26primrootsunit 42100 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ∧ ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel))
4039simprd 495 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel)
4140ablgrpd 19805 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp)
4241grpmndd 18965 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Mnd)
43 0zd 12627 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ∈ ℤ)
44 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 = 0) → 𝑤 = 0)
4544fveqeq2d 6913 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 = 0) → ((𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ↔ (𝐽‘0) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))))
4620a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
47 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 = 0) → 𝑗 = 0)
4847oveq1d 7447 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 = 0) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
4939simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅))
5016, 49eleqtrd 2842 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅))
5140ablcmnd 19807 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ CMnd)
525nnnn0d 12589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑅 ∈ ℕ0)
53 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (.g‘((mulGrp‘𝐾) ↾s 𝑈)) = (.g‘((mulGrp‘𝐾) ↾s 𝑈))
5451, 52, 53isprimroot 42095 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑙))))
5554biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑙))))
5650, 55mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑙)))
5756simp1d 1142 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
58 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Base‘((mulGrp‘𝐾) ↾s 𝑈)) = (Base‘((mulGrp‘𝐾) ↾s 𝑈))
59 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0g‘((mulGrp‘𝐾) ↾s 𝑈)) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))
6058, 59, 53mulg0 19093 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) → (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6157, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6261adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 = 0) → (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6348, 62eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 = 0) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
64 fvexd 6920 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ V)
6546, 63, 43, 64fvmptd 7022 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐽‘0) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6643, 45, 65rspcedvd 3623 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∃𝑤 ∈ ℤ (𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6741adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℤ) → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp)
68 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℤ) → 𝑗 ∈ ℤ)
6957adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℤ) → 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
7058, 53, 67, 68, 69mulgcld 19115 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℤ) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
7170, 20fmptd 7133 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽:ℤ⟶(Base‘((mulGrp‘𝐾) ↾s 𝑈)))
7271ffnd 6736 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 Fn ℤ)
73 fvelrnb 6968 . . . . . . . . . . . . . . . . . . . . 21 (𝐽 Fn ℤ → ((0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ↔ ∃𝑤 ∈ ℤ (𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))))
7472, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ↔ ∃𝑤 ∈ ℤ (𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))))
7566, 74mpbird 257 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽)
7671frnd 6743 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
77 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽) = (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)
7877, 58, 59ress0g 18776 . . . . . . . . . . . . . . . . . . 19 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Mnd ∧ (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ∧ ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) = (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
7942, 75, 76, 78syl3anc 1372 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) = (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
8079sneqd 4637 . . . . . . . . . . . . . . . . 17 (𝜑 → {(0g‘((mulGrp‘𝐾) ↾s 𝑈))} = {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})
8180imaeq2d 6077 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽 “ {(0g‘((mulGrp‘𝐾) ↾s 𝑈))}) = (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
8238, 81eqtr2d 2777 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}) = ((RSpan‘ℤring)‘{𝑅}))
8382oveq2d 7448 . . . . . . . . . . . . . 14 (𝜑 → (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))
8483eceq2d 8789 . . . . . . . . . . . . 13 (𝜑 → [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))
8584mpteq2dv 5243 . . . . . . . . . . . 12 (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))))
86 eqid 2736 . . . . . . . . . . . . . . 15 (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))
87 eqid 2736 . . . . . . . . . . . . . . 15 (ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅)
8837, 86, 87, 13znzrh2 21565 . . . . . . . . . . . . . 14 (𝑅 ∈ ℕ0𝐿 = (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))))
8952, 88syl 17 . . . . . . . . . . . . 13 (𝜑𝐿 = (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))))
9089eqcomd 2742 . . . . . . . . . . . 12 (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))) = 𝐿)
9185, 90eqtrd 2776 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = 𝐿)
9291coeq2d 5872 . . . . . . . . . 10 (𝜑 → (𝑋 ∘ (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) = (𝑋𝐿))
9336, 92eqtrd 2776 . . . . . . . . 9 (𝜑𝐽 = (𝑋𝐿))
9493coeq2d 5872 . . . . . . . 8 (𝜑 → (𝑋𝐽) = (𝑋 ∘ (𝑋𝐿)))
95 coass 6284 . . . . . . . . 9 ((𝑋𝑋) ∘ 𝐿) = (𝑋 ∘ (𝑋𝐿))
9695eqcomi 2745 . . . . . . . 8 (𝑋 ∘ (𝑋𝐿)) = ((𝑋𝑋) ∘ 𝐿)
9794, 96eqtrdi 2792 . . . . . . 7 (𝜑 → (𝑋𝐽) = ((𝑋𝑋) ∘ 𝐿))
9877, 58ressbas2 17284 . . . . . . . . . . . . 13 (ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) → ran 𝐽 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
9976, 98syl 17 . . . . . . . . . . . 12 (𝜑 → ran 𝐽 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
10021, 27, 28, 29, 30, 99ghmqusker 19306 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) GrpIso (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
101 eqid 2736 . . . . . . . . . . . 12 (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) = (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))
102 eqid 2736 . . . . . . . . . . . 12 (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))
103101, 102gimf1o 19282 . . . . . . . . . . 11 (𝑋 ∈ ((ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) GrpIso (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → 𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
104100, 103syl 17 . . . . . . . . . 10 (𝜑𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
105 f1ococnv1 6876 . . . . . . . . . 10 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → (𝑋𝑋) = ( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))))
106104, 105syl 17 . . . . . . . . 9 (𝜑 → (𝑋𝑋) = ( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))))
107106coeq1d 5871 . . . . . . . 8 (𝜑 → ((𝑋𝑋) ∘ 𝐿) = (( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿))
10887zncrng 21564 . . . . . . . . . . . . 13 (𝑅 ∈ ℕ0 → (ℤ/nℤ‘𝑅) ∈ CRing)
10952, 108syl 17 . . . . . . . . . . . 12 (𝜑 → (ℤ/nℤ‘𝑅) ∈ CRing)
110 crngring 20243 . . . . . . . . . . . 12 ((ℤ/nℤ‘𝑅) ∈ CRing → (ℤ/nℤ‘𝑅) ∈ Ring)
11113zrhrhm 21523 . . . . . . . . . . . 12 ((ℤ/nℤ‘𝑅) ∈ Ring → 𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)))
112 eqid 2736 . . . . . . . . . . . . 13 (Base‘(ℤ/nℤ‘𝑅)) = (Base‘(ℤ/nℤ‘𝑅))
11331, 112rhmf 20486 . . . . . . . . . . . 12 (𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)) → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
114109, 110, 111, 1134syl 19 . . . . . . . . . . 11 (𝜑𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
115 eqid 2736 . . . . . . . . . . . . . 14 (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))
11637, 115, 87znbas2 21556 . . . . . . . . . . . . 13 (𝑅 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) = (Base‘(ℤ/nℤ‘𝑅)))
11752, 116syl 17 . . . . . . . . . . . 12 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) = (Base‘(ℤ/nℤ‘𝑅)))
118117feq3d 6722 . . . . . . . . . . 11 (𝜑 → (𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) ↔ 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅))))
119114, 118mpbird 257 . . . . . . . . . 10 (𝜑𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))))
12082eqcomd 2742 . . . . . . . . . . . . . 14 (𝜑 → ((RSpan‘ℤring)‘{𝑅}) = (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
121120oveq2d 7448 . . . . . . . . . . . . 13 (𝜑 → (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})) = (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
122121oveq2d 7448 . . . . . . . . . . . 12 (𝜑 → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))) = (ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))
123122fveq2d 6909 . . . . . . . . . . 11 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) = (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))
124123feq3d 6722 . . . . . . . . . 10 (𝜑 → (𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) ↔ 𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))))
125119, 124mpbid 232 . . . . . . . . 9 (𝜑𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))
126 fcoi2 6782 . . . . . . . . 9 (𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) → (( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿) = 𝐿)
127125, 126syl 17 . . . . . . . 8 (𝜑 → (( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿) = 𝐿)
128107, 127eqtrd 2776 . . . . . . 7 (𝜑 → ((𝑋𝑋) ∘ 𝐿) = 𝐿)
12997, 128eqtr2d 2777 . . . . . 6 (𝜑𝐿 = (𝑋𝐽))
130129imaeq1d 6076 . . . . 5 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) = ((𝑋𝐽) “ (𝐸 “ (ℕ0 × ℕ0))))
131 imaco 6270 . . . . . 6 ((𝑋𝐽) “ (𝐸 “ (ℕ0 × ℕ0))) = (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))
132131a1i 11 . . . . 5 (𝜑 → ((𝑋𝐽) “ (𝐸 “ (ℕ0 × ℕ0))) = (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
133130, 132eqtrd 2776 . . . 4 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) = (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
134133fveq2d 6909 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = (♯‘(𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))))
135 simplll 774 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → 𝜑)
136 simplr 768 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → 𝑢 ∈ ℤ)
137135, 136jca 511 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → (𝜑𝑢 ∈ ℤ))
138 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑧 ∈ (0...(𝑅 − 1)))
139 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑣 = 𝑧) → 𝑣 = 𝑧)
140139fveqeq2d 6913 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑣 = 𝑧) → ((𝐽𝑣) = (𝐽𝑢) ↔ (𝐽𝑧) = (𝐽𝑢)))
14120a1i 11 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
142 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑧) → 𝑗 = 𝑧)
143142oveq1d 7447 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑧) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
144 fzssz 13567 . . . . . . . . . . . . . . . . . . 19 (0...(𝑅 − 1)) ⊆ ℤ
145144, 138sselid 3980 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑧 ∈ ℤ)
146 ovexd 7467 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V)
147141, 143, 145, 146fvmptd 7022 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽𝑧) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
148 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑢) → 𝑗 = 𝑢)
149148oveq1d 7447 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑢) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
150 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ ℤ) → 𝑢 ∈ ℤ)
151150ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑢 ∈ ℤ)
152 ovexd 7467 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V)
153141, 149, 151, 152fvmptd 7022 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽𝑢) = (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
154 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑢 = ((𝑦 · 𝑅) + 𝑧))
155154oveq1d 7447 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
15641ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp)
157 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑦 ∈ ℤ)
1585adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ ℤ) → 𝑅 ∈ ℕ)
159158ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑅 ∈ ℕ)
160159nnzd 12642 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑅 ∈ ℤ)
161157, 160zmulcld 12730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦 · 𝑅) ∈ ℤ)
162144sseli 3978 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ (0...(𝑅 − 1)) → 𝑧 ∈ ℤ)
163162adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑧 ∈ ℤ)
16457ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
165161, 163, 1643jca 1128 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))))
166 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (+g‘((mulGrp‘𝐾) ↾s 𝑈)) = (+g‘((mulGrp‘𝐾) ↾s 𝑈))
16758, 53, 166mulgdir 19125 . . . . . . . . . . . . . . . . . . . . . 22 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp ∧ ((𝑦 · 𝑅) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
168156, 165, 167syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
169157, 160, 1643jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))))
17058, 53mulgass 19130 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp ∧ (𝑦 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
171156, 169, 170syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
17256simp2d 1143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
173172adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ ℤ) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
174173adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
175174adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
176175oveq2d 7448 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))))
17758, 53, 59mulgz 19121 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp ∧ 𝑦 ∈ ℤ) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
178156, 157, 177syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
179176, 178eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
180171, 179eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
181180oveq1d 7447 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = ((0g‘((mulGrp‘𝐾) ↾s 𝑈))(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
18258, 53, 156, 163, 164mulgcld 19115 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
18358, 166, 59, 156, 182grplidd 18988 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((0g‘((mulGrp‘𝐾) ↾s 𝑈))(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
184181, 183eqtrd 2776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
185168, 184eqtrd 2776 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
186185adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
187155, 186eqtrd 2776 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
188153, 187eqtr2d 2777 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝐽𝑢))
189147, 188eqtrd 2776 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽𝑧) = (𝐽𝑢))
190138, 140, 189rspcedvd 3623 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢))
191150, 158remexz 42106 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ ℤ) → ∃𝑦 ∈ ℤ ∃𝑧 ∈ (0...(𝑅 − 1))𝑢 = ((𝑦 · 𝑅) + 𝑧))
192190, 191r19.29vva 3215 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ ℤ) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢))
193137, 192syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢))
194 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → (𝐽𝑢) = 𝑤)
195194eqcomd 2742 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → 𝑤 = (𝐽𝑢))
196195eqeq2d 2747 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → ((𝐽𝑣) = 𝑤 ↔ (𝐽𝑣) = (𝐽𝑢)))
197196rexbidv 3178 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → (∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤 ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢)))
198193, 197mpbird 257 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤)
199 ssidd 4006 . . . . . . . . . . . . . . 15 (𝜑 → ℤ ⊆ ℤ)
200 fvelimab 6980 . . . . . . . . . . . . . . 15 ((𝐽 Fn ℤ ∧ ℤ ⊆ ℤ) → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤))
20172, 199, 200syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤))
202201biimpd 229 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) → ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤))
203202imp 406 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤)
204198, 203r19.29a 3161 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤)
205144a1i 11 . . . . . . . . . . . . 13 (𝜑 → (0...(𝑅 − 1)) ⊆ ℤ)
206 fvelimab 6980 . . . . . . . . . . . . 13 ((𝐽 Fn ℤ ∧ (0...(𝑅 − 1)) ⊆ ℤ) → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
20772, 205, 206syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
208207adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
209204, 208mpbird 257 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))))
210209ex 412 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) → 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))))
211210ssrdv 3988 . . . . . . . 8 (𝜑 → (𝐽 “ ℤ) ⊆ (𝐽 “ (0...(𝑅 − 1))))
212207biimpd 229 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
213212imp 406 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤)
214144sseli 3978 . . . . . . . . . . . . . 14 (𝑣 ∈ (0...(𝑅 − 1)) → 𝑣 ∈ ℤ)
215214adantr 480 . . . . . . . . . . . . 13 ((𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽𝑣) = 𝑤) → 𝑣 ∈ ℤ)
216215adantl 481 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) ∧ (𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽𝑣) = 𝑤)) → 𝑣 ∈ ℤ)
217 simprr 772 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) ∧ (𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽𝑣) = 𝑤)) → (𝐽𝑣) = 𝑤)
218213, 216, 217reximssdv 3172 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ∃𝑣 ∈ ℤ (𝐽𝑣) = 𝑤)
21972adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → 𝐽 Fn ℤ)
220 ssidd 4006 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ℤ ⊆ ℤ)
221 fvelimab 6980 . . . . . . . . . . . 12 ((𝐽 Fn ℤ ∧ ℤ ⊆ ℤ) → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑣 ∈ ℤ (𝐽𝑣) = 𝑤))
222219, 220, 221syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑣 ∈ ℤ (𝐽𝑣) = 𝑤))
223218, 222mpbird 257 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → 𝑤 ∈ (𝐽 “ ℤ))
224223ex 412 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) → 𝑤 ∈ (𝐽 “ ℤ)))
225224ssrdv 3988 . . . . . . . 8 (𝜑 → (𝐽 “ (0...(𝑅 − 1))) ⊆ (𝐽 “ ℤ))
226211, 225eqssd 4000 . . . . . . 7 (𝜑 → (𝐽 “ ℤ) = (𝐽 “ (0...(𝑅 − 1))))
22772fnfund 6668 . . . . . . . 8 (𝜑 → Fun 𝐽)
228 fzfid 14015 . . . . . . . 8 (𝜑 → (0...(𝑅 − 1)) ∈ Fin)
229 imafi 9354 . . . . . . . 8 ((Fun 𝐽 ∧ (0...(𝑅 − 1)) ∈ Fin) → (𝐽 “ (0...(𝑅 − 1))) ∈ Fin)
230227, 228, 229syl2anc 584 . . . . . . 7 (𝜑 → (𝐽 “ (0...(𝑅 − 1))) ∈ Fin)
231226, 230eqeltrd 2840 . . . . . 6 (𝜑 → (𝐽 “ ℤ) ∈ Fin)
2326, 4, 7, 12aks6d1c2p1 42120 . . . . . . . . . . 11 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
233 nnssz 12637 . . . . . . . . . . . 12 ℕ ⊆ ℤ
234233a1i 11 . . . . . . . . . . 11 (𝜑 → ℕ ⊆ ℤ)
235232, 234jca 511 . . . . . . . . . 10 (𝜑 → (𝐸:(ℕ0 × ℕ0)⟶ℕ ∧ ℕ ⊆ ℤ))
236 fss 6751 . . . . . . . . . 10 ((𝐸:(ℕ0 × ℕ0)⟶ℕ ∧ ℕ ⊆ ℤ) → 𝐸:(ℕ0 × ℕ0)⟶ℤ)
237235, 236syl 17 . . . . . . . . 9 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℤ)
238237frnd 6743 . . . . . . . 8 (𝜑 → ran 𝐸 ⊆ ℤ)
239232ffnd 6736 . . . . . . . . . 10 (𝜑𝐸 Fn (ℕ0 × ℕ0))
240 fnima 6697 . . . . . . . . . 10 (𝐸 Fn (ℕ0 × ℕ0) → (𝐸 “ (ℕ0 × ℕ0)) = ran 𝐸)
241239, 240syl 17 . . . . . . . . 9 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) = ran 𝐸)
242241sseq1d 4014 . . . . . . . 8 (𝜑 → ((𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ ↔ ran 𝐸 ⊆ ℤ))
243238, 242mpbird 257 . . . . . . 7 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ)
244 imass2 6119 . . . . . . 7 ((𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (𝐽 “ ℤ))
245243, 244syl 17 . . . . . 6 (𝜑 → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (𝐽 “ ℤ))
246231, 245ssfid 9302 . . . . 5 (𝜑 → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ Fin)
247 dff1o2 6852 . . . . . . . 8 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) ↔ (𝑋 Fn (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ∧ Fun 𝑋 ∧ ran 𝑋 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))))
248247biimpi 216 . . . . . . 7 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → (𝑋 Fn (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ∧ Fun 𝑋 ∧ ran 𝑋 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))))
249248simp2d 1143 . . . . . 6 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → Fun 𝑋)
250104, 249syl 17 . . . . 5 (𝜑 → Fun 𝑋)
251 imadomfi 42004 . . . . 5 (((𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ Fin ∧ Fun 𝑋) → (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))
252246, 250, 251syl2anc 584 . . . 4 (𝜑 → (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))
253 hashdomi 14420 . . . 4 ((𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) → (♯‘(𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
254252, 253syl 17 . . 3 (𝜑 → (♯‘(𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
255134, 254eqbrtrd 5164 . 2 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
2561, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 255, 26aks6d1c6lem4 42175 1 (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  wrex 3069  {crab 3435  Vcvv 3479  wss 3950  {csn 4625   cuni 4906   class class class wbr 5142  {copab 5204  cmpt 5224   I cid 5576   × cxp 5682  ccnv 5683  ran crn 5685  cres 5686  cima 5687  ccom 5688  Fun wfun 6554   Fn wfn 6555  wf 6556  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  cmpo 7434  [cec 8744  m cmap 8867  cdom 8984  Fincfn 8986  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  cle 11297  cmin 11493   / cdiv 11921  cn 12267  2c2 12322  0cn0 12528  cz 12615  ...cfz 13548  cfl 13831  cexp 14103  Ccbc 14342  chash 14370  csqrt 15273  Σcsu 15723  cdvds 16291   gcd cgcd 16532  cprime 16709  ϕcphi 16802  Basecbs 17248  s cress 17275  +gcplusg 17298  0gc0g 17485   Σg cgsu 17486   /s cqus 17551  Mndcmnd 18748  Grpcgrp 18952  .gcmg 19086   ~QG cqg 19141   GrpIso cgim 19276  CMndccmn 19799  Abelcabl 19800  mulGrpcmgp 20138  Ringcrg 20231  CRingccrg 20232   RingHom crh 20470   RingIso crs 20471  Fieldcfield 20731  RSpancrsp 21218  ringczring 21458  ℤRHomczrh 21511  chrcchr 21513  ℤ/nczn 21514  algSccascl 21873  var1cv1 22178  Poly1cpl1 22179  eval1ce1 22319   logb clogb 26808   PrimRoots cprimroots 42093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-er 8746  df-ec 8748  df-qs 8752  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-xnn0 12602  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-sin 16106  df-cos 16107  df-pi 16109  df-dvds 16292  df-gcd 16533  df-prm 16710  df-phi 16804  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-pws 17495  df-xrs 17548  df-qtop 17553  df-imas 17554  df-qus 17555  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-nsg 19143  df-eqg 19144  df-ghm 19232  df-gim 19278  df-cntz 19336  df-od 19547  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-srg 20185  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402  df-rhm 20473  df-rim 20474  df-nzr 20514  df-subrng 20547  df-subrg 20571  df-rlreg 20695  df-domn 20696  df-idom 20697  df-drng 20732  df-field 20733  df-lmod 20861  df-lss 20931  df-lsp 20971  df-sra 21173  df-rgmod 21174  df-lidl 21219  df-rsp 21220  df-2idl 21261  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-zring 21459  df-zrh 21515  df-chr 21517  df-zn 21518  df-assa 21874  df-asp 21875  df-ascl 21876  df-psr 21930  df-mvr 21931  df-mpl 21932  df-opsr 21934  df-evls 22099  df-evl 22100  df-psr1 22182  df-vr1 22183  df-ply1 22184  df-coe1 22185  df-evl1 22321  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903  df-mdeg 26095  df-deg1 26096  df-mon1 26171  df-uc1p 26172  df-q1p 26173  df-r1p 26174  df-log 26599  df-logb 26809  df-primroots 42094
This theorem is referenced by:  aks6d1c7lem2  42183
  Copyright terms: Public domain W3C validator