Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6lem5 Structured version   Visualization version   GIF version

Theorem aks6d1c6lem5 42195
Description: Eliminate the size hypothesis. Claim 6. (Contributed by metakunt, 15-May-2025.)
Hypotheses
Ref Expression
aks6d1c6lem5.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c6lem5.2 𝑃 = (chr‘𝐾)
aks6d1c6lem5.3 (𝜑𝐾 ∈ Field)
aks6d1c6lem5.4 (𝜑𝑃 ∈ ℙ)
aks6d1c6lem5.5 (𝜑𝑅 ∈ ℕ)
aks6d1c6lem5.6 (𝜑𝑁 ∈ ℕ)
aks6d1c6lem5.7 (𝜑𝑃𝑁)
aks6d1c6lem5.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c6lem5.9 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks6d1c6lem5.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c6lem5.11 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aksaks6dlem5.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c6lem5.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c6lem5.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c6lem5.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c6lem5.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c6lem5.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c6lem5.18 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c6lem5.19 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
aks6d1c6lem5.20 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
aks6d1c6lem5.22 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}
aks6d1c6lem5.23 𝑋 = (𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ↦ (𝐽𝑏))
Assertion
Ref Expression
aks6d1c6lem5 (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑏   𝐴,𝑔,𝑖,𝑥   𝐴,,𝑗   𝐴,𝑠,𝑡   𝐷,𝑠   𝑒,𝐸,𝑓,𝑦   𝑗,𝐸,𝑦   𝑥,𝐸,𝑦   𝑒,𝐺,𝑓,𝑦   𝑔,𝐺,𝑖,𝑦   ,𝐺   𝑡,𝐺,𝑖,𝑦   𝐻,𝑎   𝑔,𝐻,𝑖,𝑥,𝑦   ,𝐻,𝑗   𝐻,𝑠,𝑡   𝐽,𝑏   𝑦,𝐽   𝐾,𝑎   𝐾,𝑏   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖,𝑥   ,𝐾,𝑗   𝐾,𝑙,𝑥,𝑦   𝑚,𝐾,𝑛   𝑡,𝐾,𝑥   ,𝑀,𝑗   𝑀,𝑙,𝑦   𝑁,𝑎   𝑁,𝑏   𝑒,𝑁,𝑓   𝑗,𝑁   𝑘,𝑁,𝑙,𝑠   𝑥,𝑁,𝑘   𝑃,𝑏   𝑃,𝑒,𝑓   𝑃,𝑗   𝑃,𝑘,𝑙,𝑠   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑅,𝑗   𝑅,𝑙,𝑥   𝑆,𝑎   𝑆,𝑔,𝑖,𝑥,𝑦   𝑆,,𝑗   𝑆,𝑠,𝑡   𝑈,𝑏   𝑈,𝑗   𝑈,𝑙   𝑋,𝑏   𝜑,𝑎   𝜑,𝑏   𝜑,𝑔,𝑖,𝑥,𝑦   𝜑,,𝑗   𝜑,𝑘,𝑙,𝑠   𝑦,𝑘   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑚,𝑛)   𝐴(𝑦,𝑒,𝑓,𝑘,𝑚,𝑛,𝑙)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑎,𝑏,𝑙)   𝑃(𝑦,𝑡,𝑔,,𝑖,𝑚,𝑛,𝑎)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏,𝑙)   𝑅(𝑡,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏)   𝑆(𝑒,𝑓,𝑘,𝑚,𝑛,𝑏,𝑙)   𝑈(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎)   𝐸(𝑡,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐺(𝑥,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐻(𝑒,𝑓,𝑘,𝑚,𝑛,𝑏,𝑙)   𝐽(𝑥,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑙)   𝐾(𝑘,𝑠)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝑀(𝑥,𝑡,𝑒,𝑓,𝑔,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏)   𝑁(𝑦,𝑡,𝑔,,𝑖,𝑚,𝑛)   𝑋(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑙)

Proof of Theorem aks6d1c6lem5
Dummy variables 𝑐 𝑑 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c6lem5.1 . 2 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
2 aks6d1c6lem5.2 . 2 𝑃 = (chr‘𝐾)
3 aks6d1c6lem5.3 . 2 (𝜑𝐾 ∈ Field)
4 aks6d1c6lem5.4 . 2 (𝜑𝑃 ∈ ℙ)
5 aks6d1c6lem5.5 . 2 (𝜑𝑅 ∈ ℕ)
6 aks6d1c6lem5.6 . 2 (𝜑𝑁 ∈ ℕ)
7 aks6d1c6lem5.7 . 2 (𝜑𝑃𝑁)
8 aks6d1c6lem5.8 . 2 (𝜑 → (𝑁 gcd 𝑅) = 1)
9 aks6d1c6lem5.9 . 2 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
10 aks6d1c6lem5.10 . 2 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
11 aks6d1c6lem5.11 . 2 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
12 aksaks6dlem5.12 . 2 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
13 aks6d1c6lem5.13 . 2 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
14 aks6d1c6lem5.14 . 2 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
15 aks6d1c6lem5.15 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
16 aks6d1c6lem5.16 . 2 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
17 aks6d1c6lem5.17 . 2 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
18 aks6d1c6lem5.18 . 2 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
19 aks6d1c6lem5.19 . 2 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
20 aks6d1c6lem5.20 . 2 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
21 eqid 2736 . . . . . . . . . . 11 (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) = (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))
223fldcrngd 20707 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ CRing)
23 eqid 2736 . . . . . . . . . . . . . 14 (mulGrp‘𝐾) = (mulGrp‘𝐾)
2423crngmgp 20206 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
2522, 24syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
26 aks6d1c6lem5.22 . . . . . . . . . . . 12 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}
2725, 5, 26, 20, 16aks6d1c6isolem2 42193 . . . . . . . . . . 11 (𝜑𝐽 ∈ (ℤring GrpHom (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
28 eqid 2736 . . . . . . . . . . 11 (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}) = (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})
29 eqid 2736 . . . . . . . . . . 11 (ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
30 aks6d1c6lem5.23 . . . . . . . . . . 11 𝑋 = (𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ↦ (𝐽𝑏))
31 zringbas 21419 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
32 nfcv 2899 . . . . . . . . . . . 12 𝑐[𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
33 nfcv 2899 . . . . . . . . . . . 12 𝑑[𝑐](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
34 eceq1 8763 . . . . . . . . . . . 12 (𝑑 = 𝑐 → [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = [𝑐](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
3532, 33, 34cbvmpt 5228 . . . . . . . . . . 11 (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (𝑐 ∈ ℤ ↦ [𝑐](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
3621, 27, 28, 29, 30, 31, 35ghmquskerco 19272 . . . . . . . . . 10 (𝜑𝐽 = (𝑋 ∘ (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))
37 eqid 2736 . . . . . . . . . . . . . . . . 17 (RSpan‘ℤring) = (RSpan‘ℤring)
3825, 5, 26, 20, 16, 37aks6d1c6isolem3 42194 . . . . . . . . . . . . . . . 16 (𝜑 → ((RSpan‘ℤring)‘{𝑅}) = (𝐽 “ {(0g‘((mulGrp‘𝐾) ↾s 𝑈))}))
3925, 5, 26primrootsunit 42116 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ∧ ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel))
4039simprd 495 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel)
4140ablgrpd 19772 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp)
4241grpmndd 18934 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Mnd)
43 0zd 12605 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ∈ ℤ)
44 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 = 0) → 𝑤 = 0)
4544fveqeq2d 6889 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 = 0) → ((𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ↔ (𝐽‘0) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))))
4620a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
47 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 = 0) → 𝑗 = 0)
4847oveq1d 7425 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 = 0) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
4939simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅))
5016, 49eleqtrd 2837 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅))
5140ablcmnd 19774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ CMnd)
525nnnn0d 12567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑅 ∈ ℕ0)
53 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (.g‘((mulGrp‘𝐾) ↾s 𝑈)) = (.g‘((mulGrp‘𝐾) ↾s 𝑈))
5451, 52, 53isprimroot 42111 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑙))))
5554biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑙))))
5650, 55mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑙)))
5756simp1d 1142 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
58 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Base‘((mulGrp‘𝐾) ↾s 𝑈)) = (Base‘((mulGrp‘𝐾) ↾s 𝑈))
59 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0g‘((mulGrp‘𝐾) ↾s 𝑈)) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))
6058, 59, 53mulg0 19062 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) → (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6157, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6261adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 = 0) → (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6348, 62eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 = 0) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
64 fvexd 6896 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ V)
6546, 63, 43, 64fvmptd 6998 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐽‘0) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6643, 45, 65rspcedvd 3608 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∃𝑤 ∈ ℤ (𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6741adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℤ) → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp)
68 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℤ) → 𝑗 ∈ ℤ)
6957adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℤ) → 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
7058, 53, 67, 68, 69mulgcld 19084 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℤ) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
7170, 20fmptd 7109 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽:ℤ⟶(Base‘((mulGrp‘𝐾) ↾s 𝑈)))
7271ffnd 6712 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 Fn ℤ)
73 fvelrnb 6944 . . . . . . . . . . . . . . . . . . . . 21 (𝐽 Fn ℤ → ((0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ↔ ∃𝑤 ∈ ℤ (𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))))
7472, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ↔ ∃𝑤 ∈ ℤ (𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))))
7566, 74mpbird 257 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽)
7671frnd 6719 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
77 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽) = (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)
7877, 58, 59ress0g 18745 . . . . . . . . . . . . . . . . . . 19 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Mnd ∧ (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ∧ ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) = (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
7942, 75, 76, 78syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) = (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
8079sneqd 4618 . . . . . . . . . . . . . . . . 17 (𝜑 → {(0g‘((mulGrp‘𝐾) ↾s 𝑈))} = {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})
8180imaeq2d 6052 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽 “ {(0g‘((mulGrp‘𝐾) ↾s 𝑈))}) = (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
8238, 81eqtr2d 2772 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}) = ((RSpan‘ℤring)‘{𝑅}))
8382oveq2d 7426 . . . . . . . . . . . . . 14 (𝜑 → (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))
8483eceq2d 8767 . . . . . . . . . . . . 13 (𝜑 → [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))
8584mpteq2dv 5220 . . . . . . . . . . . 12 (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))))
86 eqid 2736 . . . . . . . . . . . . . . 15 (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))
87 eqid 2736 . . . . . . . . . . . . . . 15 (ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅)
8837, 86, 87, 13znzrh2 21511 . . . . . . . . . . . . . 14 (𝑅 ∈ ℕ0𝐿 = (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))))
8952, 88syl 17 . . . . . . . . . . . . 13 (𝜑𝐿 = (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))))
9089eqcomd 2742 . . . . . . . . . . . 12 (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))) = 𝐿)
9185, 90eqtrd 2771 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = 𝐿)
9291coeq2d 5847 . . . . . . . . . 10 (𝜑 → (𝑋 ∘ (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) = (𝑋𝐿))
9336, 92eqtrd 2771 . . . . . . . . 9 (𝜑𝐽 = (𝑋𝐿))
9493coeq2d 5847 . . . . . . . 8 (𝜑 → (𝑋𝐽) = (𝑋 ∘ (𝑋𝐿)))
95 coass 6259 . . . . . . . . 9 ((𝑋𝑋) ∘ 𝐿) = (𝑋 ∘ (𝑋𝐿))
9695eqcomi 2745 . . . . . . . 8 (𝑋 ∘ (𝑋𝐿)) = ((𝑋𝑋) ∘ 𝐿)
9794, 96eqtrdi 2787 . . . . . . 7 (𝜑 → (𝑋𝐽) = ((𝑋𝑋) ∘ 𝐿))
9877, 58ressbas2 17264 . . . . . . . . . . . . 13 (ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) → ran 𝐽 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
9976, 98syl 17 . . . . . . . . . . . 12 (𝜑 → ran 𝐽 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
10021, 27, 28, 29, 30, 99ghmqusker 19275 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) GrpIso (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
101 eqid 2736 . . . . . . . . . . . 12 (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) = (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))
102 eqid 2736 . . . . . . . . . . . 12 (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))
103101, 102gimf1o 19251 . . . . . . . . . . 11 (𝑋 ∈ ((ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) GrpIso (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → 𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
104100, 103syl 17 . . . . . . . . . 10 (𝜑𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
105 f1ococnv1 6852 . . . . . . . . . 10 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → (𝑋𝑋) = ( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))))
106104, 105syl 17 . . . . . . . . 9 (𝜑 → (𝑋𝑋) = ( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))))
107106coeq1d 5846 . . . . . . . 8 (𝜑 → ((𝑋𝑋) ∘ 𝐿) = (( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿))
10887zncrng 21510 . . . . . . . . . . . . 13 (𝑅 ∈ ℕ0 → (ℤ/nℤ‘𝑅) ∈ CRing)
10952, 108syl 17 . . . . . . . . . . . 12 (𝜑 → (ℤ/nℤ‘𝑅) ∈ CRing)
110 crngring 20210 . . . . . . . . . . . 12 ((ℤ/nℤ‘𝑅) ∈ CRing → (ℤ/nℤ‘𝑅) ∈ Ring)
11113zrhrhm 21477 . . . . . . . . . . . 12 ((ℤ/nℤ‘𝑅) ∈ Ring → 𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)))
112 eqid 2736 . . . . . . . . . . . . 13 (Base‘(ℤ/nℤ‘𝑅)) = (Base‘(ℤ/nℤ‘𝑅))
11331, 112rhmf 20450 . . . . . . . . . . . 12 (𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)) → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
114109, 110, 111, 1134syl 19 . . . . . . . . . . 11 (𝜑𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
115 eqid 2736 . . . . . . . . . . . . . 14 (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))
11637, 115, 87znbas2 21505 . . . . . . . . . . . . 13 (𝑅 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) = (Base‘(ℤ/nℤ‘𝑅)))
11752, 116syl 17 . . . . . . . . . . . 12 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) = (Base‘(ℤ/nℤ‘𝑅)))
118117feq3d 6698 . . . . . . . . . . 11 (𝜑 → (𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) ↔ 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅))))
119114, 118mpbird 257 . . . . . . . . . 10 (𝜑𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))))
12082eqcomd 2742 . . . . . . . . . . . . . 14 (𝜑 → ((RSpan‘ℤring)‘{𝑅}) = (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
121120oveq2d 7426 . . . . . . . . . . . . 13 (𝜑 → (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})) = (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
122121oveq2d 7426 . . . . . . . . . . . 12 (𝜑 → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))) = (ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))
123122fveq2d 6885 . . . . . . . . . . 11 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) = (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))
124123feq3d 6698 . . . . . . . . . 10 (𝜑 → (𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) ↔ 𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))))
125119, 124mpbid 232 . . . . . . . . 9 (𝜑𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))
126 fcoi2 6758 . . . . . . . . 9 (𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) → (( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿) = 𝐿)
127125, 126syl 17 . . . . . . . 8 (𝜑 → (( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿) = 𝐿)
128107, 127eqtrd 2771 . . . . . . 7 (𝜑 → ((𝑋𝑋) ∘ 𝐿) = 𝐿)
12997, 128eqtr2d 2772 . . . . . 6 (𝜑𝐿 = (𝑋𝐽))
130129imaeq1d 6051 . . . . 5 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) = ((𝑋𝐽) “ (𝐸 “ (ℕ0 × ℕ0))))
131 imaco 6245 . . . . . 6 ((𝑋𝐽) “ (𝐸 “ (ℕ0 × ℕ0))) = (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))
132131a1i 11 . . . . 5 (𝜑 → ((𝑋𝐽) “ (𝐸 “ (ℕ0 × ℕ0))) = (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
133130, 132eqtrd 2771 . . . 4 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) = (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
134133fveq2d 6885 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = (♯‘(𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))))
135 simplll 774 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → 𝜑)
136 simplr 768 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → 𝑢 ∈ ℤ)
137135, 136jca 511 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → (𝜑𝑢 ∈ ℤ))
138 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑧 ∈ (0...(𝑅 − 1)))
139 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑣 = 𝑧) → 𝑣 = 𝑧)
140139fveqeq2d 6889 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑣 = 𝑧) → ((𝐽𝑣) = (𝐽𝑢) ↔ (𝐽𝑧) = (𝐽𝑢)))
14120a1i 11 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
142 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑧) → 𝑗 = 𝑧)
143142oveq1d 7425 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑧) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
144 fzssz 13548 . . . . . . . . . . . . . . . . . . 19 (0...(𝑅 − 1)) ⊆ ℤ
145144, 138sselid 3961 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑧 ∈ ℤ)
146 ovexd 7445 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V)
147141, 143, 145, 146fvmptd 6998 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽𝑧) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
148 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑢) → 𝑗 = 𝑢)
149148oveq1d 7425 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑢) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
150 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ ℤ) → 𝑢 ∈ ℤ)
151150ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑢 ∈ ℤ)
152 ovexd 7445 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V)
153141, 149, 151, 152fvmptd 6998 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽𝑢) = (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
154 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑢 = ((𝑦 · 𝑅) + 𝑧))
155154oveq1d 7425 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
15641ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp)
157 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑦 ∈ ℤ)
1585adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ ℤ) → 𝑅 ∈ ℕ)
159158ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑅 ∈ ℕ)
160159nnzd 12620 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑅 ∈ ℤ)
161157, 160zmulcld 12708 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦 · 𝑅) ∈ ℤ)
162144sseli 3959 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ (0...(𝑅 − 1)) → 𝑧 ∈ ℤ)
163162adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑧 ∈ ℤ)
16457ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
165161, 163, 1643jca 1128 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))))
166 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (+g‘((mulGrp‘𝐾) ↾s 𝑈)) = (+g‘((mulGrp‘𝐾) ↾s 𝑈))
16758, 53, 166mulgdir 19094 . . . . . . . . . . . . . . . . . . . . . 22 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp ∧ ((𝑦 · 𝑅) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
168156, 165, 167syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
169157, 160, 1643jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))))
17058, 53mulgass 19099 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp ∧ (𝑦 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
171156, 169, 170syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
17256simp2d 1143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
173172adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ ℤ) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
174173adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
175174adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
176175oveq2d 7426 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))))
17758, 53, 59mulgz 19090 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp ∧ 𝑦 ∈ ℤ) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
178156, 157, 177syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
179176, 178eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
180171, 179eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
181180oveq1d 7425 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = ((0g‘((mulGrp‘𝐾) ↾s 𝑈))(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
18258, 53, 156, 163, 164mulgcld 19084 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
18358, 166, 59, 156, 182grplidd 18957 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((0g‘((mulGrp‘𝐾) ↾s 𝑈))(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
184181, 183eqtrd 2771 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
185168, 184eqtrd 2771 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
186185adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
187155, 186eqtrd 2771 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
188153, 187eqtr2d 2772 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝐽𝑢))
189147, 188eqtrd 2771 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽𝑧) = (𝐽𝑢))
190138, 140, 189rspcedvd 3608 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢))
191150, 158remexz 42122 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ ℤ) → ∃𝑦 ∈ ℤ ∃𝑧 ∈ (0...(𝑅 − 1))𝑢 = ((𝑦 · 𝑅) + 𝑧))
192190, 191r19.29vva 3205 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ ℤ) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢))
193137, 192syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢))
194 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → (𝐽𝑢) = 𝑤)
195194eqcomd 2742 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → 𝑤 = (𝐽𝑢))
196195eqeq2d 2747 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → ((𝐽𝑣) = 𝑤 ↔ (𝐽𝑣) = (𝐽𝑢)))
197196rexbidv 3165 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → (∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤 ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢)))
198193, 197mpbird 257 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤)
199 ssidd 3987 . . . . . . . . . . . . . . 15 (𝜑 → ℤ ⊆ ℤ)
200 fvelimab 6956 . . . . . . . . . . . . . . 15 ((𝐽 Fn ℤ ∧ ℤ ⊆ ℤ) → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤))
20172, 199, 200syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤))
202201biimpd 229 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) → ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤))
203202imp 406 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤)
204198, 203r19.29a 3149 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤)
205144a1i 11 . . . . . . . . . . . . 13 (𝜑 → (0...(𝑅 − 1)) ⊆ ℤ)
206 fvelimab 6956 . . . . . . . . . . . . 13 ((𝐽 Fn ℤ ∧ (0...(𝑅 − 1)) ⊆ ℤ) → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
20772, 205, 206syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
208207adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
209204, 208mpbird 257 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))))
210209ex 412 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) → 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))))
211210ssrdv 3969 . . . . . . . 8 (𝜑 → (𝐽 “ ℤ) ⊆ (𝐽 “ (0...(𝑅 − 1))))
212207biimpd 229 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
213212imp 406 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤)
214144sseli 3959 . . . . . . . . . . . . . 14 (𝑣 ∈ (0...(𝑅 − 1)) → 𝑣 ∈ ℤ)
215214adantr 480 . . . . . . . . . . . . 13 ((𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽𝑣) = 𝑤) → 𝑣 ∈ ℤ)
216215adantl 481 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) ∧ (𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽𝑣) = 𝑤)) → 𝑣 ∈ ℤ)
217 simprr 772 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) ∧ (𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽𝑣) = 𝑤)) → (𝐽𝑣) = 𝑤)
218213, 216, 217reximssdv 3159 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ∃𝑣 ∈ ℤ (𝐽𝑣) = 𝑤)
21972adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → 𝐽 Fn ℤ)
220 ssidd 3987 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ℤ ⊆ ℤ)
221 fvelimab 6956 . . . . . . . . . . . 12 ((𝐽 Fn ℤ ∧ ℤ ⊆ ℤ) → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑣 ∈ ℤ (𝐽𝑣) = 𝑤))
222219, 220, 221syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑣 ∈ ℤ (𝐽𝑣) = 𝑤))
223218, 222mpbird 257 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → 𝑤 ∈ (𝐽 “ ℤ))
224223ex 412 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) → 𝑤 ∈ (𝐽 “ ℤ)))
225224ssrdv 3969 . . . . . . . 8 (𝜑 → (𝐽 “ (0...(𝑅 − 1))) ⊆ (𝐽 “ ℤ))
226211, 225eqssd 3981 . . . . . . 7 (𝜑 → (𝐽 “ ℤ) = (𝐽 “ (0...(𝑅 − 1))))
22772fnfund 6644 . . . . . . . 8 (𝜑 → Fun 𝐽)
228 fzfid 13996 . . . . . . . 8 (𝜑 → (0...(𝑅 − 1)) ∈ Fin)
229 imafi 9330 . . . . . . . 8 ((Fun 𝐽 ∧ (0...(𝑅 − 1)) ∈ Fin) → (𝐽 “ (0...(𝑅 − 1))) ∈ Fin)
230227, 228, 229syl2anc 584 . . . . . . 7 (𝜑 → (𝐽 “ (0...(𝑅 − 1))) ∈ Fin)
231226, 230eqeltrd 2835 . . . . . 6 (𝜑 → (𝐽 “ ℤ) ∈ Fin)
2326, 4, 7, 12aks6d1c2p1 42136 . . . . . . . . . . 11 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
233 nnssz 12615 . . . . . . . . . . . 12 ℕ ⊆ ℤ
234233a1i 11 . . . . . . . . . . 11 (𝜑 → ℕ ⊆ ℤ)
235232, 234jca 511 . . . . . . . . . 10 (𝜑 → (𝐸:(ℕ0 × ℕ0)⟶ℕ ∧ ℕ ⊆ ℤ))
236 fss 6727 . . . . . . . . . 10 ((𝐸:(ℕ0 × ℕ0)⟶ℕ ∧ ℕ ⊆ ℤ) → 𝐸:(ℕ0 × ℕ0)⟶ℤ)
237235, 236syl 17 . . . . . . . . 9 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℤ)
238237frnd 6719 . . . . . . . 8 (𝜑 → ran 𝐸 ⊆ ℤ)
239232ffnd 6712 . . . . . . . . . 10 (𝜑𝐸 Fn (ℕ0 × ℕ0))
240 fnima 6673 . . . . . . . . . 10 (𝐸 Fn (ℕ0 × ℕ0) → (𝐸 “ (ℕ0 × ℕ0)) = ran 𝐸)
241239, 240syl 17 . . . . . . . . 9 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) = ran 𝐸)
242241sseq1d 3995 . . . . . . . 8 (𝜑 → ((𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ ↔ ran 𝐸 ⊆ ℤ))
243238, 242mpbird 257 . . . . . . 7 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ)
244 imass2 6094 . . . . . . 7 ((𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (𝐽 “ ℤ))
245243, 244syl 17 . . . . . 6 (𝜑 → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (𝐽 “ ℤ))
246231, 245ssfid 9278 . . . . 5 (𝜑 → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ Fin)
247 dff1o2 6828 . . . . . . . 8 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) ↔ (𝑋 Fn (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ∧ Fun 𝑋 ∧ ran 𝑋 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))))
248247biimpi 216 . . . . . . 7 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → (𝑋 Fn (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ∧ Fun 𝑋 ∧ ran 𝑋 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))))
249248simp2d 1143 . . . . . 6 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → Fun 𝑋)
250104, 249syl 17 . . . . 5 (𝜑 → Fun 𝑋)
251 imadomfi 42020 . . . . 5 (((𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ Fin ∧ Fun 𝑋) → (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))
252246, 250, 251syl2anc 584 . . . 4 (𝜑 → (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))
253 hashdomi 14403 . . . 4 ((𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) → (♯‘(𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
254252, 253syl 17 . . 3 (𝜑 → (♯‘(𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
255134, 254eqbrtrd 5146 . 2 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
2561, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 255, 26aks6d1c6lem4 42191 1 (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  wss 3931  {csn 4606   cuni 4888   class class class wbr 5124  {copab 5186  cmpt 5206   I cid 5552   × cxp 5657  ccnv 5658  ran crn 5660  cres 5661  cima 5662  ccom 5663  Fun wfun 6530   Fn wfn 6531  wf 6532  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  cmpo 7412  [cec 8722  m cmap 8845  cdom 8962  Fincfn 8964  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  cle 11275  cmin 11471   / cdiv 11899  cn 12245  2c2 12300  0cn0 12506  cz 12593  ...cfz 13529  cfl 13812  cexp 14084  Ccbc 14325  chash 14353  csqrt 15257  Σcsu 15707  cdvds 16277   gcd cgcd 16518  cprime 16695  ϕcphi 16788  Basecbs 17233  s cress 17256  +gcplusg 17276  0gc0g 17458   Σg cgsu 17459   /s cqus 17524  Mndcmnd 18717  Grpcgrp 18921  .gcmg 19055   ~QG cqg 19110   GrpIso cgim 19245  CMndccmn 19766  Abelcabl 19767  mulGrpcmgp 20105  Ringcrg 20198  CRingccrg 20199   RingHom crh 20434   RingIso crs 20435  Fieldcfield 20695  RSpancrsp 21173  ringczring 21412  ℤRHomczrh 21465  chrcchr 21467  ℤ/nczn 21468  algSccascl 21817  var1cv1 22116  Poly1cpl1 22117  eval1ce1 22257   logb clogb 26731   PrimRoots cprimroots 42109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-dvds 16278  df-gcd 16519  df-prm 16696  df-phi 16790  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-pws 17468  df-xrs 17521  df-qtop 17526  df-imas 17527  df-qus 17528  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-nsg 19112  df-eqg 19113  df-ghm 19201  df-gim 19247  df-cntz 19305  df-od 19514  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-srg 20152  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-rhm 20437  df-rim 20438  df-nzr 20478  df-subrng 20511  df-subrg 20535  df-rlreg 20659  df-domn 20660  df-idom 20661  df-drng 20696  df-field 20697  df-lmod 20824  df-lss 20894  df-lsp 20934  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-rsp 21175  df-2idl 21216  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-zring 21413  df-zrh 21469  df-chr 21471  df-zn 21472  df-assa 21818  df-asp 21819  df-ascl 21820  df-psr 21874  df-mvr 21875  df-mpl 21876  df-opsr 21878  df-evls 22037  df-evl 22038  df-psr1 22120  df-vr1 22121  df-ply1 22122  df-coe1 22123  df-evl1 22259  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-mdeg 26017  df-deg1 26018  df-mon1 26093  df-uc1p 26094  df-q1p 26095  df-r1p 26096  df-log 26522  df-logb 26732  df-primroots 42110
This theorem is referenced by:  aks6d1c7lem2  42199
  Copyright terms: Public domain W3C validator