| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | aks6d1c6lem5.1 | . 2
⊢  ∼ =
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈
(Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} | 
| 2 |  | aks6d1c6lem5.2 | . 2
⊢ 𝑃 = (chr‘𝐾) | 
| 3 |  | aks6d1c6lem5.3 | . 2
⊢ (𝜑 → 𝐾 ∈ Field) | 
| 4 |  | aks6d1c6lem5.4 | . 2
⊢ (𝜑 → 𝑃 ∈ ℙ) | 
| 5 |  | aks6d1c6lem5.5 | . 2
⊢ (𝜑 → 𝑅 ∈ ℕ) | 
| 6 |  | aks6d1c6lem5.6 | . 2
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 7 |  | aks6d1c6lem5.7 | . 2
⊢ (𝜑 → 𝑃 ∥ 𝑁) | 
| 8 |  | aks6d1c6lem5.8 | . 2
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | 
| 9 |  | aks6d1c6lem5.9 | . 2
⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) | 
| 10 |  | aks6d1c6lem5.10 | . 2
⊢ 𝐺 = (𝑔 ∈ (ℕ0
↑m (0...𝐴))
↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) | 
| 11 |  | aks6d1c6lem5.11 | . 2
⊢ 𝐴 =
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) | 
| 12 |  | aksaks6dlem5.12 | . 2
⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) | 
| 13 |  | aks6d1c6lem5.13 | . 2
⊢ 𝐿 =
(ℤRHom‘(ℤ/nℤ‘𝑅)) | 
| 14 |  | aks6d1c6lem5.14 | . 2
⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) | 
| 15 |  | aks6d1c6lem5.15 | . 2
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) | 
| 16 |  | aks6d1c6lem5.16 | . 2
⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) | 
| 17 |  | aks6d1c6lem5.17 | . 2
⊢ 𝐻 = (ℎ ∈ (ℕ0
↑m (0...𝐴))
↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀)) | 
| 18 |  | aks6d1c6lem5.18 | . 2
⊢ 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) | 
| 19 |  | aks6d1c6lem5.19 | . 2
⊢ 𝑆 = {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} | 
| 20 |  | aks6d1c6lem5.20 | . 2
⊢ 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) | 
| 21 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) =
(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) | 
| 22 | 3 | fldcrngd 20743 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ CRing) | 
| 23 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) | 
| 24 | 23 | crngmgp 20239 | . . . . . . . . . . . . 13
⊢ (𝐾 ∈ CRing →
(mulGrp‘𝐾) ∈
CMnd) | 
| 25 | 22, 24 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → (mulGrp‘𝐾) ∈ CMnd) | 
| 26 |  | aks6d1c6lem5.22 | . . . . . . . . . . . 12
⊢ 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈
(Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))} | 
| 27 | 25, 5, 26, 20, 16 | aks6d1c6isolem2 42177 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (ℤring GrpHom
(((mulGrp‘𝐾)
↾s 𝑈)
↾s ran 𝐽))) | 
| 28 |  | eqid 2736 | . . . . . . . . . . 11
⊢ (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}) = (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}) | 
| 29 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(ℤring /s (ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) | 
| 30 |  | aks6d1c6lem5.23 | . . . . . . . . . . 11
⊢ 𝑋 = (𝑏 ∈ (Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ↦ ∪
(𝐽 “ 𝑏)) | 
| 31 |  | zringbas 21465 | . . . . . . . . . . 11
⊢ ℤ =
(Base‘ℤring) | 
| 32 |  | nfcv 2904 | . . . . . . . . . . . 12
⊢
Ⅎ𝑐[𝑑](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) | 
| 33 |  | nfcv 2904 | . . . . . . . . . . . 12
⊢
Ⅎ𝑑[𝑐](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) | 
| 34 |  | eceq1 8785 | . . . . . . . . . . . 12
⊢ (𝑑 = 𝑐 → [𝑑](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = [𝑐](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) | 
| 35 | 32, 33, 34 | cbvmpt 5252 | . . . . . . . . . . 11
⊢ (𝑑 ∈ ℤ ↦ [𝑑](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (𝑐 ∈ ℤ ↦ [𝑐](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) | 
| 36 | 21, 27, 28, 29, 30, 31, 35 | ghmquskerco 19303 | . . . . . . . . . 10
⊢ (𝜑 → 𝐽 = (𝑋 ∘ (𝑑 ∈ ℤ ↦ [𝑑](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) | 
| 37 |  | eqid 2736 | . . . . . . . . . . . . . . . . 17
⊢
(RSpan‘ℤring) =
(RSpan‘ℤring) | 
| 38 | 25, 5, 26, 20, 16, 37 | aks6d1c6isolem3 42178 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 →
((RSpan‘ℤring)‘{𝑅}) = (◡𝐽 “
{(0g‘((mulGrp‘𝐾) ↾s 𝑈))})) | 
| 39 | 25, 5, 26 | primrootsunit 42100 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ∧ ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel)) | 
| 40 | 39 | simprd 495 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel) | 
| 41 | 40 | ablgrpd 19805 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp) | 
| 42 | 41 | grpmndd 18965 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Mnd) | 
| 43 |  | 0zd 12627 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 0 ∈
ℤ) | 
| 44 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑤 = 0) → 𝑤 = 0) | 
| 45 | 44 | fveqeq2d 6913 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑤 = 0) → ((𝐽‘𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ↔ (𝐽‘0) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈)))) | 
| 46 | 20 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))) | 
| 47 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 = 0) → 𝑗 = 0) | 
| 48 | 47 | oveq1d 7447 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 = 0) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) | 
| 49 | 39 | simpld 494 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → ((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅)) | 
| 50 | 16, 49 | eleqtrd 2842 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅)) | 
| 51 | 40 | ablcmnd 19807 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ CMnd) | 
| 52 | 5 | nnnn0d 12589 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑅 ∈
ℕ0) | 
| 53 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(.g‘((mulGrp‘𝐾) ↾s 𝑈)) =
(.g‘((mulGrp‘𝐾) ↾s 𝑈)) | 
| 54 | 51, 52, 53 | isprimroot 42095 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅 ∥ 𝑙)))) | 
| 55 | 54 | biimpd 229 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅 ∥ 𝑙)))) | 
| 56 | 50, 55 | mpd 15 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅 ∥ 𝑙))) | 
| 57 | 56 | simp1d 1142 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 58 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(Base‘((mulGrp‘𝐾) ↾s 𝑈)) = (Base‘((mulGrp‘𝐾) ↾s 𝑈)) | 
| 59 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) | 
| 60 | 58, 59, 53 | mulg0 19093 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑀 ∈
(Base‘((mulGrp‘𝐾) ↾s 𝑈)) →
(0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 61 | 57, 60 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 →
(0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 62 | 61 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 = 0) →
(0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 63 | 48, 62 | eqtrd 2776 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 = 0) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 64 |  | fvexd 6920 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 →
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ V) | 
| 65 | 46, 63, 43, 64 | fvmptd 7022 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐽‘0) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 66 | 43, 45, 65 | rspcedvd 3623 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ∃𝑤 ∈ ℤ (𝐽‘𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 67 | 41 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ) → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp) | 
| 68 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ ℤ) | 
| 69 | 57 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ) → 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 70 | 58, 53, 67, 68, 69 | mulgcld 19115 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 71 | 70, 20 | fmptd 7133 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐽:ℤ⟶(Base‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 72 | 71 | ffnd 6736 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐽 Fn ℤ) | 
| 73 |  | fvelrnb 6968 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐽 Fn ℤ →
((0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ↔ ∃𝑤 ∈ ℤ (𝐽‘𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))) | 
| 74 | 72, 73 | syl 17 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 →
((0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ↔ ∃𝑤 ∈ ℤ (𝐽‘𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))) | 
| 75 | 66, 74 | mpbird 257 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽) | 
| 76 | 71 | frnd 6743 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 77 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((mulGrp‘𝐾)
↾s 𝑈)
↾s ran 𝐽)
= (((mulGrp‘𝐾)
↾s 𝑈)
↾s ran 𝐽) | 
| 78 | 77, 58, 59 | ress0g 18776 | . . . . . . . . . . . . . . . . . . 19
⊢
((((mulGrp‘𝐾)
↾s 𝑈)
∈ Mnd ∧ (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ∧ ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) →
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) =
(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))) | 
| 79 | 42, 75, 76, 78 | syl3anc 1372 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(0g‘((mulGrp‘𝐾) ↾s 𝑈)) =
(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))) | 
| 80 | 79 | sneqd 4637 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
{(0g‘((mulGrp‘𝐾) ↾s 𝑈))} =
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}) | 
| 81 | 80 | imaeq2d 6077 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (◡𝐽 “
{(0g‘((mulGrp‘𝐾) ↾s 𝑈))}) = (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) | 
| 82 | 38, 81 | eqtr2d 2777 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}) =
((RSpan‘ℤring)‘{𝑅})) | 
| 83 | 82 | oveq2d 7448 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = (ℤring
~QG ((RSpan‘ℤring)‘{𝑅}))) | 
| 84 | 83 | eceq2d 8789 | . . . . . . . . . . . . 13
⊢ (𝜑 → [𝑑](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = [𝑑](ℤring
~QG ((RSpan‘ℤring)‘{𝑅}))) | 
| 85 | 84 | mpteq2dv 5243 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (𝑑 ∈ ℤ ↦ [𝑑](ℤring
~QG ((RSpan‘ℤring)‘{𝑅})))) | 
| 86 |  | eqid 2736 | . . . . . . . . . . . . . . 15
⊢
(ℤring ~QG
((RSpan‘ℤring)‘{𝑅})) = (ℤring
~QG ((RSpan‘ℤring)‘{𝑅})) | 
| 87 |  | eqid 2736 | . . . . . . . . . . . . . . 15
⊢
(ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅) | 
| 88 | 37, 86, 87, 13 | znzrh2 21565 | . . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℕ0
→ 𝐿 = (𝑑 ∈ ℤ ↦ [𝑑](ℤring
~QG ((RSpan‘ℤring)‘{𝑅})))) | 
| 89 | 52, 88 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐿 = (𝑑 ∈ ℤ ↦ [𝑑](ℤring
~QG ((RSpan‘ℤring)‘{𝑅})))) | 
| 90 | 89 | eqcomd 2742 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring
~QG ((RSpan‘ℤring)‘{𝑅}))) = 𝐿) | 
| 91 | 85, 90 | eqtrd 2776 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = 𝐿) | 
| 92 | 91 | coeq2d 5872 | . . . . . . . . . 10
⊢ (𝜑 → (𝑋 ∘ (𝑑 ∈ ℤ ↦ [𝑑](ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) = (𝑋 ∘ 𝐿)) | 
| 93 | 36, 92 | eqtrd 2776 | . . . . . . . . 9
⊢ (𝜑 → 𝐽 = (𝑋 ∘ 𝐿)) | 
| 94 | 93 | coeq2d 5872 | . . . . . . . 8
⊢ (𝜑 → (◡𝑋 ∘ 𝐽) = (◡𝑋 ∘ (𝑋 ∘ 𝐿))) | 
| 95 |  | coass 6284 | . . . . . . . . 9
⊢ ((◡𝑋 ∘ 𝑋) ∘ 𝐿) = (◡𝑋 ∘ (𝑋 ∘ 𝐿)) | 
| 96 | 95 | eqcomi 2745 | . . . . . . . 8
⊢ (◡𝑋 ∘ (𝑋 ∘ 𝐿)) = ((◡𝑋 ∘ 𝑋) ∘ 𝐿) | 
| 97 | 94, 96 | eqtrdi 2792 | . . . . . . 7
⊢ (𝜑 → (◡𝑋 ∘ 𝐽) = ((◡𝑋 ∘ 𝑋) ∘ 𝐿)) | 
| 98 | 77, 58 | ressbas2 17284 | . . . . . . . . . . . . 13
⊢ (ran
𝐽 ⊆
(Base‘((mulGrp‘𝐾) ↾s 𝑈)) → ran 𝐽 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))) | 
| 99 | 76, 98 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → ran 𝐽 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))) | 
| 100 | 21, 27, 28, 29, 30, 99 | ghmqusker 19306 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ ((ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) GrpIso (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))) | 
| 101 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(Base‘(ℤring /s
(ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) =
(Base‘(ℤring /s
(ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) | 
| 102 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) | 
| 103 | 101, 102 | gimf1o 19282 | . . . . . . . . . . 11
⊢ (𝑋 ∈ ((ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) GrpIso (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → 𝑋:(Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))) | 
| 104 | 100, 103 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → 𝑋:(Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))) | 
| 105 |  | f1ococnv1 6876 | . . . . . . . . . 10
⊢ (𝑋:(Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → (◡𝑋 ∘ 𝑋) = ( I ↾
(Base‘(ℤring /s
(ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))) | 
| 106 | 104, 105 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → (◡𝑋 ∘ 𝑋) = ( I ↾
(Base‘(ℤring /s
(ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))) | 
| 107 | 106 | coeq1d 5871 | . . . . . . . 8
⊢ (𝜑 → ((◡𝑋 ∘ 𝑋) ∘ 𝐿) = (( I ↾
(Base‘(ℤring /s
(ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿)) | 
| 108 | 87 | zncrng 21564 | . . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℕ0
→ (ℤ/nℤ‘𝑅) ∈ CRing) | 
| 109 | 52, 108 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 →
(ℤ/nℤ‘𝑅) ∈ CRing) | 
| 110 |  | crngring 20243 | . . . . . . . . . . . 12
⊢
((ℤ/nℤ‘𝑅) ∈ CRing →
(ℤ/nℤ‘𝑅) ∈ Ring) | 
| 111 | 13 | zrhrhm 21523 | . . . . . . . . . . . 12
⊢
((ℤ/nℤ‘𝑅) ∈ Ring → 𝐿 ∈ (ℤring RingHom
(ℤ/nℤ‘𝑅))) | 
| 112 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢
(Base‘(ℤ/nℤ‘𝑅)) =
(Base‘(ℤ/nℤ‘𝑅)) | 
| 113 | 31, 112 | rhmf 20486 | . . . . . . . . . . . 12
⊢ (𝐿 ∈ (ℤring
RingHom (ℤ/nℤ‘𝑅)) → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅))) | 
| 114 | 109, 110,
111, 113 | 4syl 19 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅))) | 
| 115 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(ℤring /s (ℤring
~QG ((RSpan‘ℤring)‘{𝑅}))) = (ℤring
/s (ℤring ~QG
((RSpan‘ℤring)‘{𝑅}))) | 
| 116 | 37, 115, 87 | znbas2 21556 | . . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℕ0
→ (Base‘(ℤring /s
(ℤring ~QG
((RSpan‘ℤring)‘{𝑅})))) =
(Base‘(ℤ/nℤ‘𝑅))) | 
| 117 | 52, 116 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 →
(Base‘(ℤring /s
(ℤring ~QG
((RSpan‘ℤring)‘{𝑅})))) =
(Base‘(ℤ/nℤ‘𝑅))) | 
| 118 | 117 | feq3d 6722 | . . . . . . . . . . 11
⊢ (𝜑 → (𝐿:ℤ⟶(Base‘(ℤring
/s (ℤring ~QG
((RSpan‘ℤring)‘{𝑅})))) ↔ 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))) | 
| 119 | 114, 118 | mpbird 257 | . . . . . . . . . 10
⊢ (𝜑 → 𝐿:ℤ⟶(Base‘(ℤring
/s (ℤring ~QG
((RSpan‘ℤring)‘{𝑅}))))) | 
| 120 | 82 | eqcomd 2742 | . . . . . . . . . . . . . 14
⊢ (𝜑 →
((RSpan‘ℤring)‘{𝑅}) = (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) | 
| 121 | 120 | oveq2d 7448 | . . . . . . . . . . . . 13
⊢ (𝜑 → (ℤring
~QG ((RSpan‘ℤring)‘{𝑅})) = (ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) | 
| 122 | 121 | oveq2d 7448 | . . . . . . . . . . . 12
⊢ (𝜑 → (ℤring
/s (ℤring ~QG
((RSpan‘ℤring)‘{𝑅}))) = (ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) | 
| 123 | 122 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (𝜑 →
(Base‘(ℤring /s
(ℤring ~QG
((RSpan‘ℤring)‘{𝑅})))) = (Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) | 
| 124 | 123 | feq3d 6722 | . . . . . . . . . 10
⊢ (𝜑 → (𝐿:ℤ⟶(Base‘(ℤring
/s (ℤring ~QG
((RSpan‘ℤring)‘{𝑅})))) ↔ 𝐿:ℤ⟶(Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))) | 
| 125 | 119, 124 | mpbid 232 | . . . . . . . . 9
⊢ (𝜑 → 𝐿:ℤ⟶(Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) | 
| 126 |  | fcoi2 6782 | . . . . . . . . 9
⊢ (𝐿:ℤ⟶(Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) → (( I ↾
(Base‘(ℤring /s (ℤring
~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿) = 𝐿) | 
| 127 | 125, 126 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (( I ↾
(Base‘(ℤring /s
(ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿) = 𝐿) | 
| 128 | 107, 127 | eqtrd 2776 | . . . . . . 7
⊢ (𝜑 → ((◡𝑋 ∘ 𝑋) ∘ 𝐿) = 𝐿) | 
| 129 | 97, 128 | eqtr2d 2777 | . . . . . 6
⊢ (𝜑 → 𝐿 = (◡𝑋 ∘ 𝐽)) | 
| 130 | 129 | imaeq1d 6076 | . . . . 5
⊢ (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) = ((◡𝑋 ∘ 𝐽) “ (𝐸 “ (ℕ0 ×
ℕ0)))) | 
| 131 |  | imaco 6270 | . . . . . 6
⊢ ((◡𝑋 ∘ 𝐽) “ (𝐸 “ (ℕ0 ×
ℕ0))) = (◡𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0)))) | 
| 132 | 131 | a1i 11 | . . . . 5
⊢ (𝜑 → ((◡𝑋 ∘ 𝐽) “ (𝐸 “ (ℕ0 ×
ℕ0))) = (◡𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))))) | 
| 133 | 130, 132 | eqtrd 2776 | . . . 4
⊢ (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) = (◡𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))))) | 
| 134 | 133 | fveq2d 6909 | . . 3
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) = (♯‘(◡𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) | 
| 135 |  | simplll 774 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽‘𝑢) = 𝑤) → 𝜑) | 
| 136 |  | simplr 768 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽‘𝑢) = 𝑤) → 𝑢 ∈ ℤ) | 
| 137 | 135, 136 | jca 511 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽‘𝑢) = 𝑤) → (𝜑 ∧ 𝑢 ∈ ℤ)) | 
| 138 |  | simplr 768 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑧 ∈ (0...(𝑅 − 1))) | 
| 139 |  | simpr 484 | . . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑣 = 𝑧) → 𝑣 = 𝑧) | 
| 140 | 139 | fveqeq2d 6913 | . . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑣 = 𝑧) → ((𝐽‘𝑣) = (𝐽‘𝑢) ↔ (𝐽‘𝑧) = (𝐽‘𝑢))) | 
| 141 | 20 | a1i 11 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))) | 
| 142 |  | simpr 484 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑧) → 𝑗 = 𝑧) | 
| 143 | 142 | oveq1d 7447 | . . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑧) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) | 
| 144 |  | fzssz 13567 | . . . . . . . . . . . . . . . . . . 19
⊢
(0...(𝑅 − 1))
⊆ ℤ | 
| 145 | 144, 138 | sselid 3980 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑧 ∈ ℤ) | 
| 146 |  | ovexd 7467 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V) | 
| 147 | 141, 143,
145, 146 | fvmptd 7022 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽‘𝑧) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) | 
| 148 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑢) → 𝑗 = 𝑢) | 
| 149 | 148 | oveq1d 7447 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑢) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) | 
| 150 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ ℤ) → 𝑢 ∈ ℤ) | 
| 151 | 150 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑢 ∈ ℤ) | 
| 152 |  | ovexd 7467 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V) | 
| 153 | 141, 149,
151, 152 | fvmptd 7022 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽‘𝑢) = (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) | 
| 154 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑢 = ((𝑦 · 𝑅) + 𝑧)) | 
| 155 | 154 | oveq1d 7447 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) | 
| 156 | 41 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp) | 
| 157 |  | simplr 768 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑦 ∈ ℤ) | 
| 158 | 5 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑢 ∈ ℤ) → 𝑅 ∈ ℕ) | 
| 159 | 158 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑅 ∈ ℕ) | 
| 160 | 159 | nnzd 12642 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑅 ∈ ℤ) | 
| 161 | 157, 160 | zmulcld 12730 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦 · 𝑅) ∈ ℤ) | 
| 162 | 144 | sseli 3978 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 ∈ (0...(𝑅 − 1)) → 𝑧 ∈ ℤ) | 
| 163 | 162 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑧 ∈ ℤ) | 
| 164 | 57 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 165 | 161, 163,
164 | 3jca 1128 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))) | 
| 166 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(+g‘((mulGrp‘𝐾) ↾s 𝑈)) =
(+g‘((mulGrp‘𝐾) ↾s 𝑈)) | 
| 167 | 58, 53, 166 | mulgdir 19125 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((((mulGrp‘𝐾)
↾s 𝑈)
∈ Grp ∧ ((𝑦
· 𝑅) ∈ ℤ
∧ 𝑧 ∈ ℤ
∧ 𝑀 ∈
(Base‘((mulGrp‘𝐾) ↾s 𝑈)))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))) | 
| 168 | 156, 165,
167 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))) | 
| 169 | 157, 160,
164 | 3jca 1128 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))) | 
| 170 | 58, 53 | mulgass 19130 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((mulGrp‘𝐾)
↾s 𝑈)
∈ Grp ∧ (𝑦 ∈
ℤ ∧ 𝑅 ∈
ℤ ∧ 𝑀 ∈
(Base‘((mulGrp‘𝐾) ↾s 𝑈)))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))) | 
| 171 | 156, 169,
170 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))) | 
| 172 | 56 | simp2d 1143 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 173 | 172 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑢 ∈ ℤ) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 174 | 173 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 175 | 174 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 176 | 175 | oveq2d 7448 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈)))) | 
| 177 | 58, 53, 59 | mulgz 19121 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((mulGrp‘𝐾)
↾s 𝑈)
∈ Grp ∧ 𝑦 ∈
ℤ) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 178 | 156, 157,
177 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 179 | 176, 178 | eqtrd 2776 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 180 | 171, 179 | eqtrd 2776 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) =
(0g‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 181 | 180 | oveq1d 7447 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) =
((0g‘((mulGrp‘𝐾) ↾s 𝑈))(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))) | 
| 182 | 58, 53, 156, 163, 164 | mulgcld 19115 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) | 
| 183 | 58, 166, 59, 156, 182 | grplidd 18988 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) →
((0g‘((mulGrp‘𝐾) ↾s 𝑈))(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) | 
| 184 | 181, 183 | eqtrd 2776 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) | 
| 185 | 168, 184 | eqtrd 2776 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) | 
| 186 | 185 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) | 
| 187 | 155, 186 | eqtrd 2776 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) | 
| 188 | 153, 187 | eqtr2d 2777 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝐽‘𝑢)) | 
| 189 | 147, 188 | eqtrd 2776 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽‘𝑧) = (𝐽‘𝑢)) | 
| 190 | 138, 140,
189 | rspcedvd 3623 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = (𝐽‘𝑢)) | 
| 191 | 150, 158 | remexz 42106 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ ℤ) → ∃𝑦 ∈ ℤ ∃𝑧 ∈ (0...(𝑅 − 1))𝑢 = ((𝑦 · 𝑅) + 𝑧)) | 
| 192 | 190, 191 | r19.29vva 3215 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ ℤ) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = (𝐽‘𝑢)) | 
| 193 | 137, 192 | syl 17 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽‘𝑢) = 𝑤) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = (𝐽‘𝑢)) | 
| 194 |  | simpr 484 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽‘𝑢) = 𝑤) → (𝐽‘𝑢) = 𝑤) | 
| 195 | 194 | eqcomd 2742 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽‘𝑢) = 𝑤) → 𝑤 = (𝐽‘𝑢)) | 
| 196 | 195 | eqeq2d 2747 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽‘𝑢) = 𝑤) → ((𝐽‘𝑣) = 𝑤 ↔ (𝐽‘𝑣) = (𝐽‘𝑢))) | 
| 197 | 196 | rexbidv 3178 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽‘𝑢) = 𝑤) → (∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = 𝑤 ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = (𝐽‘𝑢))) | 
| 198 | 193, 197 | mpbird 257 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽‘𝑢) = 𝑤) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = 𝑤) | 
| 199 |  | ssidd 4006 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ℤ ⊆
ℤ) | 
| 200 |  | fvelimab 6980 | . . . . . . . . . . . . . . 15
⊢ ((𝐽 Fn ℤ ∧ ℤ
⊆ ℤ) → (𝑤
∈ (𝐽 “ ℤ)
↔ ∃𝑢 ∈
ℤ (𝐽‘𝑢) = 𝑤)) | 
| 201 | 72, 199, 200 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑢 ∈ ℤ (𝐽‘𝑢) = 𝑤)) | 
| 202 | 201 | biimpd 229 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) → ∃𝑢 ∈ ℤ (𝐽‘𝑢) = 𝑤)) | 
| 203 | 202 | imp 406 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) → ∃𝑢 ∈ ℤ (𝐽‘𝑢) = 𝑤) | 
| 204 | 198, 203 | r19.29a 3161 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = 𝑤) | 
| 205 | 144 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝜑 → (0...(𝑅 − 1)) ⊆
ℤ) | 
| 206 |  | fvelimab 6980 | . . . . . . . . . . . . 13
⊢ ((𝐽 Fn ℤ ∧ (0...(𝑅 − 1)) ⊆ ℤ)
→ (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = 𝑤)) | 
| 207 | 72, 205, 206 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = 𝑤)) | 
| 208 | 207 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = 𝑤)) | 
| 209 | 204, 208 | mpbird 257 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ ℤ)) → 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) | 
| 210 | 209 | ex 412 | . . . . . . . . 9
⊢ (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) → 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))))) | 
| 211 | 210 | ssrdv 3988 | . . . . . . . 8
⊢ (𝜑 → (𝐽 “ ℤ) ⊆ (𝐽 “ (0...(𝑅 − 1)))) | 
| 212 | 207 | biimpd 229 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = 𝑤)) | 
| 213 | 212 | imp 406 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽‘𝑣) = 𝑤) | 
| 214 | 144 | sseli 3978 | . . . . . . . . . . . . . 14
⊢ (𝑣 ∈ (0...(𝑅 − 1)) → 𝑣 ∈ ℤ) | 
| 215 | 214 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽‘𝑣) = 𝑤) → 𝑣 ∈ ℤ) | 
| 216 | 215 | adantl 481 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) ∧ (𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽‘𝑣) = 𝑤)) → 𝑣 ∈ ℤ) | 
| 217 |  | simprr 772 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) ∧ (𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽‘𝑣) = 𝑤)) → (𝐽‘𝑣) = 𝑤) | 
| 218 | 213, 216,
217 | reximssdv 3172 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ∃𝑣 ∈ ℤ (𝐽‘𝑣) = 𝑤) | 
| 219 | 72 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → 𝐽 Fn ℤ) | 
| 220 |  | ssidd 4006 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ℤ ⊆
ℤ) | 
| 221 |  | fvelimab 6980 | . . . . . . . . . . . 12
⊢ ((𝐽 Fn ℤ ∧ ℤ
⊆ ℤ) → (𝑤
∈ (𝐽 “ ℤ)
↔ ∃𝑣 ∈
ℤ (𝐽‘𝑣) = 𝑤)) | 
| 222 | 219, 220,
221 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑣 ∈ ℤ (𝐽‘𝑣) = 𝑤)) | 
| 223 | 218, 222 | mpbird 257 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → 𝑤 ∈ (𝐽 “ ℤ)) | 
| 224 | 223 | ex 412 | . . . . . . . . 9
⊢ (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) → 𝑤 ∈ (𝐽 “ ℤ))) | 
| 225 | 224 | ssrdv 3988 | . . . . . . . 8
⊢ (𝜑 → (𝐽 “ (0...(𝑅 − 1))) ⊆ (𝐽 “ ℤ)) | 
| 226 | 211, 225 | eqssd 4000 | . . . . . . 7
⊢ (𝜑 → (𝐽 “ ℤ) = (𝐽 “ (0...(𝑅 − 1)))) | 
| 227 | 72 | fnfund 6668 | . . . . . . . 8
⊢ (𝜑 → Fun 𝐽) | 
| 228 |  | fzfid 14015 | . . . . . . . 8
⊢ (𝜑 → (0...(𝑅 − 1)) ∈ Fin) | 
| 229 |  | imafi 9354 | . . . . . . . 8
⊢ ((Fun
𝐽 ∧ (0...(𝑅 − 1)) ∈ Fin) →
(𝐽 “ (0...(𝑅 − 1))) ∈
Fin) | 
| 230 | 227, 228,
229 | syl2anc 584 | . . . . . . 7
⊢ (𝜑 → (𝐽 “ (0...(𝑅 − 1))) ∈ Fin) | 
| 231 | 226, 230 | eqeltrd 2840 | . . . . . 6
⊢ (𝜑 → (𝐽 “ ℤ) ∈
Fin) | 
| 232 | 6, 4, 7, 12 | aks6d1c2p1 42120 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐸:(ℕ0 ×
ℕ0)⟶ℕ) | 
| 233 |  | nnssz 12637 | . . . . . . . . . . . 12
⊢ ℕ
⊆ ℤ | 
| 234 | 233 | a1i 11 | . . . . . . . . . . 11
⊢ (𝜑 → ℕ ⊆
ℤ) | 
| 235 | 232, 234 | jca 511 | . . . . . . . . . 10
⊢ (𝜑 → (𝐸:(ℕ0 ×
ℕ0)⟶ℕ ∧ ℕ ⊆
ℤ)) | 
| 236 |  | fss 6751 | . . . . . . . . . 10
⊢ ((𝐸:(ℕ0 ×
ℕ0)⟶ℕ ∧ ℕ ⊆ ℤ) → 𝐸:(ℕ0 ×
ℕ0)⟶ℤ) | 
| 237 | 235, 236 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → 𝐸:(ℕ0 ×
ℕ0)⟶ℤ) | 
| 238 | 237 | frnd 6743 | . . . . . . . 8
⊢ (𝜑 → ran 𝐸 ⊆ ℤ) | 
| 239 | 232 | ffnd 6736 | . . . . . . . . . 10
⊢ (𝜑 → 𝐸 Fn (ℕ0 ×
ℕ0)) | 
| 240 |  | fnima 6697 | . . . . . . . . . 10
⊢ (𝐸 Fn (ℕ0 ×
ℕ0) → (𝐸 “ (ℕ0 ×
ℕ0)) = ran 𝐸) | 
| 241 | 239, 240 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → (𝐸 “ (ℕ0 ×
ℕ0)) = ran 𝐸) | 
| 242 | 241 | sseq1d 4014 | . . . . . . . 8
⊢ (𝜑 → ((𝐸 “ (ℕ0 ×
ℕ0)) ⊆ ℤ ↔ ran 𝐸 ⊆ ℤ)) | 
| 243 | 238, 242 | mpbird 257 | . . . . . . 7
⊢ (𝜑 → (𝐸 “ (ℕ0 ×
ℕ0)) ⊆ ℤ) | 
| 244 |  | imass2 6119 | . . . . . . 7
⊢ ((𝐸 “ (ℕ0
× ℕ0)) ⊆ ℤ → (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))) ⊆ (𝐽 “ ℤ)) | 
| 245 | 243, 244 | syl 17 | . . . . . 6
⊢ (𝜑 → (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))) ⊆ (𝐽 “ ℤ)) | 
| 246 | 231, 245 | ssfid 9302 | . . . . 5
⊢ (𝜑 → (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))) ∈ Fin) | 
| 247 |  | dff1o2 6852 | . . . . . . . 8
⊢ (𝑋:(Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) ↔ (𝑋 Fn (Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ∧ Fun ◡𝑋 ∧ ran 𝑋 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))) | 
| 248 | 247 | biimpi 216 | . . . . . . 7
⊢ (𝑋:(Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → (𝑋 Fn (Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ∧ Fun ◡𝑋 ∧ ran 𝑋 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))) | 
| 249 | 248 | simp2d 1143 | . . . . . 6
⊢ (𝑋:(Base‘(ℤring
/s (ℤring ~QG (◡𝐽 “
{(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → Fun ◡𝑋) | 
| 250 | 104, 249 | syl 17 | . . . . 5
⊢ (𝜑 → Fun ◡𝑋) | 
| 251 |  | imadomfi 42004 | . . . . 5
⊢ (((𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))) ∈ Fin ∧ Fun ◡𝑋) → (◡𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0)))) | 
| 252 | 246, 250,
251 | syl2anc 584 | . . . 4
⊢ (𝜑 → (◡𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0)))) | 
| 253 |  | hashdomi 14420 | . . . 4
⊢ ((◡𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))) → (♯‘(◡𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))))) | 
| 254 | 252, 253 | syl 17 | . . 3
⊢ (𝜑 → (♯‘(◡𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))))) | 
| 255 | 134, 254 | eqbrtrd 5164 | . 2
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 ×
ℕ0))))) | 
| 256 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 255, 26 | aks6d1c6lem4 42175 | 1
⊢ (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴))))) |