Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6lem5 Structured version   Visualization version   GIF version

Theorem aks6d1c6lem5 42165
Description: Eliminate the size hypothesis. Claim 6. (Contributed by metakunt, 15-May-2025.)
Hypotheses
Ref Expression
aks6d1c6lem5.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c6lem5.2 𝑃 = (chr‘𝐾)
aks6d1c6lem5.3 (𝜑𝐾 ∈ Field)
aks6d1c6lem5.4 (𝜑𝑃 ∈ ℙ)
aks6d1c6lem5.5 (𝜑𝑅 ∈ ℕ)
aks6d1c6lem5.6 (𝜑𝑁 ∈ ℕ)
aks6d1c6lem5.7 (𝜑𝑃𝑁)
aks6d1c6lem5.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c6lem5.9 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks6d1c6lem5.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c6lem5.11 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aksaks6dlem5.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c6lem5.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c6lem5.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c6lem5.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c6lem5.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c6lem5.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c6lem5.18 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c6lem5.19 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
aks6d1c6lem5.20 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
aks6d1c6lem5.22 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}
aks6d1c6lem5.23 𝑋 = (𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ↦ (𝐽𝑏))
Assertion
Ref Expression
aks6d1c6lem5 (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑏   𝐴,𝑔,𝑖,𝑥   𝐴,,𝑗   𝐴,𝑠,𝑡   𝐷,𝑠   𝑒,𝐸,𝑓,𝑦   𝑗,𝐸,𝑦   𝑥,𝐸,𝑦   𝑒,𝐺,𝑓,𝑦   𝑔,𝐺,𝑖,𝑦   ,𝐺   𝑡,𝐺,𝑖,𝑦   𝐻,𝑎   𝑔,𝐻,𝑖,𝑥,𝑦   ,𝐻,𝑗   𝐻,𝑠,𝑡   𝐽,𝑏   𝑦,𝐽   𝐾,𝑎   𝐾,𝑏   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖,𝑥   ,𝐾,𝑗   𝐾,𝑙,𝑥,𝑦   𝑚,𝐾,𝑛   𝑡,𝐾,𝑥   ,𝑀,𝑗   𝑀,𝑙,𝑦   𝑁,𝑎   𝑁,𝑏   𝑒,𝑁,𝑓   𝑗,𝑁   𝑘,𝑁,𝑙,𝑠   𝑥,𝑁,𝑘   𝑃,𝑏   𝑃,𝑒,𝑓   𝑃,𝑗   𝑃,𝑘,𝑙,𝑠   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑅,𝑗   𝑅,𝑙,𝑥   𝑆,𝑎   𝑆,𝑔,𝑖,𝑥,𝑦   𝑆,,𝑗   𝑆,𝑠,𝑡   𝑈,𝑏   𝑈,𝑗   𝑈,𝑙   𝑋,𝑏   𝜑,𝑎   𝜑,𝑏   𝜑,𝑔,𝑖,𝑥,𝑦   𝜑,,𝑗   𝜑,𝑘,𝑙,𝑠   𝑦,𝑘   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑚,𝑛)   𝐴(𝑦,𝑒,𝑓,𝑘,𝑚,𝑛,𝑙)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑎,𝑏,𝑙)   𝑃(𝑦,𝑡,𝑔,,𝑖,𝑚,𝑛,𝑎)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏,𝑙)   𝑅(𝑡,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏)   𝑆(𝑒,𝑓,𝑘,𝑚,𝑛,𝑏,𝑙)   𝑈(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎)   𝐸(𝑡,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐺(𝑥,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐻(𝑒,𝑓,𝑘,𝑚,𝑛,𝑏,𝑙)   𝐽(𝑥,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑙)   𝐾(𝑘,𝑠)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝑀(𝑥,𝑡,𝑒,𝑓,𝑔,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏)   𝑁(𝑦,𝑡,𝑔,,𝑖,𝑚,𝑛)   𝑋(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑙)

Proof of Theorem aks6d1c6lem5
Dummy variables 𝑐 𝑑 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c6lem5.1 . 2 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
2 aks6d1c6lem5.2 . 2 𝑃 = (chr‘𝐾)
3 aks6d1c6lem5.3 . 2 (𝜑𝐾 ∈ Field)
4 aks6d1c6lem5.4 . 2 (𝜑𝑃 ∈ ℙ)
5 aks6d1c6lem5.5 . 2 (𝜑𝑅 ∈ ℕ)
6 aks6d1c6lem5.6 . 2 (𝜑𝑁 ∈ ℕ)
7 aks6d1c6lem5.7 . 2 (𝜑𝑃𝑁)
8 aks6d1c6lem5.8 . 2 (𝜑 → (𝑁 gcd 𝑅) = 1)
9 aks6d1c6lem5.9 . 2 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
10 aks6d1c6lem5.10 . 2 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
11 aks6d1c6lem5.11 . 2 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
12 aksaks6dlem5.12 . 2 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
13 aks6d1c6lem5.13 . 2 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
14 aks6d1c6lem5.14 . 2 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
15 aks6d1c6lem5.15 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
16 aks6d1c6lem5.16 . 2 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
17 aks6d1c6lem5.17 . 2 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
18 aks6d1c6lem5.18 . 2 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
19 aks6d1c6lem5.19 . 2 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
20 aks6d1c6lem5.20 . 2 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
21 eqid 2729 . . . . . . . . . . 11 (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) = (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))
223fldcrngd 20651 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ CRing)
23 eqid 2729 . . . . . . . . . . . . . 14 (mulGrp‘𝐾) = (mulGrp‘𝐾)
2423crngmgp 20150 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
2522, 24syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
26 aks6d1c6lem5.22 . . . . . . . . . . . 12 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}
2725, 5, 26, 20, 16aks6d1c6isolem2 42163 . . . . . . . . . . 11 (𝜑𝐽 ∈ (ℤring GrpHom (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
28 eqid 2729 . . . . . . . . . . 11 (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}) = (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})
29 eqid 2729 . . . . . . . . . . 11 (ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
30 aks6d1c6lem5.23 . . . . . . . . . . 11 𝑋 = (𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ↦ (𝐽𝑏))
31 zringbas 21363 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
32 nfcv 2891 . . . . . . . . . . . 12 𝑐[𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
33 nfcv 2891 . . . . . . . . . . . 12 𝑑[𝑐](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
34 eceq1 8710 . . . . . . . . . . . 12 (𝑑 = 𝑐 → [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = [𝑐](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
3532, 33, 34cbvmpt 5209 . . . . . . . . . . 11 (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (𝑐 ∈ ℤ ↦ [𝑐](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
3621, 27, 28, 29, 30, 31, 35ghmquskerco 19216 . . . . . . . . . 10 (𝜑𝐽 = (𝑋 ∘ (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))
37 eqid 2729 . . . . . . . . . . . . . . . . 17 (RSpan‘ℤring) = (RSpan‘ℤring)
3825, 5, 26, 20, 16, 37aks6d1c6isolem3 42164 . . . . . . . . . . . . . . . 16 (𝜑 → ((RSpan‘ℤring)‘{𝑅}) = (𝐽 “ {(0g‘((mulGrp‘𝐾) ↾s 𝑈))}))
3925, 5, 26primrootsunit 42086 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ∧ ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel))
4039simprd 495 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel)
4140ablgrpd 19716 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp)
4241grpmndd 18878 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Mnd)
43 0zd 12541 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ∈ ℤ)
44 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 = 0) → 𝑤 = 0)
4544fveqeq2d 6866 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 = 0) → ((𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ↔ (𝐽‘0) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))))
4620a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
47 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 = 0) → 𝑗 = 0)
4847oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 = 0) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
4939simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅))
5016, 49eleqtrd 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅))
5140ablcmnd 19718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ CMnd)
525nnnn0d 12503 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑅 ∈ ℕ0)
53 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (.g‘((mulGrp‘𝐾) ↾s 𝑈)) = (.g‘((mulGrp‘𝐾) ↾s 𝑈))
5451, 52, 53isprimroot 42081 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑙))))
5554biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑙))))
5650, 55mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑙)))
5756simp1d 1142 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
58 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Base‘((mulGrp‘𝐾) ↾s 𝑈)) = (Base‘((mulGrp‘𝐾) ↾s 𝑈))
59 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0g‘((mulGrp‘𝐾) ↾s 𝑈)) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))
6058, 59, 53mulg0 19006 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) → (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6157, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6261adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 = 0) → (0(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6348, 62eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 = 0) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
64 fvexd 6873 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ V)
6546, 63, 43, 64fvmptd 6975 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐽‘0) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6643, 45, 65rspcedvd 3590 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∃𝑤 ∈ ℤ (𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
6741adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℤ) → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp)
68 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℤ) → 𝑗 ∈ ℤ)
6957adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℤ) → 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
7058, 53, 67, 68, 69mulgcld 19028 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℤ) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
7170, 20fmptd 7086 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽:ℤ⟶(Base‘((mulGrp‘𝐾) ↾s 𝑈)))
7271ffnd 6689 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 Fn ℤ)
73 fvelrnb 6921 . . . . . . . . . . . . . . . . . . . . 21 (𝐽 Fn ℤ → ((0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ↔ ∃𝑤 ∈ ℤ (𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))))
7472, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ↔ ∃𝑤 ∈ ℤ (𝐽𝑤) = (0g‘((mulGrp‘𝐾) ↾s 𝑈))))
7566, 74mpbird 257 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽)
7671frnd 6696 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
77 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽) = (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)
7877, 58, 59ress0g 18689 . . . . . . . . . . . . . . . . . . 19 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Mnd ∧ (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∈ ran 𝐽 ∧ ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈))) → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) = (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
7942, 75, 76, 78syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0g‘((mulGrp‘𝐾) ↾s 𝑈)) = (0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
8079sneqd 4601 . . . . . . . . . . . . . . . . 17 (𝜑 → {(0g‘((mulGrp‘𝐾) ↾s 𝑈))} = {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})
8180imaeq2d 6031 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽 “ {(0g‘((mulGrp‘𝐾) ↾s 𝑈))}) = (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
8238, 81eqtr2d 2765 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}) = ((RSpan‘ℤring)‘{𝑅}))
8382oveq2d 7403 . . . . . . . . . . . . . 14 (𝜑 → (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))
8483eceq2d 8714 . . . . . . . . . . . . 13 (𝜑 → [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})) = [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))
8584mpteq2dv 5201 . . . . . . . . . . . 12 (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))))
86 eqid 2729 . . . . . . . . . . . . . . 15 (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))
87 eqid 2729 . . . . . . . . . . . . . . 15 (ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅)
8837, 86, 87, 13znzrh2 21455 . . . . . . . . . . . . . 14 (𝑅 ∈ ℕ0𝐿 = (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))))
8952, 88syl 17 . . . . . . . . . . . . 13 (𝜑𝐿 = (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))))
9089eqcomd 2735 . . . . . . . . . . . 12 (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))) = 𝐿)
9185, 90eqtrd 2764 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) = 𝐿)
9291coeq2d 5826 . . . . . . . . . 10 (𝜑 → (𝑋 ∘ (𝑑 ∈ ℤ ↦ [𝑑](ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) = (𝑋𝐿))
9336, 92eqtrd 2764 . . . . . . . . 9 (𝜑𝐽 = (𝑋𝐿))
9493coeq2d 5826 . . . . . . . 8 (𝜑 → (𝑋𝐽) = (𝑋 ∘ (𝑋𝐿)))
95 coass 6238 . . . . . . . . 9 ((𝑋𝑋) ∘ 𝐿) = (𝑋 ∘ (𝑋𝐿))
9695eqcomi 2738 . . . . . . . 8 (𝑋 ∘ (𝑋𝐿)) = ((𝑋𝑋) ∘ 𝐿)
9794, 96eqtrdi 2780 . . . . . . 7 (𝜑 → (𝑋𝐽) = ((𝑋𝑋) ∘ 𝐿))
9877, 58ressbas2 17208 . . . . . . . . . . . . 13 (ran 𝐽 ⊆ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) → ran 𝐽 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
9976, 98syl 17 . . . . . . . . . . . 12 (𝜑 → ran 𝐽 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
10021, 27, 28, 29, 30, 99ghmqusker 19219 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) GrpIso (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
101 eqid 2729 . . . . . . . . . . . 12 (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) = (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))
102 eqid 2729 . . . . . . . . . . . 12 (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))
103101, 102gimf1o 19195 . . . . . . . . . . 11 (𝑋 ∈ ((ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))) GrpIso (((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → 𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
104100, 103syl 17 . . . . . . . . . 10 (𝜑𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)))
105 f1ococnv1 6829 . . . . . . . . . 10 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → (𝑋𝑋) = ( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))))
106104, 105syl 17 . . . . . . . . 9 (𝜑 → (𝑋𝑋) = ( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))))
107106coeq1d 5825 . . . . . . . 8 (𝜑 → ((𝑋𝑋) ∘ 𝐿) = (( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿))
10887zncrng 21454 . . . . . . . . . . . . 13 (𝑅 ∈ ℕ0 → (ℤ/nℤ‘𝑅) ∈ CRing)
10952, 108syl 17 . . . . . . . . . . . 12 (𝜑 → (ℤ/nℤ‘𝑅) ∈ CRing)
110 crngring 20154 . . . . . . . . . . . 12 ((ℤ/nℤ‘𝑅) ∈ CRing → (ℤ/nℤ‘𝑅) ∈ Ring)
11113zrhrhm 21421 . . . . . . . . . . . 12 ((ℤ/nℤ‘𝑅) ∈ Ring → 𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)))
112 eqid 2729 . . . . . . . . . . . . 13 (Base‘(ℤ/nℤ‘𝑅)) = (Base‘(ℤ/nℤ‘𝑅))
11331, 112rhmf 20394 . . . . . . . . . . . 12 (𝐿 ∈ (ℤring RingHom (ℤ/nℤ‘𝑅)) → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
114109, 110, 111, 1134syl 19 . . . . . . . . . . 11 (𝜑𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅)))
115 eqid 2729 . . . . . . . . . . . . . 14 (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))
11637, 115, 87znbas2 21449 . . . . . . . . . . . . 13 (𝑅 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) = (Base‘(ℤ/nℤ‘𝑅)))
11752, 116syl 17 . . . . . . . . . . . 12 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) = (Base‘(ℤ/nℤ‘𝑅)))
118117feq3d 6673 . . . . . . . . . . 11 (𝜑 → (𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) ↔ 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅))))
119114, 118mpbird 257 . . . . . . . . . 10 (𝜑𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))))
12082eqcomd 2735 . . . . . . . . . . . . . 14 (𝜑 → ((RSpan‘ℤring)‘{𝑅}) = (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))
121120oveq2d 7403 . . . . . . . . . . . . 13 (𝜑 → (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})) = (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))
122121oveq2d 7403 . . . . . . . . . . . 12 (𝜑 → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅}))) = (ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))
123122fveq2d 6862 . . . . . . . . . . 11 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) = (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))
124123feq3d 6673 . . . . . . . . . 10 (𝜑 → (𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑅})))) ↔ 𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))))
125119, 124mpbid 232 . . . . . . . . 9 (𝜑𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))))
126 fcoi2 6735 . . . . . . . . 9 (𝐿:ℤ⟶(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) → (( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿) = 𝐿)
127125, 126syl 17 . . . . . . . 8 (𝜑 → (( I ↾ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))) ∘ 𝐿) = 𝐿)
128107, 127eqtrd 2764 . . . . . . 7 (𝜑 → ((𝑋𝑋) ∘ 𝐿) = 𝐿)
12997, 128eqtr2d 2765 . . . . . 6 (𝜑𝐿 = (𝑋𝐽))
130129imaeq1d 6030 . . . . 5 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) = ((𝑋𝐽) “ (𝐸 “ (ℕ0 × ℕ0))))
131 imaco 6224 . . . . . 6 ((𝑋𝐽) “ (𝐸 “ (ℕ0 × ℕ0))) = (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))
132131a1i 11 . . . . 5 (𝜑 → ((𝑋𝐽) “ (𝐸 “ (ℕ0 × ℕ0))) = (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
133130, 132eqtrd 2764 . . . 4 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) = (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
134133fveq2d 6862 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) = (♯‘(𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))))
135 simplll 774 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → 𝜑)
136 simplr 768 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → 𝑢 ∈ ℤ)
137135, 136jca 511 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → (𝜑𝑢 ∈ ℤ))
138 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑧 ∈ (0...(𝑅 − 1)))
139 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑣 = 𝑧) → 𝑣 = 𝑧)
140139fveqeq2d 6866 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑣 = 𝑧) → ((𝐽𝑣) = (𝐽𝑢) ↔ (𝐽𝑧) = (𝐽𝑢)))
14120a1i 11 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
142 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑧) → 𝑗 = 𝑧)
143142oveq1d 7402 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑧) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
144 fzssz 13487 . . . . . . . . . . . . . . . . . . 19 (0...(𝑅 − 1)) ⊆ ℤ
145144, 138sselid 3944 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑧 ∈ ℤ)
146 ovexd 7422 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V)
147141, 143, 145, 146fvmptd 6975 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽𝑧) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
148 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑢) → 𝑗 = 𝑢)
149148oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) ∧ 𝑗 = 𝑢) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
150 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ ℤ) → 𝑢 ∈ ℤ)
151150ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑢 ∈ ℤ)
152 ovexd 7422 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V)
153141, 149, 151, 152fvmptd 6975 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽𝑢) = (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
154 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → 𝑢 = ((𝑦 · 𝑅) + 𝑧))
155154oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
15641ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp)
157 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑦 ∈ ℤ)
1585adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ ℤ) → 𝑅 ∈ ℕ)
159158ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑅 ∈ ℕ)
160159nnzd 12556 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑅 ∈ ℤ)
161157, 160zmulcld 12644 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦 · 𝑅) ∈ ℤ)
162144sseli 3942 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ (0...(𝑅 − 1)) → 𝑧 ∈ ℤ)
163162adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑧 ∈ ℤ)
16457ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
165161, 163, 1643jca 1128 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))))
166 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 (+g‘((mulGrp‘𝐾) ↾s 𝑈)) = (+g‘((mulGrp‘𝐾) ↾s 𝑈))
16758, 53, 166mulgdir 19038 . . . . . . . . . . . . . . . . . . . . . 22 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp ∧ ((𝑦 · 𝑅) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
168156, 165, 167syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
169157, 160, 1643jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈))))
17058, 53mulgass 19043 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp ∧ (𝑦 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
171156, 169, 170syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
17256simp2d 1143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
173172adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ ℤ) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
174173adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
175174adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
176175oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))))
17758, 53, 59mulgz 19034 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((mulGrp‘𝐾) ↾s 𝑈) ∈ Grp ∧ 𝑦 ∈ ℤ) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
178156, 157, 177syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(0g‘((mulGrp‘𝐾) ↾s 𝑈))) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
179176, 178eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑦(.g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
180171, 179eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)))
181180oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = ((0g‘((mulGrp‘𝐾) ↾s 𝑈))(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
18258, 53, 156, 163, 164mulgcld 19028 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
18358, 166, 59, 156, 182grplidd 18901 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → ((0g‘((mulGrp‘𝐾) ↾s 𝑈))(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
184181, 183eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)(+g‘((mulGrp‘𝐾) ↾s 𝑈))(𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
185168, 184eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
186185adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (((𝑦 · 𝑅) + 𝑧)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
187155, 186eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑢(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
188153, 187eqtr2d 2765 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝑧(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (𝐽𝑢))
189147, 188eqtrd 2764 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → (𝐽𝑧) = (𝐽𝑢))
190138, 140, 189rspcedvd 3590 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ℤ) ∧ 𝑦 ∈ ℤ) ∧ 𝑧 ∈ (0...(𝑅 − 1))) ∧ 𝑢 = ((𝑦 · 𝑅) + 𝑧)) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢))
191150, 158remexz 42092 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ ℤ) → ∃𝑦 ∈ ℤ ∃𝑧 ∈ (0...(𝑅 − 1))𝑢 = ((𝑦 · 𝑅) + 𝑧))
192190, 191r19.29vva 3197 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ ℤ) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢))
193137, 192syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢))
194 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → (𝐽𝑢) = 𝑤)
195194eqcomd 2735 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → 𝑤 = (𝐽𝑢))
196195eqeq2d 2740 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → ((𝐽𝑣) = 𝑤 ↔ (𝐽𝑣) = (𝐽𝑢)))
197196rexbidv 3157 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → (∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤 ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = (𝐽𝑢)))
198193, 197mpbird 257 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ (𝐽 “ ℤ)) ∧ 𝑢 ∈ ℤ) ∧ (𝐽𝑢) = 𝑤) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤)
199 ssidd 3970 . . . . . . . . . . . . . . 15 (𝜑 → ℤ ⊆ ℤ)
200 fvelimab 6933 . . . . . . . . . . . . . . 15 ((𝐽 Fn ℤ ∧ ℤ ⊆ ℤ) → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤))
20172, 199, 200syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤))
202201biimpd 229 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) → ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤))
203202imp 406 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → ∃𝑢 ∈ ℤ (𝐽𝑢) = 𝑤)
204198, 203r19.29a 3141 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤)
205144a1i 11 . . . . . . . . . . . . 13 (𝜑 → (0...(𝑅 − 1)) ⊆ ℤ)
206 fvelimab 6933 . . . . . . . . . . . . 13 ((𝐽 Fn ℤ ∧ (0...(𝑅 − 1)) ⊆ ℤ) → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
20772, 205, 206syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
208207adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) ↔ ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
209204, 208mpbird 257 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐽 “ ℤ)) → 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))))
210209ex 412 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐽 “ ℤ) → 𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))))
211210ssrdv 3952 . . . . . . . 8 (𝜑 → (𝐽 “ ℤ) ⊆ (𝐽 “ (0...(𝑅 − 1))))
212207biimpd 229 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤))
213212imp 406 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ∃𝑣 ∈ (0...(𝑅 − 1))(𝐽𝑣) = 𝑤)
214144sseli 3942 . . . . . . . . . . . . . 14 (𝑣 ∈ (0...(𝑅 − 1)) → 𝑣 ∈ ℤ)
215214adantr 480 . . . . . . . . . . . . 13 ((𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽𝑣) = 𝑤) → 𝑣 ∈ ℤ)
216215adantl 481 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) ∧ (𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽𝑣) = 𝑤)) → 𝑣 ∈ ℤ)
217 simprr 772 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) ∧ (𝑣 ∈ (0...(𝑅 − 1)) ∧ (𝐽𝑣) = 𝑤)) → (𝐽𝑣) = 𝑤)
218213, 216, 217reximssdv 3151 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ∃𝑣 ∈ ℤ (𝐽𝑣) = 𝑤)
21972adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → 𝐽 Fn ℤ)
220 ssidd 3970 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → ℤ ⊆ ℤ)
221 fvelimab 6933 . . . . . . . . . . . 12 ((𝐽 Fn ℤ ∧ ℤ ⊆ ℤ) → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑣 ∈ ℤ (𝐽𝑣) = 𝑤))
222219, 220, 221syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → (𝑤 ∈ (𝐽 “ ℤ) ↔ ∃𝑣 ∈ ℤ (𝐽𝑣) = 𝑤))
223218, 222mpbird 257 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐽 “ (0...(𝑅 − 1)))) → 𝑤 ∈ (𝐽 “ ℤ))
224223ex 412 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐽 “ (0...(𝑅 − 1))) → 𝑤 ∈ (𝐽 “ ℤ)))
225224ssrdv 3952 . . . . . . . 8 (𝜑 → (𝐽 “ (0...(𝑅 − 1))) ⊆ (𝐽 “ ℤ))
226211, 225eqssd 3964 . . . . . . 7 (𝜑 → (𝐽 “ ℤ) = (𝐽 “ (0...(𝑅 − 1))))
22772fnfund 6619 . . . . . . . 8 (𝜑 → Fun 𝐽)
228 fzfid 13938 . . . . . . . 8 (𝜑 → (0...(𝑅 − 1)) ∈ Fin)
229 imafi 9264 . . . . . . . 8 ((Fun 𝐽 ∧ (0...(𝑅 − 1)) ∈ Fin) → (𝐽 “ (0...(𝑅 − 1))) ∈ Fin)
230227, 228, 229syl2anc 584 . . . . . . 7 (𝜑 → (𝐽 “ (0...(𝑅 − 1))) ∈ Fin)
231226, 230eqeltrd 2828 . . . . . 6 (𝜑 → (𝐽 “ ℤ) ∈ Fin)
2326, 4, 7, 12aks6d1c2p1 42106 . . . . . . . . . . 11 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
233 nnssz 12551 . . . . . . . . . . . 12 ℕ ⊆ ℤ
234233a1i 11 . . . . . . . . . . 11 (𝜑 → ℕ ⊆ ℤ)
235232, 234jca 511 . . . . . . . . . 10 (𝜑 → (𝐸:(ℕ0 × ℕ0)⟶ℕ ∧ ℕ ⊆ ℤ))
236 fss 6704 . . . . . . . . . 10 ((𝐸:(ℕ0 × ℕ0)⟶ℕ ∧ ℕ ⊆ ℤ) → 𝐸:(ℕ0 × ℕ0)⟶ℤ)
237235, 236syl 17 . . . . . . . . 9 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℤ)
238237frnd 6696 . . . . . . . 8 (𝜑 → ran 𝐸 ⊆ ℤ)
239232ffnd 6689 . . . . . . . . . 10 (𝜑𝐸 Fn (ℕ0 × ℕ0))
240 fnima 6648 . . . . . . . . . 10 (𝐸 Fn (ℕ0 × ℕ0) → (𝐸 “ (ℕ0 × ℕ0)) = ran 𝐸)
241239, 240syl 17 . . . . . . . . 9 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) = ran 𝐸)
242241sseq1d 3978 . . . . . . . 8 (𝜑 → ((𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ ↔ ran 𝐸 ⊆ ℤ))
243238, 242mpbird 257 . . . . . . 7 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ)
244 imass2 6073 . . . . . . 7 ((𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (𝐽 “ ℤ))
245243, 244syl 17 . . . . . 6 (𝜑 → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ⊆ (𝐽 “ ℤ))
246231, 245ssfid 9212 . . . . 5 (𝜑 → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ Fin)
247 dff1o2 6805 . . . . . . . 8 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) ↔ (𝑋 Fn (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ∧ Fun 𝑋 ∧ ran 𝑋 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))))
248247biimpi 216 . . . . . . 7 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → (𝑋 Fn (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ∧ Fun 𝑋 ∧ ran 𝑋 = (Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))))
249248simp2d 1143 . . . . . 6 (𝑋:(Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))}))))–1-1-onto→(Base‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽)) → Fun 𝑋)
250104, 249syl 17 . . . . 5 (𝜑 → Fun 𝑋)
251 imadomfi 41990 . . . . 5 (((𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ Fin ∧ Fun 𝑋) → (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))
252246, 250, 251syl2anc 584 . . . 4 (𝜑 → (𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))
253 hashdomi 14345 . . . 4 ((𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) ≼ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) → (♯‘(𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
254252, 253syl 17 . . 3 (𝜑 → (♯‘(𝑋 “ (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
255134, 254eqbrtrd 5129 . 2 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
2561, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 255, 26aks6d1c6lem4 42161 1 (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  {csn 4589   cuni 4871   class class class wbr 5107  {copab 5169  cmpt 5188   I cid 5532   × cxp 5636  ccnv 5637  ran crn 5639  cres 5640  cima 5641  ccom 5642  Fun wfun 6505   Fn wfn 6506  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cmpo 7389  [cec 8669  m cmap 8799  cdom 8916  Fincfn 8918  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  ...cfz 13468  cfl 13752  cexp 14026  Ccbc 14267  chash 14295  csqrt 15199  Σcsu 15652  cdvds 16222   gcd cgcd 16464  cprime 16641  ϕcphi 16734  Basecbs 17179  s cress 17200  +gcplusg 17220  0gc0g 17402   Σg cgsu 17403   /s cqus 17468  Mndcmnd 18661  Grpcgrp 18865  .gcmg 18999   ~QG cqg 19054   GrpIso cgim 19189  CMndccmn 19710  Abelcabl 19711  mulGrpcmgp 20049  Ringcrg 20142  CRingccrg 20143   RingHom crh 20378   RingIso crs 20379  Fieldcfield 20639  RSpancrsp 21117  ringczring 21356  ℤRHomczrh 21409  chrcchr 21411  ℤ/nczn 21412  algSccascl 21761  var1cv1 22060  Poly1cpl1 22061  eval1ce1 22201   logb clogb 26674   PrimRoots cprimroots 42079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-phi 16736  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-pws 17412  df-xrs 17465  df-qtop 17470  df-imas 17471  df-qus 17472  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-gim 19191  df-cntz 19249  df-od 19458  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-rim 20382  df-nzr 20422  df-subrng 20455  df-subrg 20479  df-rlreg 20603  df-domn 20604  df-idom 20605  df-drng 20640  df-field 20641  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-chr 21415  df-zn 21416  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-evl1 22203  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-mdeg 25960  df-deg1 25961  df-mon1 26036  df-uc1p 26037  df-q1p 26038  df-r1p 26039  df-log 26465  df-logb 26675  df-primroots 42080
This theorem is referenced by:  aks6d1c7lem2  42169
  Copyright terms: Public domain W3C validator