| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnggrp | Structured version Visualization version GIF version | ||
| Description: A non-unital ring is a (additive) group. (Contributed by AV, 16-Feb-2025.) |
| Ref | Expression |
|---|---|
| rnggrp | ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngabl 20075 | . 2 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 2 | 1 | ablgrpd 19700 | 1 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Grpcgrp 18848 Rngcrng 20072 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-abl 19697 df-rng 20073 |
| This theorem is referenced by: rngacl 20082 rng0cl 20083 rngrz 20086 rngmneg1 20087 rngmneg2 20088 rngm2neg 20089 rngsubdi 20091 rngsubdir 20092 prdsrngd 20096 subrngsubg 20469 cntzsubrng 20484 rnglidlmcl 21155 rnglidl0 21168 rnglidl1 21171 2idlcpblrng 21210 rngqiprngimfolem 21229 rngqiprngimf1lem 21233 rngqiprngghm 21238 rngqiprngimf1 21239 rngqiprngimfo 21240 rngqiprngfulem3 21252 rngqiprngfulem4 21253 rngqiprngfulem5 21254 pzriprnglem4 21423 pzriprnglem10 21429 |
| Copyright terms: Public domain | W3C validator |