![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnggrp | Structured version Visualization version GIF version |
Description: A non-unital ring is a (additive) group. (Contributed by AV, 16-Feb-2025.) |
Ref | Expression |
---|---|
rnggrp | ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngabl 20173 | . 2 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
2 | 1 | ablgrpd 19819 | 1 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Grpcgrp 18964 Rngcrng 20170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-abl 19816 df-rng 20171 |
This theorem is referenced by: rngacl 20180 rng0cl 20181 rngrz 20184 rngmneg1 20185 rngmneg2 20186 rngm2neg 20187 rngsubdi 20189 rngsubdir 20190 prdsrngd 20194 subrngsubg 20569 cntzsubrng 20584 rnglidlmcl 21244 rnglidl0 21257 rnglidl1 21260 2idlcpblrng 21299 rngqiprngimfolem 21318 rngqiprngimf1lem 21322 rngqiprngghm 21327 rngqiprngimf1 21328 rngqiprngimfo 21329 rngqiprngfulem3 21341 rngqiprngfulem4 21342 rngqiprngfulem5 21343 pzriprnglem4 21513 pzriprnglem10 21519 |
Copyright terms: Public domain | W3C validator |