| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnggrp | Structured version Visualization version GIF version | ||
| Description: A non-unital ring is a (additive) group. (Contributed by AV, 16-Feb-2025.) |
| Ref | Expression |
|---|---|
| rnggrp | ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngabl 20064 | . 2 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 2 | 1 | ablgrpd 19716 | 1 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18865 Rngcrng 20061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-abl 19713 df-rng 20062 |
| This theorem is referenced by: rngacl 20071 rng0cl 20072 rngrz 20075 rngmneg1 20076 rngmneg2 20077 rngm2neg 20078 rngsubdi 20080 rngsubdir 20081 prdsrngd 20085 subrngsubg 20461 cntzsubrng 20476 rnglidlmcl 21126 rnglidl0 21139 rnglidl1 21142 2idlcpblrng 21181 rngqiprngimfolem 21200 rngqiprngimf1lem 21204 rngqiprngghm 21209 rngqiprngimf1 21210 rngqiprngimfo 21211 rngqiprngfulem3 21223 rngqiprngfulem4 21224 rngqiprngfulem5 21225 pzriprnglem4 21394 pzriprnglem10 21400 |
| Copyright terms: Public domain | W3C validator |