| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnggrp | Structured version Visualization version GIF version | ||
| Description: A non-unital ring is a (additive) group. (Contributed by AV, 16-Feb-2025.) |
| Ref | Expression |
|---|---|
| rnggrp | ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngabl 20071 | . 2 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 2 | 1 | ablgrpd 19723 | 1 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18872 Rngcrng 20068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-abl 19720 df-rng 20069 |
| This theorem is referenced by: rngacl 20078 rng0cl 20079 rngrz 20082 rngmneg1 20083 rngmneg2 20084 rngm2neg 20085 rngsubdi 20087 rngsubdir 20088 prdsrngd 20092 subrngsubg 20468 cntzsubrng 20483 rnglidlmcl 21133 rnglidl0 21146 rnglidl1 21149 2idlcpblrng 21188 rngqiprngimfolem 21207 rngqiprngimf1lem 21211 rngqiprngghm 21216 rngqiprngimf1 21217 rngqiprngimfo 21218 rngqiprngfulem3 21230 rngqiprngfulem4 21231 rngqiprngfulem5 21232 pzriprnglem4 21401 pzriprnglem10 21407 |
| Copyright terms: Public domain | W3C validator |