| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnggrp | Structured version Visualization version GIF version | ||
| Description: A non-unital ring is a (additive) group. (Contributed by AV, 16-Feb-2025.) |
| Ref | Expression |
|---|---|
| rnggrp | ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngabl 20058 | . 2 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 2 | 1 | ablgrpd 19683 | 1 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18830 Rngcrng 20055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-abl 19680 df-rng 20056 |
| This theorem is referenced by: rngacl 20065 rng0cl 20066 rngrz 20069 rngmneg1 20070 rngmneg2 20071 rngm2neg 20072 rngsubdi 20074 rngsubdir 20075 prdsrngd 20079 subrngsubg 20455 cntzsubrng 20470 rnglidlmcl 21141 rnglidl0 21154 rnglidl1 21157 2idlcpblrng 21196 rngqiprngimfolem 21215 rngqiprngimf1lem 21219 rngqiprngghm 21224 rngqiprngimf1 21225 rngqiprngimfo 21226 rngqiprngfulem3 21238 rngqiprngfulem4 21239 rngqiprngfulem5 21240 pzriprnglem4 21409 pzriprnglem10 21415 |
| Copyright terms: Public domain | W3C validator |