| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnggrp | Structured version Visualization version GIF version | ||
| Description: A non-unital ring is a (additive) group. (Contributed by AV, 16-Feb-2025.) |
| Ref | Expression |
|---|---|
| rnggrp | ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngabl 20071 | . 2 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 2 | 1 | ablgrpd 19696 | 1 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Grpcgrp 18843 Rngcrng 20068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-abl 19693 df-rng 20069 |
| This theorem is referenced by: rngacl 20078 rng0cl 20079 rngrz 20082 rngmneg1 20083 rngmneg2 20084 rngm2neg 20085 rngsubdi 20087 rngsubdir 20088 prdsrngd 20092 subrngsubg 20465 cntzsubrng 20480 rnglidlmcl 21151 rnglidl0 21164 rnglidl1 21167 2idlcpblrng 21206 rngqiprngimfolem 21225 rngqiprngimf1lem 21229 rngqiprngghm 21234 rngqiprngimf1 21235 rngqiprngimfo 21236 rngqiprngfulem3 21248 rngqiprngfulem4 21249 rngqiprngfulem5 21250 pzriprnglem4 21419 pzriprnglem10 21425 |
| Copyright terms: Public domain | W3C validator |