![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnggrp | Structured version Visualization version GIF version |
Description: A non-unital ring is a (additive) group. (Contributed by AV, 16-Feb-2025.) |
Ref | Expression |
---|---|
rnggrp | ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngabl 20182 | . 2 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
2 | 1 | ablgrpd 19828 | 1 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Grpcgrp 18973 Rngcrng 20179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-abl 19825 df-rng 20180 |
This theorem is referenced by: rngacl 20189 rng0cl 20190 rngrz 20193 rngmneg1 20194 rngmneg2 20195 rngm2neg 20196 rngsubdi 20198 rngsubdir 20199 prdsrngd 20203 subrngsubg 20578 cntzsubrng 20593 rnglidlmcl 21249 rnglidl0 21262 rnglidl1 21265 2idlcpblrng 21304 rngqiprngimfolem 21323 rngqiprngimf1lem 21327 rngqiprngghm 21332 rngqiprngimf1 21333 rngqiprngimfo 21334 rngqiprngfulem3 21346 rngqiprngfulem4 21347 rngqiprngfulem5 21348 pzriprnglem4 21518 pzriprnglem10 21524 |
Copyright terms: Public domain | W3C validator |