| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnggrp | Structured version Visualization version GIF version | ||
| Description: A non-unital ring is a (additive) group. (Contributed by AV, 16-Feb-2025.) |
| Ref | Expression |
|---|---|
| rnggrp | ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngabl 20120 | . 2 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 2 | 1 | ablgrpd 19772 | 1 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18921 Rngcrng 20117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-abl 19769 df-rng 20118 |
| This theorem is referenced by: rngacl 20127 rng0cl 20128 rngrz 20131 rngmneg1 20132 rngmneg2 20133 rngm2neg 20134 rngsubdi 20136 rngsubdir 20137 prdsrngd 20141 subrngsubg 20517 cntzsubrng 20532 rnglidlmcl 21182 rnglidl0 21195 rnglidl1 21198 2idlcpblrng 21237 rngqiprngimfolem 21256 rngqiprngimf1lem 21260 rngqiprngghm 21265 rngqiprngimf1 21266 rngqiprngimfo 21267 rngqiprngfulem3 21279 rngqiprngfulem4 21280 rngqiprngfulem5 21281 pzriprnglem4 21450 pzriprnglem10 21456 |
| Copyright terms: Public domain | W3C validator |