| Step | Hyp | Ref
| Expression |
| 1 | | zringbas 21464 |
. 2
⊢ ℤ =
(Base‘ℤring) |
| 2 | | eqid 2737 |
. 2
⊢
(Base‘((𝑅
↾s 𝑈)
↾s ran 𝐹))
= (Base‘((𝑅
↾s 𝑈)
↾s ran 𝐹)) |
| 3 | | zringplusg 21465 |
. 2
⊢ + =
(+g‘ℤring) |
| 4 | | aks6d1c6isolem1.4 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 5 | | zex 12622 |
. . . . . 6
⊢ ℤ
∈ V |
| 6 | 5 | mptex 7243 |
. . . . 5
⊢ (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) ∈ V |
| 7 | 4, 6 | eqeltri 2837 |
. . . 4
⊢ 𝐹 ∈ V |
| 8 | 7 | rnex 7932 |
. . 3
⊢ ran 𝐹 ∈ V |
| 9 | | eqid 2737 |
. . . 4
⊢ ((𝑅 ↾s 𝑈) ↾s ran 𝐹) = ((𝑅 ↾s 𝑈) ↾s ran 𝐹) |
| 10 | | eqid 2737 |
. . . 4
⊢
(+g‘(𝑅 ↾s 𝑈)) = (+g‘(𝑅 ↾s 𝑈)) |
| 11 | 9, 10 | ressplusg 17334 |
. . 3
⊢ (ran
𝐹 ∈ V →
(+g‘(𝑅
↾s 𝑈)) =
(+g‘((𝑅
↾s 𝑈)
↾s ran 𝐹))) |
| 12 | 8, 11 | ax-mp 5 |
. 2
⊢
(+g‘(𝑅 ↾s 𝑈)) = (+g‘((𝑅 ↾s 𝑈) ↾s ran 𝐹)) |
| 13 | | zringring 21460 |
. . . 4
⊢
ℤring ∈ Ring |
| 14 | 13 | a1i 11 |
. . 3
⊢ (𝜑 → ℤring
∈ Ring) |
| 15 | | ringgrp 20235 |
. . 3
⊢
(ℤring ∈ Ring → ℤring ∈
Grp) |
| 16 | 14, 15 | syl 17 |
. 2
⊢ (𝜑 → ℤring
∈ Grp) |
| 17 | | aks6d1c6isolem1.1 |
. . 3
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 18 | | aks6d1c6isolem1.2 |
. . 3
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 19 | | aks6d1c6isolem1.3 |
. . 3
⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} |
| 20 | | aks6d1c6isolem1.5 |
. . 3
⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
| 21 | 17, 18, 19, 4, 20 | aks6d1c6isolem1 42175 |
. 2
⊢ (𝜑 → ((𝑅 ↾s 𝑈) ↾s ran 𝐹) ∈ Grp) |
| 22 | | ovexd 7466 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
| 23 | 22, 4 | fmptd 7134 |
. . . . 5
⊢ (𝜑 → 𝐹:ℤ⟶V) |
| 24 | | ffn 6736 |
. . . . 5
⊢ (𝐹:ℤ⟶V → 𝐹 Fn ℤ) |
| 25 | 23, 24 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹 Fn ℤ) |
| 26 | | dffn3 6748 |
. . . 4
⊢ (𝐹 Fn ℤ ↔ 𝐹:ℤ⟶ran 𝐹) |
| 27 | 25, 26 | sylib 218 |
. . 3
⊢ (𝜑 → 𝐹:ℤ⟶ran 𝐹) |
| 28 | | fvelrnb 6969 |
. . . . . . . . . . 11
⊢ (𝐹 Fn ℤ → (𝑤 ∈ ran 𝐹 ↔ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤)) |
| 29 | 25, 28 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤)) |
| 30 | 29 | biimpd 229 |
. . . . . . . . 9
⊢ (𝜑 → (𝑤 ∈ ran 𝐹 → ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤)) |
| 31 | 30 | imp 406 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ ran 𝐹) → ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) |
| 32 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑧) = 𝑤) |
| 33 | 32 | eqcomd 2743 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹‘𝑧) = 𝑤) → 𝑤 = (𝐹‘𝑧)) |
| 34 | | simplll 775 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹‘𝑧) = 𝑤) → 𝜑) |
| 35 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹‘𝑧) = 𝑤) → 𝑧 ∈ ℤ) |
| 36 | 34, 35 | jca 511 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹‘𝑧) = 𝑤) → (𝜑 ∧ 𝑧 ∈ ℤ)) |
| 37 | 4 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 38 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) |
| 39 | 38 | oveq1d 7446 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 40 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ) |
| 41 | | ovexd 7466 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
| 42 | 37, 39, 40, 41 | fvmptd 7023 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝐹‘𝑧) = (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 43 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘(𝑅
↾s 𝑈)) =
(Base‘(𝑅
↾s 𝑈)) |
| 44 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢
(.g‘(𝑅 ↾s 𝑈)) = (.g‘(𝑅 ↾s 𝑈)) |
| 45 | 17, 18, 19 | primrootsunit 42099 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ∧ (𝑅 ↾s 𝑈) ∈ Abel)) |
| 46 | 45 | simprd 495 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Abel) |
| 47 | 46 | ablgrpd 19804 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Grp) |
| 48 | 47 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝑅 ↾s 𝑈) ∈ Grp) |
| 49 | 45 | simpld 494 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
| 50 | 20, 49 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
| 51 | 46 | ablcmnd 19806 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ CMnd) |
| 52 | 18 | nnnn0d 12587 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 53 | 51, 52, 44 | isprimroot 42094 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
| 54 | 53 | biimpd 229 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
| 55 | 50, 54 | mpd 15 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙))) |
| 56 | 55 | simp1d 1143 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
| 57 | 56 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
| 58 | 43, 44, 48, 40, 57 | mulgcld 19114 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ (Base‘(𝑅 ↾s 𝑈))) |
| 59 | 42, 58 | eqeltrd 2841 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝐹‘𝑧) ∈ (Base‘(𝑅 ↾s 𝑈))) |
| 60 | 36, 59 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑧) ∈ (Base‘(𝑅 ↾s 𝑈))) |
| 61 | 33, 60 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹‘𝑧) = 𝑤) → 𝑤 ∈ (Base‘(𝑅 ↾s 𝑈))) |
| 62 | | nfv 1914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑧(𝐹‘𝑣) = 𝑤 |
| 63 | | nfv 1914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑣(𝐹‘𝑧) = 𝑤 |
| 64 | | fveqeq2 6915 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑧 → ((𝐹‘𝑣) = 𝑤 ↔ (𝐹‘𝑧) = 𝑤)) |
| 65 | 62, 63, 64 | cbvrexw 3307 |
. . . . . . . . . . . . . 14
⊢
(∃𝑣 ∈
ℤ (𝐹‘𝑣) = 𝑤 ↔ ∃𝑧 ∈ ℤ (𝐹‘𝑧) = 𝑤) |
| 66 | 65 | biimpi 216 |
. . . . . . . . . . . . 13
⊢
(∃𝑣 ∈
ℤ (𝐹‘𝑣) = 𝑤 → ∃𝑧 ∈ ℤ (𝐹‘𝑧) = 𝑤) |
| 67 | 66 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) → ∃𝑧 ∈ ℤ (𝐹‘𝑧) = 𝑤) |
| 68 | 61, 67 | r19.29a 3162 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) → 𝑤 ∈ (Base‘(𝑅 ↾s 𝑈))) |
| 69 | 68 | ex 412 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤 → 𝑤 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
| 70 | 69 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ ran 𝐹) → (∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤 → 𝑤 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
| 71 | 70 | imp 406 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐹) ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) → 𝑤 ∈ (Base‘(𝑅 ↾s 𝑈))) |
| 72 | 31, 71 | mpdan 687 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ran 𝐹) → 𝑤 ∈ (Base‘(𝑅 ↾s 𝑈))) |
| 73 | 72 | ex 412 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ ran 𝐹 → 𝑤 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
| 74 | 73 | ssrdv 3989 |
. . . . 5
⊢ (𝜑 → ran 𝐹 ⊆ (Base‘(𝑅 ↾s 𝑈))) |
| 75 | 9, 43 | ressbas2 17283 |
. . . . 5
⊢ (ran
𝐹 ⊆
(Base‘(𝑅
↾s 𝑈))
→ ran 𝐹 =
(Base‘((𝑅
↾s 𝑈)
↾s ran 𝐹))) |
| 76 | 74, 75 | syl 17 |
. . . 4
⊢ (𝜑 → ran 𝐹 = (Base‘((𝑅 ↾s 𝑈) ↾s ran 𝐹))) |
| 77 | 76 | feq3d 6723 |
. . 3
⊢ (𝜑 → (𝐹:ℤ⟶ran 𝐹 ↔ 𝐹:ℤ⟶(Base‘((𝑅 ↾s 𝑈) ↾s ran 𝐹)))) |
| 78 | 27, 77 | mpbid 232 |
. 2
⊢ (𝜑 → 𝐹:ℤ⟶(Base‘((𝑅 ↾s 𝑈) ↾s ran 𝐹))) |
| 79 | 4 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 80 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = (𝑦 + 𝑧)) → 𝑥 = (𝑦 + 𝑧)) |
| 81 | 80 | oveq1d 7446 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = (𝑦 + 𝑧)) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝑦 + 𝑧)(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 82 | | simprl 771 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝑦 ∈ ℤ) |
| 83 | | simprr 773 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝑧 ∈ ℤ) |
| 84 | 82, 83 | zaddcld 12726 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 + 𝑧) ∈ ℤ) |
| 85 | | ovexd 7466 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 + 𝑧)(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
| 86 | 79, 81, 84, 85 | fvmptd 7023 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹‘(𝑦 + 𝑧)) = ((𝑦 + 𝑧)(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 87 | 47 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑅 ↾s 𝑈) ∈ Grp) |
| 88 | 56 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
| 89 | 82, 83, 88 | 3jca 1129 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
| 90 | 43, 44, 10 | mulgdir 19124 |
. . . . 5
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) → ((𝑦 + 𝑧)(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑧(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 91 | 87, 89, 90 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 + 𝑧)(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑧(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 92 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) |
| 93 | 92 | oveq1d 7446 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑦) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 94 | | ovexd 7466 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
| 95 | 79, 93, 82, 94 | fvmptd 7023 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹‘𝑦) = (𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 96 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) |
| 97 | 96 | oveq1d 7446 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 98 | | ovexd 7466 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
| 99 | 79, 97, 83, 98 | fvmptd 7023 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹‘𝑧) = (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 100 | 95, 99 | oveq12d 7449 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹‘𝑦)(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑧)) = ((𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑧(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 101 | 100 | eqcomd 2743 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) = ((𝐹‘𝑦)(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑧))) |
| 102 | 91, 101 | eqtrd 2777 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 + 𝑧)(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝐹‘𝑦)(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑧))) |
| 103 | 86, 102 | eqtrd 2777 |
. 2
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦)(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑧))) |
| 104 | 1, 2, 3, 12, 16, 21, 78, 103 | isghmd 19243 |
1
⊢ (𝜑 → 𝐹 ∈ (ℤring GrpHom
((𝑅 ↾s
𝑈) ↾s ran
𝐹))) |