Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6isolem2 Structured version   Visualization version   GIF version

Theorem aks6d1c6isolem2 42163
Description: Lemma to construct the group homomorphism for the AKS Theorem. (Contributed by metakunt, 14-May-2025.)
Hypotheses
Ref Expression
aks6d1c6isolem1.1 (𝜑𝑅 ∈ CMnd)
aks6d1c6isolem1.2 (𝜑𝐾 ∈ ℕ)
aks6d1c6isolem1.3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
aks6d1c6isolem1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
aks6d1c6isolem1.5 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
Assertion
Ref Expression
aks6d1c6isolem2 (𝜑𝐹 ∈ (ℤring GrpHom ((𝑅s 𝑈) ↾s ran 𝐹)))
Distinct variable groups:   𝑥,𝑀   𝑅,𝑎,𝑖   𝑥,𝑅   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎)   𝑈(𝑖,𝑎)   𝐹(𝑥,𝑖,𝑎)   𝐾(𝑥,𝑖,𝑎)   𝑀(𝑖,𝑎)

Proof of Theorem aks6d1c6isolem2
Dummy variables 𝑣 𝑤 𝑧 𝑦 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 21363 . 2 ℤ = (Base‘ℤring)
2 eqid 2729 . 2 (Base‘((𝑅s 𝑈) ↾s ran 𝐹)) = (Base‘((𝑅s 𝑈) ↾s ran 𝐹))
3 zringplusg 21364 . 2 + = (+g‘ℤring)
4 aks6d1c6isolem1.4 . . . . 5 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
5 zex 12538 . . . . . 6 ℤ ∈ V
65mptex 7197 . . . . 5 (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)) ∈ V
74, 6eqeltri 2824 . . . 4 𝐹 ∈ V
87rnex 7886 . . 3 ran 𝐹 ∈ V
9 eqid 2729 . . . 4 ((𝑅s 𝑈) ↾s ran 𝐹) = ((𝑅s 𝑈) ↾s ran 𝐹)
10 eqid 2729 . . . 4 (+g‘(𝑅s 𝑈)) = (+g‘(𝑅s 𝑈))
119, 10ressplusg 17254 . . 3 (ran 𝐹 ∈ V → (+g‘(𝑅s 𝑈)) = (+g‘((𝑅s 𝑈) ↾s ran 𝐹)))
128, 11ax-mp 5 . 2 (+g‘(𝑅s 𝑈)) = (+g‘((𝑅s 𝑈) ↾s ran 𝐹))
13 zringring 21359 . . . 4 ring ∈ Ring
1413a1i 11 . . 3 (𝜑 → ℤring ∈ Ring)
15 ringgrp 20147 . . 3 (ℤring ∈ Ring → ℤring ∈ Grp)
1614, 15syl 17 . 2 (𝜑 → ℤring ∈ Grp)
17 aks6d1c6isolem1.1 . . 3 (𝜑𝑅 ∈ CMnd)
18 aks6d1c6isolem1.2 . . 3 (𝜑𝐾 ∈ ℕ)
19 aks6d1c6isolem1.3 . . 3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
20 aks6d1c6isolem1.5 . . 3 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
2117, 18, 19, 4, 20aks6d1c6isolem1 42162 . 2 (𝜑 → ((𝑅s 𝑈) ↾s ran 𝐹) ∈ Grp)
22 ovexd 7422 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅s 𝑈))𝑀) ∈ V)
2322, 4fmptd 7086 . . . . 5 (𝜑𝐹:ℤ⟶V)
24 ffn 6688 . . . . 5 (𝐹:ℤ⟶V → 𝐹 Fn ℤ)
2523, 24syl 17 . . . 4 (𝜑𝐹 Fn ℤ)
26 dffn3 6700 . . . 4 (𝐹 Fn ℤ ↔ 𝐹:ℤ⟶ran 𝐹)
2725, 26sylib 218 . . 3 (𝜑𝐹:ℤ⟶ran 𝐹)
28 fvelrnb 6921 . . . . . . . . . . 11 (𝐹 Fn ℤ → (𝑤 ∈ ran 𝐹 ↔ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤))
2925, 28syl 17 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤))
3029biimpd 229 . . . . . . . . 9 (𝜑 → (𝑤 ∈ ran 𝐹 → ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤))
3130imp 406 . . . . . . . 8 ((𝜑𝑤 ∈ ran 𝐹) → ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤)
32 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑧) = 𝑤)
3332eqcomd 2735 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → 𝑤 = (𝐹𝑧))
34 simplll 774 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → 𝜑)
35 simplr 768 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → 𝑧 ∈ ℤ)
3634, 35jca 511 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → (𝜑𝑧 ∈ ℤ))
374a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
38 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
3938oveq1d 7402 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
40 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
41 ovexd 7422 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅s 𝑈))𝑀) ∈ V)
4237, 39, 40, 41fvmptd 6975 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℤ) → (𝐹𝑧) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
43 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘(𝑅s 𝑈)) = (Base‘(𝑅s 𝑈))
44 eqid 2729 . . . . . . . . . . . . . . . 16 (.g‘(𝑅s 𝑈)) = (.g‘(𝑅s 𝑈))
4517, 18, 19primrootsunit 42086 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾) ∧ (𝑅s 𝑈) ∈ Abel))
4645simprd 495 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑅s 𝑈) ∈ Abel)
4746ablgrpd 19716 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅s 𝑈) ∈ Grp)
4847adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → (𝑅s 𝑈) ∈ Grp)
4945simpld 494 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾))
5020, 49eleqtrd 2830 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾))
5146ablcmnd 19718 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑅s 𝑈) ∈ CMnd)
5218nnnn0d 12503 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ ℕ0)
5351, 52, 44isprimroot 42081 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
5453biimpd 229 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) → (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
5550, 54mpd 15 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙)))
5655simp1d 1142 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ (Base‘(𝑅s 𝑈)))
5756adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
5843, 44, 48, 40, 57mulgcld 19028 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅s 𝑈))𝑀) ∈ (Base‘(𝑅s 𝑈)))
5942, 58eqeltrd 2828 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℤ) → (𝐹𝑧) ∈ (Base‘(𝑅s 𝑈)))
6036, 59syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑧) ∈ (Base‘(𝑅s 𝑈)))
6133, 60eqeltrd 2828 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → 𝑤 ∈ (Base‘(𝑅s 𝑈)))
62 nfv 1914 . . . . . . . . . . . . . . 15 𝑧(𝐹𝑣) = 𝑤
63 nfv 1914 . . . . . . . . . . . . . . 15 𝑣(𝐹𝑧) = 𝑤
64 fveqeq2 6867 . . . . . . . . . . . . . . 15 (𝑣 = 𝑧 → ((𝐹𝑣) = 𝑤 ↔ (𝐹𝑧) = 𝑤))
6562, 63, 64cbvrexw 3281 . . . . . . . . . . . . . 14 (∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤 ↔ ∃𝑧 ∈ ℤ (𝐹𝑧) = 𝑤)
6665biimpi 216 . . . . . . . . . . . . 13 (∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤 → ∃𝑧 ∈ ℤ (𝐹𝑧) = 𝑤)
6766adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) → ∃𝑧 ∈ ℤ (𝐹𝑧) = 𝑤)
6861, 67r19.29a 3141 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) → 𝑤 ∈ (Base‘(𝑅s 𝑈)))
6968ex 412 . . . . . . . . . 10 (𝜑 → (∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤𝑤 ∈ (Base‘(𝑅s 𝑈))))
7069adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ ran 𝐹) → (∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤𝑤 ∈ (Base‘(𝑅s 𝑈))))
7170imp 406 . . . . . . . 8 (((𝜑𝑤 ∈ ran 𝐹) ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) → 𝑤 ∈ (Base‘(𝑅s 𝑈)))
7231, 71mpdan 687 . . . . . . 7 ((𝜑𝑤 ∈ ran 𝐹) → 𝑤 ∈ (Base‘(𝑅s 𝑈)))
7372ex 412 . . . . . 6 (𝜑 → (𝑤 ∈ ran 𝐹𝑤 ∈ (Base‘(𝑅s 𝑈))))
7473ssrdv 3952 . . . . 5 (𝜑 → ran 𝐹 ⊆ (Base‘(𝑅s 𝑈)))
759, 43ressbas2 17208 . . . . 5 (ran 𝐹 ⊆ (Base‘(𝑅s 𝑈)) → ran 𝐹 = (Base‘((𝑅s 𝑈) ↾s ran 𝐹)))
7674, 75syl 17 . . . 4 (𝜑 → ran 𝐹 = (Base‘((𝑅s 𝑈) ↾s ran 𝐹)))
7776feq3d 6673 . . 3 (𝜑 → (𝐹:ℤ⟶ran 𝐹𝐹:ℤ⟶(Base‘((𝑅s 𝑈) ↾s ran 𝐹))))
7827, 77mpbid 232 . 2 (𝜑𝐹:ℤ⟶(Base‘((𝑅s 𝑈) ↾s ran 𝐹)))
794a1i 11 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
80 simpr 484 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = (𝑦 + 𝑧)) → 𝑥 = (𝑦 + 𝑧))
8180oveq1d 7402 . . . 4 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = (𝑦 + 𝑧)) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀))
82 simprl 770 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝑦 ∈ ℤ)
83 simprr 772 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝑧 ∈ ℤ)
8482, 83zaddcld 12642 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 + 𝑧) ∈ ℤ)
85 ovexd 7422 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀) ∈ V)
8679, 81, 84, 85fvmptd 6975 . . 3 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹‘(𝑦 + 𝑧)) = ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀))
8747adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑅s 𝑈) ∈ Grp)
8856adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
8982, 83, 883jca 1128 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈))))
9043, 44, 10mulgdir 19038 . . . . 5 (((𝑅s 𝑈) ∈ Grp ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈)))) → ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀) = ((𝑦(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑧(.g‘(𝑅s 𝑈))𝑀)))
9187, 89, 90syl2anc 584 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀) = ((𝑦(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑧(.g‘(𝑅s 𝑈))𝑀)))
92 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
9392oveq1d 7402 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑦) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑦(.g‘(𝑅s 𝑈))𝑀))
94 ovexd 7422 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦(.g‘(𝑅s 𝑈))𝑀) ∈ V)
9579, 93, 82, 94fvmptd 6975 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹𝑦) = (𝑦(.g‘(𝑅s 𝑈))𝑀))
96 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
9796oveq1d 7402 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
98 ovexd 7422 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑧(.g‘(𝑅s 𝑈))𝑀) ∈ V)
9979, 97, 83, 98fvmptd 6975 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹𝑧) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
10095, 99oveq12d 7405 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦)(+g‘(𝑅s 𝑈))(𝐹𝑧)) = ((𝑦(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑧(.g‘(𝑅s 𝑈))𝑀)))
101100eqcomd 2735 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑧(.g‘(𝑅s 𝑈))𝑀)) = ((𝐹𝑦)(+g‘(𝑅s 𝑈))(𝐹𝑧)))
10291, 101eqtrd 2764 . . 3 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀) = ((𝐹𝑦)(+g‘(𝑅s 𝑈))(𝐹𝑧)))
10386, 102eqtrd 2764 . 2 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦)(+g‘(𝑅s 𝑈))(𝐹𝑧)))
1041, 2, 3, 12, 16, 21, 78, 103isghmd 19157 1 (𝜑𝐹 ∈ (ℤring GrpHom ((𝑅s 𝑈) ↾s ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914   class class class wbr 5107  cmpt 5188  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387   + caddc 11071  cn 12186  0cn0 12442  cz 12529  cdvds 16222  Basecbs 17179  s cress 17200  +gcplusg 17220  0gc0g 17402  Grpcgrp 18865  .gcmg 18999   GrpHom cghm 19144  CMndccmn 19710  Abelcabl 19711  Ringcrg 20142  ringczring 21356   PrimRoots cprimroots 42079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-seq 13967  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-cnfld 21265  df-zring 21357  df-primroots 42080
This theorem is referenced by:  aks6d1c6lem5  42165
  Copyright terms: Public domain W3C validator