Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6isolem2 Structured version   Visualization version   GIF version

Theorem aks6d1c6isolem2 41778
Description: Lemma to construct the group homomorphism for the AKS Theorem. (Contributed by metakunt, 14-May-2025.)
Hypotheses
Ref Expression
aks6d1c6isolem1.1 (𝜑𝑅 ∈ CMnd)
aks6d1c6isolem1.2 (𝜑𝐾 ∈ ℕ)
aks6d1c6isolem1.3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
aks6d1c6isolem1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
aks6d1c6isolem1.5 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
Assertion
Ref Expression
aks6d1c6isolem2 (𝜑𝐹 ∈ (ℤring GrpHom ((𝑅s 𝑈) ↾s ran 𝐹)))
Distinct variable groups:   𝑥,𝑀   𝑅,𝑎,𝑖   𝑥,𝑅   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎)   𝑈(𝑖,𝑎)   𝐹(𝑥,𝑖,𝑎)   𝐾(𝑥,𝑖,𝑎)   𝑀(𝑖,𝑎)

Proof of Theorem aks6d1c6isolem2
Dummy variables 𝑣 𝑤 𝑧 𝑦 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 21396 . 2 ℤ = (Base‘ℤring)
2 eqid 2725 . 2 (Base‘((𝑅s 𝑈) ↾s ran 𝐹)) = (Base‘((𝑅s 𝑈) ↾s ran 𝐹))
3 zringplusg 21397 . 2 + = (+g‘ℤring)
4 aks6d1c6isolem1.4 . . . . 5 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
5 zex 12600 . . . . . 6 ℤ ∈ V
65mptex 7235 . . . . 5 (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)) ∈ V
74, 6eqeltri 2821 . . . 4 𝐹 ∈ V
87rnex 7918 . . 3 ran 𝐹 ∈ V
9 eqid 2725 . . . 4 ((𝑅s 𝑈) ↾s ran 𝐹) = ((𝑅s 𝑈) ↾s ran 𝐹)
10 eqid 2725 . . . 4 (+g‘(𝑅s 𝑈)) = (+g‘(𝑅s 𝑈))
119, 10ressplusg 17274 . . 3 (ran 𝐹 ∈ V → (+g‘(𝑅s 𝑈)) = (+g‘((𝑅s 𝑈) ↾s ran 𝐹)))
128, 11ax-mp 5 . 2 (+g‘(𝑅s 𝑈)) = (+g‘((𝑅s 𝑈) ↾s ran 𝐹))
13 zringring 21392 . . . 4 ring ∈ Ring
1413a1i 11 . . 3 (𝜑 → ℤring ∈ Ring)
15 ringgrp 20190 . . 3 (ℤring ∈ Ring → ℤring ∈ Grp)
1614, 15syl 17 . 2 (𝜑 → ℤring ∈ Grp)
17 aks6d1c6isolem1.1 . . 3 (𝜑𝑅 ∈ CMnd)
18 aks6d1c6isolem1.2 . . 3 (𝜑𝐾 ∈ ℕ)
19 aks6d1c6isolem1.3 . . 3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
20 aks6d1c6isolem1.5 . . 3 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
2117, 18, 19, 4, 20aks6d1c6isolem1 41777 . 2 (𝜑 → ((𝑅s 𝑈) ↾s ran 𝐹) ∈ Grp)
22 ovexd 7454 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅s 𝑈))𝑀) ∈ V)
2322, 4fmptd 7123 . . . . 5 (𝜑𝐹:ℤ⟶V)
24 ffn 6723 . . . . 5 (𝐹:ℤ⟶V → 𝐹 Fn ℤ)
2523, 24syl 17 . . . 4 (𝜑𝐹 Fn ℤ)
26 dffn3 6735 . . . 4 (𝐹 Fn ℤ ↔ 𝐹:ℤ⟶ran 𝐹)
2725, 26sylib 217 . . 3 (𝜑𝐹:ℤ⟶ran 𝐹)
28 fvelrnb 6958 . . . . . . . . . . 11 (𝐹 Fn ℤ → (𝑤 ∈ ran 𝐹 ↔ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤))
2925, 28syl 17 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤))
3029biimpd 228 . . . . . . . . 9 (𝜑 → (𝑤 ∈ ran 𝐹 → ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤))
3130imp 405 . . . . . . . 8 ((𝜑𝑤 ∈ ran 𝐹) → ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤)
32 simpr 483 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑧) = 𝑤)
3332eqcomd 2731 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → 𝑤 = (𝐹𝑧))
34 simplll 773 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → 𝜑)
35 simplr 767 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → 𝑧 ∈ ℤ)
3634, 35jca 510 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → (𝜑𝑧 ∈ ℤ))
374a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
38 simpr 483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
3938oveq1d 7434 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
40 simpr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
41 ovexd 7454 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅s 𝑈))𝑀) ∈ V)
4237, 39, 40, 41fvmptd 7011 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℤ) → (𝐹𝑧) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
43 eqid 2725 . . . . . . . . . . . . . . . 16 (Base‘(𝑅s 𝑈)) = (Base‘(𝑅s 𝑈))
44 eqid 2725 . . . . . . . . . . . . . . . 16 (.g‘(𝑅s 𝑈)) = (.g‘(𝑅s 𝑈))
4517, 18, 19primrootsunit 41700 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾) ∧ (𝑅s 𝑈) ∈ Abel))
4645simprd 494 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑅s 𝑈) ∈ Abel)
4746ablgrpd 19753 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅s 𝑈) ∈ Grp)
4847adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → (𝑅s 𝑈) ∈ Grp)
4945simpld 493 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾))
5020, 49eleqtrd 2827 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾))
5146ablcmnd 19755 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑅s 𝑈) ∈ CMnd)
5218nnnn0d 12565 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ ℕ0)
5351, 52, 44isprimroot 41696 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
5453biimpd 228 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) → (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
5550, 54mpd 15 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙)))
5655simp1d 1139 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ (Base‘(𝑅s 𝑈)))
5756adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
5843, 44, 48, 40, 57mulgcld 19059 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅s 𝑈))𝑀) ∈ (Base‘(𝑅s 𝑈)))
5942, 58eqeltrd 2825 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℤ) → (𝐹𝑧) ∈ (Base‘(𝑅s 𝑈)))
6036, 59syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑧) ∈ (Base‘(𝑅s 𝑈)))
6133, 60eqeltrd 2825 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → 𝑤 ∈ (Base‘(𝑅s 𝑈)))
62 nfv 1909 . . . . . . . . . . . . . . 15 𝑧(𝐹𝑣) = 𝑤
63 nfv 1909 . . . . . . . . . . . . . . 15 𝑣(𝐹𝑧) = 𝑤
64 fveqeq2 6905 . . . . . . . . . . . . . . 15 (𝑣 = 𝑧 → ((𝐹𝑣) = 𝑤 ↔ (𝐹𝑧) = 𝑤))
6562, 63, 64cbvrexw 3294 . . . . . . . . . . . . . 14 (∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤 ↔ ∃𝑧 ∈ ℤ (𝐹𝑧) = 𝑤)
6665biimpi 215 . . . . . . . . . . . . 13 (∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤 → ∃𝑧 ∈ ℤ (𝐹𝑧) = 𝑤)
6766adantl 480 . . . . . . . . . . . 12 ((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) → ∃𝑧 ∈ ℤ (𝐹𝑧) = 𝑤)
6861, 67r19.29a 3151 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) → 𝑤 ∈ (Base‘(𝑅s 𝑈)))
6968ex 411 . . . . . . . . . 10 (𝜑 → (∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤𝑤 ∈ (Base‘(𝑅s 𝑈))))
7069adantr 479 . . . . . . . . 9 ((𝜑𝑤 ∈ ran 𝐹) → (∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤𝑤 ∈ (Base‘(𝑅s 𝑈))))
7170imp 405 . . . . . . . 8 (((𝜑𝑤 ∈ ran 𝐹) ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) → 𝑤 ∈ (Base‘(𝑅s 𝑈)))
7231, 71mpdan 685 . . . . . . 7 ((𝜑𝑤 ∈ ran 𝐹) → 𝑤 ∈ (Base‘(𝑅s 𝑈)))
7372ex 411 . . . . . 6 (𝜑 → (𝑤 ∈ ran 𝐹𝑤 ∈ (Base‘(𝑅s 𝑈))))
7473ssrdv 3982 . . . . 5 (𝜑 → ran 𝐹 ⊆ (Base‘(𝑅s 𝑈)))
759, 43ressbas2 17221 . . . . 5 (ran 𝐹 ⊆ (Base‘(𝑅s 𝑈)) → ran 𝐹 = (Base‘((𝑅s 𝑈) ↾s ran 𝐹)))
7674, 75syl 17 . . . 4 (𝜑 → ran 𝐹 = (Base‘((𝑅s 𝑈) ↾s ran 𝐹)))
7776feq3d 6710 . . 3 (𝜑 → (𝐹:ℤ⟶ran 𝐹𝐹:ℤ⟶(Base‘((𝑅s 𝑈) ↾s ran 𝐹))))
7827, 77mpbid 231 . 2 (𝜑𝐹:ℤ⟶(Base‘((𝑅s 𝑈) ↾s ran 𝐹)))
794a1i 11 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
80 simpr 483 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = (𝑦 + 𝑧)) → 𝑥 = (𝑦 + 𝑧))
8180oveq1d 7434 . . . 4 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = (𝑦 + 𝑧)) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀))
82 simprl 769 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝑦 ∈ ℤ)
83 simprr 771 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝑧 ∈ ℤ)
8482, 83zaddcld 12703 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 + 𝑧) ∈ ℤ)
85 ovexd 7454 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀) ∈ V)
8679, 81, 84, 85fvmptd 7011 . . 3 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹‘(𝑦 + 𝑧)) = ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀))
8747adantr 479 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑅s 𝑈) ∈ Grp)
8856adantr 479 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
8982, 83, 883jca 1125 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈))))
9043, 44, 10mulgdir 19069 . . . . 5 (((𝑅s 𝑈) ∈ Grp ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈)))) → ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀) = ((𝑦(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑧(.g‘(𝑅s 𝑈))𝑀)))
9187, 89, 90syl2anc 582 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀) = ((𝑦(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑧(.g‘(𝑅s 𝑈))𝑀)))
92 simpr 483 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
9392oveq1d 7434 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑦) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑦(.g‘(𝑅s 𝑈))𝑀))
94 ovexd 7454 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦(.g‘(𝑅s 𝑈))𝑀) ∈ V)
9579, 93, 82, 94fvmptd 7011 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹𝑦) = (𝑦(.g‘(𝑅s 𝑈))𝑀))
96 simpr 483 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
9796oveq1d 7434 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
98 ovexd 7454 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑧(.g‘(𝑅s 𝑈))𝑀) ∈ V)
9979, 97, 83, 98fvmptd 7011 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹𝑧) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
10095, 99oveq12d 7437 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦)(+g‘(𝑅s 𝑈))(𝐹𝑧)) = ((𝑦(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑧(.g‘(𝑅s 𝑈))𝑀)))
101100eqcomd 2731 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑧(.g‘(𝑅s 𝑈))𝑀)) = ((𝐹𝑦)(+g‘(𝑅s 𝑈))(𝐹𝑧)))
10291, 101eqtrd 2765 . . 3 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀) = ((𝐹𝑦)(+g‘(𝑅s 𝑈))(𝐹𝑧)))
10386, 102eqtrd 2765 . 2 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦)(+g‘(𝑅s 𝑈))(𝐹𝑧)))
1041, 2, 3, 12, 16, 21, 78, 103isghmd 19188 1 (𝜑𝐹 ∈ (ℤring GrpHom ((𝑅s 𝑈) ↾s ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wrex 3059  {crab 3418  Vcvv 3461  wss 3944   class class class wbr 5149  cmpt 5232  ran crn 5679   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419   + caddc 11143  cn 12245  0cn0 12505  cz 12591  cdvds 16234  Basecbs 17183  s cress 17212  +gcplusg 17236  0gc0g 17424  Grpcgrp 18898  .gcmg 19031   GrpHom cghm 19175  CMndccmn 19747  Abelcabl 19748  Ringcrg 20185  ringczring 21389   PrimRoots cprimroots 41694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-seq 14003  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-minusg 18902  df-mulg 19032  df-subg 19086  df-ghm 19176  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-subrng 20495  df-subrg 20520  df-cnfld 21297  df-zring 21390  df-primroots 41695
This theorem is referenced by:  aks6d1c6lem5  41780
  Copyright terms: Public domain W3C validator