Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6isolem2 Structured version   Visualization version   GIF version

Theorem aks6d1c6isolem2 42278
Description: Lemma to construct the group homomorphism for the AKS Theorem. (Contributed by metakunt, 14-May-2025.)
Hypotheses
Ref Expression
aks6d1c6isolem1.1 (𝜑𝑅 ∈ CMnd)
aks6d1c6isolem1.2 (𝜑𝐾 ∈ ℕ)
aks6d1c6isolem1.3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
aks6d1c6isolem1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
aks6d1c6isolem1.5 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
Assertion
Ref Expression
aks6d1c6isolem2 (𝜑𝐹 ∈ (ℤring GrpHom ((𝑅s 𝑈) ↾s ran 𝐹)))
Distinct variable groups:   𝑥,𝑀   𝑅,𝑎,𝑖   𝑥,𝑅   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎)   𝑈(𝑖,𝑎)   𝐹(𝑥,𝑖,𝑎)   𝐾(𝑥,𝑖,𝑎)   𝑀(𝑖,𝑎)

Proof of Theorem aks6d1c6isolem2
Dummy variables 𝑣 𝑤 𝑧 𝑦 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 21390 . 2 ℤ = (Base‘ℤring)
2 eqid 2731 . 2 (Base‘((𝑅s 𝑈) ↾s ran 𝐹)) = (Base‘((𝑅s 𝑈) ↾s ran 𝐹))
3 zringplusg 21391 . 2 + = (+g‘ℤring)
4 aks6d1c6isolem1.4 . . . . 5 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
5 zex 12477 . . . . . 6 ℤ ∈ V
65mptex 7157 . . . . 5 (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)) ∈ V
74, 6eqeltri 2827 . . . 4 𝐹 ∈ V
87rnex 7840 . . 3 ran 𝐹 ∈ V
9 eqid 2731 . . . 4 ((𝑅s 𝑈) ↾s ran 𝐹) = ((𝑅s 𝑈) ↾s ran 𝐹)
10 eqid 2731 . . . 4 (+g‘(𝑅s 𝑈)) = (+g‘(𝑅s 𝑈))
119, 10ressplusg 17195 . . 3 (ran 𝐹 ∈ V → (+g‘(𝑅s 𝑈)) = (+g‘((𝑅s 𝑈) ↾s ran 𝐹)))
128, 11ax-mp 5 . 2 (+g‘(𝑅s 𝑈)) = (+g‘((𝑅s 𝑈) ↾s ran 𝐹))
13 zringring 21386 . . . 4 ring ∈ Ring
1413a1i 11 . . 3 (𝜑 → ℤring ∈ Ring)
15 ringgrp 20156 . . 3 (ℤring ∈ Ring → ℤring ∈ Grp)
1614, 15syl 17 . 2 (𝜑 → ℤring ∈ Grp)
17 aks6d1c6isolem1.1 . . 3 (𝜑𝑅 ∈ CMnd)
18 aks6d1c6isolem1.2 . . 3 (𝜑𝐾 ∈ ℕ)
19 aks6d1c6isolem1.3 . . 3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
20 aks6d1c6isolem1.5 . . 3 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
2117, 18, 19, 4, 20aks6d1c6isolem1 42277 . 2 (𝜑 → ((𝑅s 𝑈) ↾s ran 𝐹) ∈ Grp)
22 ovexd 7381 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅s 𝑈))𝑀) ∈ V)
2322, 4fmptd 7047 . . . . 5 (𝜑𝐹:ℤ⟶V)
24 ffn 6651 . . . . 5 (𝐹:ℤ⟶V → 𝐹 Fn ℤ)
2523, 24syl 17 . . . 4 (𝜑𝐹 Fn ℤ)
26 dffn3 6663 . . . 4 (𝐹 Fn ℤ ↔ 𝐹:ℤ⟶ran 𝐹)
2725, 26sylib 218 . . 3 (𝜑𝐹:ℤ⟶ran 𝐹)
28 fvelrnb 6882 . . . . . . . . . . 11 (𝐹 Fn ℤ → (𝑤 ∈ ran 𝐹 ↔ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤))
2925, 28syl 17 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤))
3029biimpd 229 . . . . . . . . 9 (𝜑 → (𝑤 ∈ ran 𝐹 → ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤))
3130imp 406 . . . . . . . 8 ((𝜑𝑤 ∈ ran 𝐹) → ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤)
32 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑧) = 𝑤)
3332eqcomd 2737 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → 𝑤 = (𝐹𝑧))
34 simplll 774 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → 𝜑)
35 simplr 768 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → 𝑧 ∈ ℤ)
3634, 35jca 511 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → (𝜑𝑧 ∈ ℤ))
374a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
38 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
3938oveq1d 7361 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
40 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
41 ovexd 7381 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅s 𝑈))𝑀) ∈ V)
4237, 39, 40, 41fvmptd 6936 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℤ) → (𝐹𝑧) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
43 eqid 2731 . . . . . . . . . . . . . . . 16 (Base‘(𝑅s 𝑈)) = (Base‘(𝑅s 𝑈))
44 eqid 2731 . . . . . . . . . . . . . . . 16 (.g‘(𝑅s 𝑈)) = (.g‘(𝑅s 𝑈))
4517, 18, 19primrootsunit 42201 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾) ∧ (𝑅s 𝑈) ∈ Abel))
4645simprd 495 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑅s 𝑈) ∈ Abel)
4746ablgrpd 19698 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅s 𝑈) ∈ Grp)
4847adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → (𝑅s 𝑈) ∈ Grp)
4945simpld 494 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾))
5020, 49eleqtrd 2833 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾))
5146ablcmnd 19700 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑅s 𝑈) ∈ CMnd)
5218nnnn0d 12442 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ ℕ0)
5351, 52, 44isprimroot 42196 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
5453biimpd 229 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) → (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
5550, 54mpd 15 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙)))
5655simp1d 1142 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ (Base‘(𝑅s 𝑈)))
5756adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
5843, 44, 48, 40, 57mulgcld 19009 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅s 𝑈))𝑀) ∈ (Base‘(𝑅s 𝑈)))
5942, 58eqeltrd 2831 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℤ) → (𝐹𝑧) ∈ (Base‘(𝑅s 𝑈)))
6036, 59syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑧) ∈ (Base‘(𝑅s 𝑈)))
6133, 60eqeltrd 2831 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → 𝑤 ∈ (Base‘(𝑅s 𝑈)))
62 nfv 1915 . . . . . . . . . . . . . . 15 𝑧(𝐹𝑣) = 𝑤
63 nfv 1915 . . . . . . . . . . . . . . 15 𝑣(𝐹𝑧) = 𝑤
64 fveqeq2 6831 . . . . . . . . . . . . . . 15 (𝑣 = 𝑧 → ((𝐹𝑣) = 𝑤 ↔ (𝐹𝑧) = 𝑤))
6562, 63, 64cbvrexw 3275 . . . . . . . . . . . . . 14 (∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤 ↔ ∃𝑧 ∈ ℤ (𝐹𝑧) = 𝑤)
6665biimpi 216 . . . . . . . . . . . . 13 (∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤 → ∃𝑧 ∈ ℤ (𝐹𝑧) = 𝑤)
6766adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) → ∃𝑧 ∈ ℤ (𝐹𝑧) = 𝑤)
6861, 67r19.29a 3140 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) → 𝑤 ∈ (Base‘(𝑅s 𝑈)))
6968ex 412 . . . . . . . . . 10 (𝜑 → (∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤𝑤 ∈ (Base‘(𝑅s 𝑈))))
7069adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ ran 𝐹) → (∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤𝑤 ∈ (Base‘(𝑅s 𝑈))))
7170imp 406 . . . . . . . 8 (((𝜑𝑤 ∈ ran 𝐹) ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) → 𝑤 ∈ (Base‘(𝑅s 𝑈)))
7231, 71mpdan 687 . . . . . . 7 ((𝜑𝑤 ∈ ran 𝐹) → 𝑤 ∈ (Base‘(𝑅s 𝑈)))
7372ex 412 . . . . . 6 (𝜑 → (𝑤 ∈ ran 𝐹𝑤 ∈ (Base‘(𝑅s 𝑈))))
7473ssrdv 3935 . . . . 5 (𝜑 → ran 𝐹 ⊆ (Base‘(𝑅s 𝑈)))
759, 43ressbas2 17149 . . . . 5 (ran 𝐹 ⊆ (Base‘(𝑅s 𝑈)) → ran 𝐹 = (Base‘((𝑅s 𝑈) ↾s ran 𝐹)))
7674, 75syl 17 . . . 4 (𝜑 → ran 𝐹 = (Base‘((𝑅s 𝑈) ↾s ran 𝐹)))
7776feq3d 6636 . . 3 (𝜑 → (𝐹:ℤ⟶ran 𝐹𝐹:ℤ⟶(Base‘((𝑅s 𝑈) ↾s ran 𝐹))))
7827, 77mpbid 232 . 2 (𝜑𝐹:ℤ⟶(Base‘((𝑅s 𝑈) ↾s ran 𝐹)))
794a1i 11 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
80 simpr 484 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = (𝑦 + 𝑧)) → 𝑥 = (𝑦 + 𝑧))
8180oveq1d 7361 . . . 4 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = (𝑦 + 𝑧)) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀))
82 simprl 770 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝑦 ∈ ℤ)
83 simprr 772 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝑧 ∈ ℤ)
8482, 83zaddcld 12581 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 + 𝑧) ∈ ℤ)
85 ovexd 7381 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀) ∈ V)
8679, 81, 84, 85fvmptd 6936 . . 3 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹‘(𝑦 + 𝑧)) = ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀))
8747adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑅s 𝑈) ∈ Grp)
8856adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
8982, 83, 883jca 1128 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈))))
9043, 44, 10mulgdir 19019 . . . . 5 (((𝑅s 𝑈) ∈ Grp ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈)))) → ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀) = ((𝑦(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑧(.g‘(𝑅s 𝑈))𝑀)))
9187, 89, 90syl2anc 584 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀) = ((𝑦(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑧(.g‘(𝑅s 𝑈))𝑀)))
92 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
9392oveq1d 7361 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑦) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑦(.g‘(𝑅s 𝑈))𝑀))
94 ovexd 7381 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦(.g‘(𝑅s 𝑈))𝑀) ∈ V)
9579, 93, 82, 94fvmptd 6936 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹𝑦) = (𝑦(.g‘(𝑅s 𝑈))𝑀))
96 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
9796oveq1d 7361 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
98 ovexd 7381 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑧(.g‘(𝑅s 𝑈))𝑀) ∈ V)
9979, 97, 83, 98fvmptd 6936 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹𝑧) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
10095, 99oveq12d 7364 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦)(+g‘(𝑅s 𝑈))(𝐹𝑧)) = ((𝑦(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑧(.g‘(𝑅s 𝑈))𝑀)))
101100eqcomd 2737 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑧(.g‘(𝑅s 𝑈))𝑀)) = ((𝐹𝑦)(+g‘(𝑅s 𝑈))(𝐹𝑧)))
10291, 101eqtrd 2766 . . 3 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀) = ((𝐹𝑦)(+g‘(𝑅s 𝑈))(𝐹𝑧)))
10386, 102eqtrd 2766 . 2 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦)(+g‘(𝑅s 𝑈))(𝐹𝑧)))
1041, 2, 3, 12, 16, 21, 78, 103isghmd 19137 1 (𝜑𝐹 ∈ (ℤring GrpHom ((𝑅s 𝑈) ↾s ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897   class class class wbr 5089  cmpt 5170  ran crn 5615   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346   + caddc 11009  cn 12125  0cn0 12381  cz 12468  cdvds 16163  Basecbs 17120  s cress 17141  +gcplusg 17161  0gc0g 17343  Grpcgrp 18846  .gcmg 18980   GrpHom cghm 19124  CMndccmn 19692  Abelcabl 19693  Ringcrg 20151  ringczring 21383   PrimRoots cprimroots 42194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-seq 13909  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-subrng 20461  df-subrg 20485  df-cnfld 21292  df-zring 21384  df-primroots 42195
This theorem is referenced by:  aks6d1c6lem5  42280
  Copyright terms: Public domain W3C validator