Step | Hyp | Ref
| Expression |
1 | | zringbas 21487 |
. 2
⊢ ℤ =
(Base‘ℤring) |
2 | | eqid 2740 |
. 2
⊢
(Base‘((𝑅
↾s 𝑈)
↾s ran 𝐹))
= (Base‘((𝑅
↾s 𝑈)
↾s ran 𝐹)) |
3 | | zringplusg 21488 |
. 2
⊢ + =
(+g‘ℤring) |
4 | | aks6d1c6isolem1.4 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) |
5 | | zex 12648 |
. . . . . 6
⊢ ℤ
∈ V |
6 | 5 | mptex 7260 |
. . . . 5
⊢ (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) ∈ V |
7 | 4, 6 | eqeltri 2840 |
. . . 4
⊢ 𝐹 ∈ V |
8 | 7 | rnex 7950 |
. . 3
⊢ ran 𝐹 ∈ V |
9 | | eqid 2740 |
. . . 4
⊢ ((𝑅 ↾s 𝑈) ↾s ran 𝐹) = ((𝑅 ↾s 𝑈) ↾s ran 𝐹) |
10 | | eqid 2740 |
. . . 4
⊢
(+g‘(𝑅 ↾s 𝑈)) = (+g‘(𝑅 ↾s 𝑈)) |
11 | 9, 10 | ressplusg 17349 |
. . 3
⊢ (ran
𝐹 ∈ V →
(+g‘(𝑅
↾s 𝑈)) =
(+g‘((𝑅
↾s 𝑈)
↾s ran 𝐹))) |
12 | 8, 11 | ax-mp 5 |
. 2
⊢
(+g‘(𝑅 ↾s 𝑈)) = (+g‘((𝑅 ↾s 𝑈) ↾s ran 𝐹)) |
13 | | zringring 21483 |
. . . 4
⊢
ℤring ∈ Ring |
14 | 13 | a1i 11 |
. . 3
⊢ (𝜑 → ℤring
∈ Ring) |
15 | | ringgrp 20265 |
. . 3
⊢
(ℤring ∈ Ring → ℤring ∈
Grp) |
16 | 14, 15 | syl 17 |
. 2
⊢ (𝜑 → ℤring
∈ Grp) |
17 | | aks6d1c6isolem1.1 |
. . 3
⊢ (𝜑 → 𝑅 ∈ CMnd) |
18 | | aks6d1c6isolem1.2 |
. . 3
⊢ (𝜑 → 𝐾 ∈ ℕ) |
19 | | aks6d1c6isolem1.3 |
. . 3
⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} |
20 | | aks6d1c6isolem1.5 |
. . 3
⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
21 | 17, 18, 19, 4, 20 | aks6d1c6isolem1 42131 |
. 2
⊢ (𝜑 → ((𝑅 ↾s 𝑈) ↾s ran 𝐹) ∈ Grp) |
22 | | ovexd 7483 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
23 | 22, 4 | fmptd 7148 |
. . . . 5
⊢ (𝜑 → 𝐹:ℤ⟶V) |
24 | | ffn 6747 |
. . . . 5
⊢ (𝐹:ℤ⟶V → 𝐹 Fn ℤ) |
25 | 23, 24 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹 Fn ℤ) |
26 | | dffn3 6759 |
. . . 4
⊢ (𝐹 Fn ℤ ↔ 𝐹:ℤ⟶ran 𝐹) |
27 | 25, 26 | sylib 218 |
. . 3
⊢ (𝜑 → 𝐹:ℤ⟶ran 𝐹) |
28 | | fvelrnb 6982 |
. . . . . . . . . . 11
⊢ (𝐹 Fn ℤ → (𝑤 ∈ ran 𝐹 ↔ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤)) |
29 | 25, 28 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤)) |
30 | 29 | biimpd 229 |
. . . . . . . . 9
⊢ (𝜑 → (𝑤 ∈ ran 𝐹 → ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤)) |
31 | 30 | imp 406 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ ran 𝐹) → ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) |
32 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑧) = 𝑤) |
33 | 32 | eqcomd 2746 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹‘𝑧) = 𝑤) → 𝑤 = (𝐹‘𝑧)) |
34 | | simplll 774 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹‘𝑧) = 𝑤) → 𝜑) |
35 | | simplr 768 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹‘𝑧) = 𝑤) → 𝑧 ∈ ℤ) |
36 | 34, 35 | jca 511 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹‘𝑧) = 𝑤) → (𝜑 ∧ 𝑧 ∈ ℤ)) |
37 | 4 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀))) |
38 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) |
39 | 38 | oveq1d 7463 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) |
40 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ) |
41 | | ovexd 7483 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
42 | 37, 39, 40, 41 | fvmptd 7036 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝐹‘𝑧) = (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) |
43 | | eqid 2740 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘(𝑅
↾s 𝑈)) =
(Base‘(𝑅
↾s 𝑈)) |
44 | | eqid 2740 |
. . . . . . . . . . . . . . . 16
⊢
(.g‘(𝑅 ↾s 𝑈)) = (.g‘(𝑅 ↾s 𝑈)) |
45 | 17, 18, 19 | primrootsunit 42055 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ∧ (𝑅 ↾s 𝑈) ∈ Abel)) |
46 | 45 | simprd 495 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Abel) |
47 | 46 | ablgrpd 19828 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Grp) |
48 | 47 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝑅 ↾s 𝑈) ∈ Grp) |
49 | 45 | simpld 494 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
50 | 20, 49 | eleqtrd 2846 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
51 | 46 | ablcmnd 19830 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ CMnd) |
52 | 18 | nnnn0d 12613 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
53 | 51, 52, 44 | isprimroot 42050 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
54 | 53 | biimpd 229 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑀 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
55 | 50, 54 | mpd 15 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙))) |
56 | 55 | simp1d 1142 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
57 | 56 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
58 | 43, 44, 48, 40, 57 | mulgcld 19136 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ (Base‘(𝑅 ↾s 𝑈))) |
59 | 42, 58 | eqeltrd 2844 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝐹‘𝑧) ∈ (Base‘(𝑅 ↾s 𝑈))) |
60 | 36, 59 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑧) ∈ (Base‘(𝑅 ↾s 𝑈))) |
61 | 33, 60 | eqeltrd 2844 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹‘𝑧) = 𝑤) → 𝑤 ∈ (Base‘(𝑅 ↾s 𝑈))) |
62 | | nfv 1913 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑧(𝐹‘𝑣) = 𝑤 |
63 | | nfv 1913 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑣(𝐹‘𝑧) = 𝑤 |
64 | | fveqeq2 6929 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑧 → ((𝐹‘𝑣) = 𝑤 ↔ (𝐹‘𝑧) = 𝑤)) |
65 | 62, 63, 64 | cbvrexw 3313 |
. . . . . . . . . . . . . 14
⊢
(∃𝑣 ∈
ℤ (𝐹‘𝑣) = 𝑤 ↔ ∃𝑧 ∈ ℤ (𝐹‘𝑧) = 𝑤) |
66 | 65 | biimpi 216 |
. . . . . . . . . . . . 13
⊢
(∃𝑣 ∈
ℤ (𝐹‘𝑣) = 𝑤 → ∃𝑧 ∈ ℤ (𝐹‘𝑧) = 𝑤) |
67 | 66 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) → ∃𝑧 ∈ ℤ (𝐹‘𝑧) = 𝑤) |
68 | 61, 67 | r19.29a 3168 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) → 𝑤 ∈ (Base‘(𝑅 ↾s 𝑈))) |
69 | 68 | ex 412 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤 → 𝑤 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
70 | 69 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ ran 𝐹) → (∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤 → 𝑤 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
71 | 70 | imp 406 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐹) ∧ ∃𝑣 ∈ ℤ (𝐹‘𝑣) = 𝑤) → 𝑤 ∈ (Base‘(𝑅 ↾s 𝑈))) |
72 | 31, 71 | mpdan 686 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ran 𝐹) → 𝑤 ∈ (Base‘(𝑅 ↾s 𝑈))) |
73 | 72 | ex 412 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ ran 𝐹 → 𝑤 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
74 | 73 | ssrdv 4014 |
. . . . 5
⊢ (𝜑 → ran 𝐹 ⊆ (Base‘(𝑅 ↾s 𝑈))) |
75 | 9, 43 | ressbas2 17296 |
. . . . 5
⊢ (ran
𝐹 ⊆
(Base‘(𝑅
↾s 𝑈))
→ ran 𝐹 =
(Base‘((𝑅
↾s 𝑈)
↾s ran 𝐹))) |
76 | 74, 75 | syl 17 |
. . . 4
⊢ (𝜑 → ran 𝐹 = (Base‘((𝑅 ↾s 𝑈) ↾s ran 𝐹))) |
77 | 76 | feq3d 6734 |
. . 3
⊢ (𝜑 → (𝐹:ℤ⟶ran 𝐹 ↔ 𝐹:ℤ⟶(Base‘((𝑅 ↾s 𝑈) ↾s ran 𝐹)))) |
78 | 27, 77 | mpbid 232 |
. 2
⊢ (𝜑 → 𝐹:ℤ⟶(Base‘((𝑅 ↾s 𝑈) ↾s ran 𝐹))) |
79 | 4 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀))) |
80 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = (𝑦 + 𝑧)) → 𝑥 = (𝑦 + 𝑧)) |
81 | 80 | oveq1d 7463 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = (𝑦 + 𝑧)) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝑦 + 𝑧)(.g‘(𝑅 ↾s 𝑈))𝑀)) |
82 | | simprl 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝑦 ∈ ℤ) |
83 | | simprr 772 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝑧 ∈ ℤ) |
84 | 82, 83 | zaddcld 12751 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 + 𝑧) ∈ ℤ) |
85 | | ovexd 7483 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 + 𝑧)(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
86 | 79, 81, 84, 85 | fvmptd 7036 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹‘(𝑦 + 𝑧)) = ((𝑦 + 𝑧)(.g‘(𝑅 ↾s 𝑈))𝑀)) |
87 | 47 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑅 ↾s 𝑈) ∈ Grp) |
88 | 56 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈))) |
89 | 82, 83, 88 | 3jca 1128 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
90 | 43, 44, 10 | mulgdir 19146 |
. . . . 5
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅 ↾s 𝑈)))) → ((𝑦 + 𝑧)(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑧(.g‘(𝑅 ↾s 𝑈))𝑀))) |
91 | 87, 89, 90 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 + 𝑧)(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑧(.g‘(𝑅 ↾s 𝑈))𝑀))) |
92 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) |
93 | 92 | oveq1d 7463 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑦) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)) |
94 | | ovexd 7483 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
95 | 79, 93, 82, 94 | fvmptd 7036 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹‘𝑦) = (𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)) |
96 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) |
97 | 96 | oveq1d 7463 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) |
98 | | ovexd 7483 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) |
99 | 79, 97, 83, 98 | fvmptd 7036 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹‘𝑧) = (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) |
100 | 95, 99 | oveq12d 7466 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹‘𝑦)(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑧)) = ((𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑧(.g‘(𝑅 ↾s 𝑈))𝑀))) |
101 | 100 | eqcomd 2746 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦(.g‘(𝑅 ↾s 𝑈))𝑀)(+g‘(𝑅 ↾s 𝑈))(𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) = ((𝐹‘𝑦)(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑧))) |
102 | 91, 101 | eqtrd 2780 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 + 𝑧)(.g‘(𝑅 ↾s 𝑈))𝑀) = ((𝐹‘𝑦)(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑧))) |
103 | 86, 102 | eqtrd 2780 |
. 2
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦)(+g‘(𝑅 ↾s 𝑈))(𝐹‘𝑧))) |
104 | 1, 2, 3, 12, 16, 21, 78, 103 | isghmd 19265 |
1
⊢ (𝜑 → 𝐹 ∈ (ℤring GrpHom
((𝑅 ↾s
𝑈) ↾s ran
𝐹))) |