Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6isolem2 Structured version   Visualization version   GIF version

Theorem aks6d1c6isolem2 42132
Description: Lemma to construct the group homomorphism for the AKS Theorem. (Contributed by metakunt, 14-May-2025.)
Hypotheses
Ref Expression
aks6d1c6isolem1.1 (𝜑𝑅 ∈ CMnd)
aks6d1c6isolem1.2 (𝜑𝐾 ∈ ℕ)
aks6d1c6isolem1.3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
aks6d1c6isolem1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
aks6d1c6isolem1.5 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
Assertion
Ref Expression
aks6d1c6isolem2 (𝜑𝐹 ∈ (ℤring GrpHom ((𝑅s 𝑈) ↾s ran 𝐹)))
Distinct variable groups:   𝑥,𝑀   𝑅,𝑎,𝑖   𝑥,𝑅   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎)   𝑈(𝑖,𝑎)   𝐹(𝑥,𝑖,𝑎)   𝐾(𝑥,𝑖,𝑎)   𝑀(𝑖,𝑎)

Proof of Theorem aks6d1c6isolem2
Dummy variables 𝑣 𝑤 𝑧 𝑦 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 21487 . 2 ℤ = (Base‘ℤring)
2 eqid 2740 . 2 (Base‘((𝑅s 𝑈) ↾s ran 𝐹)) = (Base‘((𝑅s 𝑈) ↾s ran 𝐹))
3 zringplusg 21488 . 2 + = (+g‘ℤring)
4 aks6d1c6isolem1.4 . . . . 5 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
5 zex 12648 . . . . . 6 ℤ ∈ V
65mptex 7260 . . . . 5 (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)) ∈ V
74, 6eqeltri 2840 . . . 4 𝐹 ∈ V
87rnex 7950 . . 3 ran 𝐹 ∈ V
9 eqid 2740 . . . 4 ((𝑅s 𝑈) ↾s ran 𝐹) = ((𝑅s 𝑈) ↾s ran 𝐹)
10 eqid 2740 . . . 4 (+g‘(𝑅s 𝑈)) = (+g‘(𝑅s 𝑈))
119, 10ressplusg 17349 . . 3 (ran 𝐹 ∈ V → (+g‘(𝑅s 𝑈)) = (+g‘((𝑅s 𝑈) ↾s ran 𝐹)))
128, 11ax-mp 5 . 2 (+g‘(𝑅s 𝑈)) = (+g‘((𝑅s 𝑈) ↾s ran 𝐹))
13 zringring 21483 . . . 4 ring ∈ Ring
1413a1i 11 . . 3 (𝜑 → ℤring ∈ Ring)
15 ringgrp 20265 . . 3 (ℤring ∈ Ring → ℤring ∈ Grp)
1614, 15syl 17 . 2 (𝜑 → ℤring ∈ Grp)
17 aks6d1c6isolem1.1 . . 3 (𝜑𝑅 ∈ CMnd)
18 aks6d1c6isolem1.2 . . 3 (𝜑𝐾 ∈ ℕ)
19 aks6d1c6isolem1.3 . . 3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
20 aks6d1c6isolem1.5 . . 3 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
2117, 18, 19, 4, 20aks6d1c6isolem1 42131 . 2 (𝜑 → ((𝑅s 𝑈) ↾s ran 𝐹) ∈ Grp)
22 ovexd 7483 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅s 𝑈))𝑀) ∈ V)
2322, 4fmptd 7148 . . . . 5 (𝜑𝐹:ℤ⟶V)
24 ffn 6747 . . . . 5 (𝐹:ℤ⟶V → 𝐹 Fn ℤ)
2523, 24syl 17 . . . 4 (𝜑𝐹 Fn ℤ)
26 dffn3 6759 . . . 4 (𝐹 Fn ℤ ↔ 𝐹:ℤ⟶ran 𝐹)
2725, 26sylib 218 . . 3 (𝜑𝐹:ℤ⟶ran 𝐹)
28 fvelrnb 6982 . . . . . . . . . . 11 (𝐹 Fn ℤ → (𝑤 ∈ ran 𝐹 ↔ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤))
2925, 28syl 17 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤))
3029biimpd 229 . . . . . . . . 9 (𝜑 → (𝑤 ∈ ran 𝐹 → ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤))
3130imp 406 . . . . . . . 8 ((𝜑𝑤 ∈ ran 𝐹) → ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤)
32 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑧) = 𝑤)
3332eqcomd 2746 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → 𝑤 = (𝐹𝑧))
34 simplll 774 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → 𝜑)
35 simplr 768 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → 𝑧 ∈ ℤ)
3634, 35jca 511 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → (𝜑𝑧 ∈ ℤ))
374a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
38 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
3938oveq1d 7463 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
40 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
41 ovexd 7483 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅s 𝑈))𝑀) ∈ V)
4237, 39, 40, 41fvmptd 7036 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℤ) → (𝐹𝑧) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
43 eqid 2740 . . . . . . . . . . . . . . . 16 (Base‘(𝑅s 𝑈)) = (Base‘(𝑅s 𝑈))
44 eqid 2740 . . . . . . . . . . . . . . . 16 (.g‘(𝑅s 𝑈)) = (.g‘(𝑅s 𝑈))
4517, 18, 19primrootsunit 42055 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾) ∧ (𝑅s 𝑈) ∈ Abel))
4645simprd 495 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑅s 𝑈) ∈ Abel)
4746ablgrpd 19828 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅s 𝑈) ∈ Grp)
4847adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → (𝑅s 𝑈) ∈ Grp)
4945simpld 494 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾))
5020, 49eleqtrd 2846 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾))
5146ablcmnd 19830 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑅s 𝑈) ∈ CMnd)
5218nnnn0d 12613 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ ℕ0)
5351, 52, 44isprimroot 42050 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
5453biimpd 229 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 ∈ ((𝑅s 𝑈) PrimRoots 𝐾) → (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙))))
5550, 54mpd 15 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 ∈ (Base‘(𝑅s 𝑈)) ∧ (𝐾(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) → 𝐾𝑙)))
5655simp1d 1142 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ (Base‘(𝑅s 𝑈)))
5756adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℤ) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
5843, 44, 48, 40, 57mulgcld 19136 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅s 𝑈))𝑀) ∈ (Base‘(𝑅s 𝑈)))
5942, 58eqeltrd 2844 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℤ) → (𝐹𝑧) ∈ (Base‘(𝑅s 𝑈)))
6036, 59syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑧) ∈ (Base‘(𝑅s 𝑈)))
6133, 60eqeltrd 2844 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) ∧ 𝑧 ∈ ℤ) ∧ (𝐹𝑧) = 𝑤) → 𝑤 ∈ (Base‘(𝑅s 𝑈)))
62 nfv 1913 . . . . . . . . . . . . . . 15 𝑧(𝐹𝑣) = 𝑤
63 nfv 1913 . . . . . . . . . . . . . . 15 𝑣(𝐹𝑧) = 𝑤
64 fveqeq2 6929 . . . . . . . . . . . . . . 15 (𝑣 = 𝑧 → ((𝐹𝑣) = 𝑤 ↔ (𝐹𝑧) = 𝑤))
6562, 63, 64cbvrexw 3313 . . . . . . . . . . . . . 14 (∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤 ↔ ∃𝑧 ∈ ℤ (𝐹𝑧) = 𝑤)
6665biimpi 216 . . . . . . . . . . . . 13 (∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤 → ∃𝑧 ∈ ℤ (𝐹𝑧) = 𝑤)
6766adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) → ∃𝑧 ∈ ℤ (𝐹𝑧) = 𝑤)
6861, 67r19.29a 3168 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) → 𝑤 ∈ (Base‘(𝑅s 𝑈)))
6968ex 412 . . . . . . . . . 10 (𝜑 → (∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤𝑤 ∈ (Base‘(𝑅s 𝑈))))
7069adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ ran 𝐹) → (∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤𝑤 ∈ (Base‘(𝑅s 𝑈))))
7170imp 406 . . . . . . . 8 (((𝜑𝑤 ∈ ran 𝐹) ∧ ∃𝑣 ∈ ℤ (𝐹𝑣) = 𝑤) → 𝑤 ∈ (Base‘(𝑅s 𝑈)))
7231, 71mpdan 686 . . . . . . 7 ((𝜑𝑤 ∈ ran 𝐹) → 𝑤 ∈ (Base‘(𝑅s 𝑈)))
7372ex 412 . . . . . 6 (𝜑 → (𝑤 ∈ ran 𝐹𝑤 ∈ (Base‘(𝑅s 𝑈))))
7473ssrdv 4014 . . . . 5 (𝜑 → ran 𝐹 ⊆ (Base‘(𝑅s 𝑈)))
759, 43ressbas2 17296 . . . . 5 (ran 𝐹 ⊆ (Base‘(𝑅s 𝑈)) → ran 𝐹 = (Base‘((𝑅s 𝑈) ↾s ran 𝐹)))
7674, 75syl 17 . . . 4 (𝜑 → ran 𝐹 = (Base‘((𝑅s 𝑈) ↾s ran 𝐹)))
7776feq3d 6734 . . 3 (𝜑 → (𝐹:ℤ⟶ran 𝐹𝐹:ℤ⟶(Base‘((𝑅s 𝑈) ↾s ran 𝐹))))
7827, 77mpbid 232 . 2 (𝜑𝐹:ℤ⟶(Base‘((𝑅s 𝑈) ↾s ran 𝐹)))
794a1i 11 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
80 simpr 484 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = (𝑦 + 𝑧)) → 𝑥 = (𝑦 + 𝑧))
8180oveq1d 7463 . . . 4 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = (𝑦 + 𝑧)) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀))
82 simprl 770 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝑦 ∈ ℤ)
83 simprr 772 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝑧 ∈ ℤ)
8482, 83zaddcld 12751 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 + 𝑧) ∈ ℤ)
85 ovexd 7483 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀) ∈ V)
8679, 81, 84, 85fvmptd 7036 . . 3 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹‘(𝑦 + 𝑧)) = ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀))
8747adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑅s 𝑈) ∈ Grp)
8856adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → 𝑀 ∈ (Base‘(𝑅s 𝑈)))
8982, 83, 883jca 1128 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈))))
9043, 44, 10mulgdir 19146 . . . . 5 (((𝑅s 𝑈) ∈ Grp ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ (Base‘(𝑅s 𝑈)))) → ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀) = ((𝑦(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑧(.g‘(𝑅s 𝑈))𝑀)))
9187, 89, 90syl2anc 583 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀) = ((𝑦(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑧(.g‘(𝑅s 𝑈))𝑀)))
92 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
9392oveq1d 7463 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑦) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑦(.g‘(𝑅s 𝑈))𝑀))
94 ovexd 7483 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦(.g‘(𝑅s 𝑈))𝑀) ∈ V)
9579, 93, 82, 94fvmptd 7036 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹𝑦) = (𝑦(.g‘(𝑅s 𝑈))𝑀))
96 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
9796oveq1d 7463 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
98 ovexd 7483 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑧(.g‘(𝑅s 𝑈))𝑀) ∈ V)
9979, 97, 83, 98fvmptd 7036 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹𝑧) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
10095, 99oveq12d 7466 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦)(+g‘(𝑅s 𝑈))(𝐹𝑧)) = ((𝑦(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑧(.g‘(𝑅s 𝑈))𝑀)))
101100eqcomd 2746 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦(.g‘(𝑅s 𝑈))𝑀)(+g‘(𝑅s 𝑈))(𝑧(.g‘(𝑅s 𝑈))𝑀)) = ((𝐹𝑦)(+g‘(𝑅s 𝑈))(𝐹𝑧)))
10291, 101eqtrd 2780 . . 3 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 + 𝑧)(.g‘(𝑅s 𝑈))𝑀) = ((𝐹𝑦)(+g‘(𝑅s 𝑈))(𝐹𝑧)))
10386, 102eqtrd 2780 . 2 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦)(+g‘(𝑅s 𝑈))(𝐹𝑧)))
1041, 2, 3, 12, 16, 21, 78, 103isghmd 19265 1 (𝜑𝐹 ∈ (ℤring GrpHom ((𝑅s 𝑈) ↾s ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976   class class class wbr 5166  cmpt 5249  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448   + caddc 11187  cn 12293  0cn0 12553  cz 12639  cdvds 16302  Basecbs 17258  s cress 17287  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973  .gcmg 19107   GrpHom cghm 19252  CMndccmn 19822  Abelcabl 19823  Ringcrg 20260  ringczring 21480   PrimRoots cprimroots 42048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-seq 14053  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrng 20572  df-subrg 20597  df-cnfld 21388  df-zring 21481  df-primroots 42049
This theorem is referenced by:  aks6d1c6lem5  42134
  Copyright terms: Public domain W3C validator