| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reusn | Structured version Visualization version GIF version | ||
| Description: A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| reusn | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn2 4706 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦{𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦}) | |
| 2 | df-reu 3365 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | df-rab 3421 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 4 | 3 | eqeq1i 2741 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦} ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦}) |
| 5 | 4 | exbii 1848 | . 2 ⊢ (∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦} ↔ ∃𝑦{𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦}) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2568 {cab 2714 ∃!wreu 3362 {crab 3420 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-reu 3365 df-rab 3421 df-sn 4607 |
| This theorem is referenced by: reuen1 9045 cshwrepswhash1 17127 frcond3 30255 vdgn1frgrv2 30282 ddemeas 34272 wevgblacfn 35136 |
| Copyright terms: Public domain | W3C validator |