MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusn Structured version   Visualization version   GIF version

Theorem reusn 4680
Description: A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
reusn (∃!𝑥𝐴 𝜑 ↔ ∃𝑦{𝑥𝐴𝜑} = {𝑦})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem reusn
StepHypRef Expression
1 euabsn2 4678 . 2 (∃!𝑥(𝑥𝐴𝜑) ↔ ∃𝑦{𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦})
2 df-reu 3351 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
3 df-rab 3405 . . . 4 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
43eqeq1i 2742 . . 3 ({𝑥𝐴𝜑} = {𝑦} ↔ {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦})
54exbii 1850 . 2 (∃𝑦{𝑥𝐴𝜑} = {𝑦} ↔ ∃𝑦{𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦})
61, 2, 53bitr4i 303 1 (∃!𝑥𝐴 𝜑 ↔ ∃𝑦{𝑥𝐴𝜑} = {𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1541  wex 1781  wcel 2106  ∃!weu 2567  {cab 2714  ∃!wreu 3348  {crab 3404  {csn 4578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-reu 3351  df-rab 3405  df-sn 4579
This theorem is referenced by:  reuen1  8895  cshwrepswhash1  16902  frcond3  28921  vdgn1frgrv2  28948  ddemeas  32500
  Copyright terms: Public domain W3C validator