Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reusn | Structured version Visualization version GIF version |
Description: A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
reusn | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euabsn2 4661 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦{𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦}) | |
2 | df-reu 3072 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rab 3073 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
4 | 3 | eqeq1i 2743 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦} ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦}) |
5 | 4 | exbii 1850 | . 2 ⊢ (∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦} ↔ ∃𝑦{𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦}) |
6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃!weu 2568 {cab 2715 ∃!wreu 3066 {crab 3068 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-reu 3072 df-rab 3073 df-sn 4562 |
This theorem is referenced by: reuen1 8815 cshwrepswhash1 16804 frcond3 28633 vdgn1frgrv2 28660 ddemeas 32204 |
Copyright terms: Public domain | W3C validator |