| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7413 |
. . . . . . 7
⊢ (𝑗 = 0 → (𝐴↑𝑗) = (𝐴↑0)) |
| 2 | | oveq2 7413 |
. . . . . . 7
⊢ (𝑗 = 0 → (𝐵↑𝑗) = (𝐵↑0)) |
| 3 | 1, 2 | breq12d 5132 |
. . . . . 6
⊢ (𝑗 = 0 → ((𝐴↑𝑗) ≤ (𝐵↑𝑗) ↔ (𝐴↑0) ≤ (𝐵↑0))) |
| 4 | 3 | imbi2d 340 |
. . . . 5
⊢ (𝑗 = 0 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴↑𝑗) ≤ (𝐵↑𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴↑0) ≤ (𝐵↑0)))) |
| 5 | | oveq2 7413 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (𝐴↑𝑗) = (𝐴↑𝑘)) |
| 6 | | oveq2 7413 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (𝐵↑𝑗) = (𝐵↑𝑘)) |
| 7 | 5, 6 | breq12d 5132 |
. . . . . 6
⊢ (𝑗 = 𝑘 → ((𝐴↑𝑗) ≤ (𝐵↑𝑗) ↔ (𝐴↑𝑘) ≤ (𝐵↑𝑘))) |
| 8 | 7 | imbi2d 340 |
. . . . 5
⊢ (𝑗 = 𝑘 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴↑𝑗) ≤ (𝐵↑𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴↑𝑘) ≤ (𝐵↑𝑘)))) |
| 9 | | oveq2 7413 |
. . . . . . 7
⊢ (𝑗 = (𝑘 + 1) → (𝐴↑𝑗) = (𝐴↑(𝑘 + 1))) |
| 10 | | oveq2 7413 |
. . . . . . 7
⊢ (𝑗 = (𝑘 + 1) → (𝐵↑𝑗) = (𝐵↑(𝑘 + 1))) |
| 11 | 9, 10 | breq12d 5132 |
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → ((𝐴↑𝑗) ≤ (𝐵↑𝑗) ↔ (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))) |
| 12 | 11 | imbi2d 340 |
. . . . 5
⊢ (𝑗 = (𝑘 + 1) → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴↑𝑗) ≤ (𝐵↑𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1))))) |
| 13 | | oveq2 7413 |
. . . . . . 7
⊢ (𝑗 = 𝑁 → (𝐴↑𝑗) = (𝐴↑𝑁)) |
| 14 | | oveq2 7413 |
. . . . . . 7
⊢ (𝑗 = 𝑁 → (𝐵↑𝑗) = (𝐵↑𝑁)) |
| 15 | 13, 14 | breq12d 5132 |
. . . . . 6
⊢ (𝑗 = 𝑁 → ((𝐴↑𝑗) ≤ (𝐵↑𝑗) ↔ (𝐴↑𝑁) ≤ (𝐵↑𝑁))) |
| 16 | 15 | imbi2d 340 |
. . . . 5
⊢ (𝑗 = 𝑁 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴↑𝑗) ≤ (𝐵↑𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴↑𝑁) ≤ (𝐵↑𝑁)))) |
| 17 | | recn 11219 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
| 18 | | recn 11219 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) |
| 19 | | exp0 14083 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| 20 | 19 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑0) = 1) |
| 21 | | 1le1 11865 |
. . . . . . . . 9
⊢ 1 ≤
1 |
| 22 | 20, 21 | eqbrtrdi 5158 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑0) ≤
1) |
| 23 | | exp0 14083 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℂ → (𝐵↑0) = 1) |
| 24 | 23 | adantl 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑0) = 1) |
| 25 | 22, 24 | breqtrrd 5147 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑0) ≤ (𝐵↑0)) |
| 26 | 17, 18, 25 | syl2an 596 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴↑0) ≤ (𝐵↑0)) |
| 27 | 26 | adantr 480 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴↑0) ≤ (𝐵↑0)) |
| 28 | | reexpcl 14096 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℝ) |
| 29 | 28 | ad4ant14 752 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ) |
| 30 | | simplll 774 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈
ℝ) |
| 31 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
| 32 | | simplrl 776 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 0 ≤
𝐴) |
| 33 | | expge0 14116 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0
∧ 0 ≤ 𝐴) → 0
≤ (𝐴↑𝑘)) |
| 34 | 30, 31, 32, 33 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 0 ≤
(𝐴↑𝑘)) |
| 35 | | reexpcl 14096 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0)
→ (𝐵↑𝑘) ∈
ℝ) |
| 36 | 35 | ad4ant24 754 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐵↑𝑘) ∈ ℝ) |
| 37 | 29, 34, 36 | jca31 514 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝐴↑𝑘) ∈ ℝ ∧ 0 ≤ (𝐴↑𝑘)) ∧ (𝐵↑𝑘) ∈ ℝ)) |
| 38 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈
ℝ) |
| 39 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵) → 0 ≤ 𝐴) |
| 40 | 38, 39 | anim12i 613 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| 41 | 40 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴 ∈ ℝ ∧ 0 ≤
𝐴)) |
| 42 | | simpllr 775 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℝ) |
| 43 | 37, 41, 42 | jca32 515 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((((𝐴↑𝑘) ∈ ℝ ∧ 0 ≤ (𝐴↑𝑘)) ∧ (𝐵↑𝑘) ∈ ℝ) ∧ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ))) |
| 44 | 43 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ) ∧ (0 ≤ 𝐴
∧ 𝐴 ≤ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴↑𝑘) ≤ (𝐵↑𝑘)) → ((((𝐴↑𝑘) ∈ ℝ ∧ 0 ≤ (𝐴↑𝑘)) ∧ (𝐵↑𝑘) ∈ ℝ) ∧ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ))) |
| 45 | | simplrr 777 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ≤ 𝐵) |
| 46 | 45 | anim1ci 616 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ) ∧ (0 ≤ 𝐴
∧ 𝐴 ≤ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴↑𝑘) ≤ (𝐵↑𝑘)) → ((𝐴↑𝑘) ≤ (𝐵↑𝑘) ∧ 𝐴 ≤ 𝐵)) |
| 47 | | lemul12a 12099 |
. . . . . . . . . 10
⊢
(((((𝐴↑𝑘) ∈ ℝ ∧ 0 ≤
(𝐴↑𝑘)) ∧ (𝐵↑𝑘) ∈ ℝ) ∧ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)) → (((𝐴↑𝑘) ≤ (𝐵↑𝑘) ∧ 𝐴 ≤ 𝐵) → ((𝐴↑𝑘) · 𝐴) ≤ ((𝐵↑𝑘) · 𝐵))) |
| 48 | 44, 46, 47 | sylc 65 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ) ∧ (0 ≤ 𝐴
∧ 𝐴 ≤ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴↑𝑘) ≤ (𝐵↑𝑘)) → ((𝐴↑𝑘) · 𝐴) ≤ ((𝐵↑𝑘) · 𝐵)) |
| 49 | | expp1 14086 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
| 50 | 17, 49 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
| 51 | 50 | ad5ant14 757 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ) ∧ (0 ≤ 𝐴
∧ 𝐴 ≤ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴↑𝑘) ≤ (𝐵↑𝑘)) → (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
| 52 | | expp1 14086 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐵↑(𝑘 + 1)) = ((𝐵↑𝑘) · 𝐵)) |
| 53 | 18, 52 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0)
→ (𝐵↑(𝑘 + 1)) = ((𝐵↑𝑘) · 𝐵)) |
| 54 | 53 | ad5ant24 760 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ) ∧ (0 ≤ 𝐴
∧ 𝐴 ≤ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴↑𝑘) ≤ (𝐵↑𝑘)) → (𝐵↑(𝑘 + 1)) = ((𝐵↑𝑘) · 𝐵)) |
| 55 | 48, 51, 54 | 3brtr4d 5151 |
. . . . . . . 8
⊢
(((((𝐴 ∈
ℝ ∧ 𝐵 ∈
ℝ) ∧ (0 ≤ 𝐴
∧ 𝐴 ≤ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴↑𝑘) ≤ (𝐵↑𝑘)) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1))) |
| 56 | 55 | ex 412 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) ≤ (𝐵↑𝑘) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))) |
| 57 | 56 | expcom 413 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
→ (((𝐴 ∈ ℝ
∧ 𝐵 ∈ ℝ)
∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → ((𝐴↑𝑘) ≤ (𝐵↑𝑘) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1))))) |
| 58 | 57 | a2d 29 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
→ ((((𝐴 ∈ ℝ
∧ 𝐵 ∈ ℝ)
∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴↑𝑘) ≤ (𝐵↑𝑘)) → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1))))) |
| 59 | 4, 8, 12, 16, 27, 58 | nn0ind 12688 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (((𝐴 ∈ ℝ
∧ 𝐵 ∈ ℝ)
∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴↑𝑁) ≤ (𝐵↑𝑁))) |
| 60 | 59 | exp4c 432 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (𝐴 ∈ ℝ
→ (𝐵 ∈ ℝ
→ ((0 ≤ 𝐴 ∧
𝐴 ≤ 𝐵) → (𝐴↑𝑁) ≤ (𝐵↑𝑁))))) |
| 61 | 60 | com3l 89 |
. 2
⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝑁 ∈ ℕ0
→ ((0 ≤ 𝐴 ∧
𝐴 ≤ 𝐵) → (𝐴↑𝑁) ≤ (𝐵↑𝑁))))) |
| 62 | 61 | 3imp1 1348 |
1
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0)
∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴↑𝑁) ≤ (𝐵↑𝑁)) |