MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leexp1a Structured version   Visualization version   GIF version

Theorem leexp1a 14212
Description: Weak base ordering relationship for exponentiation of real bases to a fixed nonnegative integer exponent. (Contributed by NM, 18-Dec-2005.)
Assertion
Ref Expression
leexp1a (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁))

Proof of Theorem leexp1a
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . . . 7 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
2 oveq2 7439 . . . . . . 7 (𝑗 = 0 → (𝐵𝑗) = (𝐵↑0))
31, 2breq12d 5161 . . . . . 6 (𝑗 = 0 → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴↑0) ≤ (𝐵↑0)))
43imbi2d 340 . . . . 5 (𝑗 = 0 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑0) ≤ (𝐵↑0))))
5 oveq2 7439 . . . . . . 7 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
6 oveq2 7439 . . . . . . 7 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
75, 6breq12d 5161 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴𝑘) ≤ (𝐵𝑘)))
87imbi2d 340 . . . . 5 (𝑗 = 𝑘 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑘) ≤ (𝐵𝑘))))
9 oveq2 7439 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
10 oveq2 7439 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐵𝑗) = (𝐵↑(𝑘 + 1)))
119, 10breq12d 5161 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1))))
1211imbi2d 340 . . . . 5 (𝑗 = (𝑘 + 1) → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))))
13 oveq2 7439 . . . . . . 7 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
14 oveq2 7439 . . . . . . 7 (𝑗 = 𝑁 → (𝐵𝑗) = (𝐵𝑁))
1513, 14breq12d 5161 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴𝑁) ≤ (𝐵𝑁)))
1615imbi2d 340 . . . . 5 (𝑗 = 𝑁 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁))))
17 recn 11243 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
18 recn 11243 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
19 exp0 14103 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2019adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑0) = 1)
21 1le1 11889 . . . . . . . . 9 1 ≤ 1
2220, 21eqbrtrdi 5187 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑0) ≤ 1)
23 exp0 14103 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
2423adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑0) = 1)
2522, 24breqtrrd 5176 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑0) ≤ (𝐵↑0))
2617, 18, 25syl2an 596 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴↑0) ≤ (𝐵↑0))
2726adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑0) ≤ (𝐵↑0))
28 reexpcl 14116 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
2928ad4ant14 752 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
30 simplll 775 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
31 simpr 484 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
32 simplrl 777 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 0 ≤ 𝐴)
33 expge0 14136 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑘))
3430, 31, 32, 33syl3anc 1370 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐴𝑘))
35 reexpcl 14116 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
3635ad4ant24 754 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
3729, 34, 36jca31 514 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ))
38 simpl 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
39 simpl 482 . . . . . . . . . . . . . 14 ((0 ≤ 𝐴𝐴𝐵) → 0 ≤ 𝐴)
4038, 39anim12i 613 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4140adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
42 simpllr 776 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℝ)
4337, 41, 42jca32 515 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → ((((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)))
4443adantr 480 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → ((((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)))
45 simplrr 778 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴𝐵)
4645anim1ci 616 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → ((𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝐴𝐵))
47 lemul12a 12123 . . . . . . . . . 10 (((((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)) → (((𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝐴𝐵) → ((𝐴𝑘) · 𝐴) ≤ ((𝐵𝑘) · 𝐵)))
4844, 46, 47sylc 65 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → ((𝐴𝑘) · 𝐴) ≤ ((𝐵𝑘) · 𝐵))
49 expp1 14106 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5017, 49sylan 580 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5150ad5ant14 758 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
52 expp1 14106 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
5318, 52sylan 580 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
5453ad5ant24 761 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
5548, 51, 543brtr4d 5180 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))
5655ex 412 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≤ (𝐵𝑘) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1))))
5756expcom 413 . . . . . 6 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → ((𝐴𝑘) ≤ (𝐵𝑘) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))))
5857a2d 29 . . . . 5 (𝑘 ∈ ℕ0 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑘) ≤ (𝐵𝑘)) → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))))
594, 8, 12, 16, 27, 58nn0ind 12711 . . . 4 (𝑁 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁)))
6059exp4c 432 . . 3 (𝑁 ∈ ℕ0 → (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → ((0 ≤ 𝐴𝐴𝐵) → (𝐴𝑁) ≤ (𝐵𝑁)))))
6160com3l 89 . 2 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝑁 ∈ ℕ0 → ((0 ≤ 𝐴𝐴𝐵) → (𝐴𝑁) ≤ (𝐵𝑁)))))
62613imp1 1346 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cle 11294  0cn0 12524  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-exp 14100
This theorem is referenced by:  expubnd  14214  facubnd  14336  pserulm  26480  logexprlim  27284  ostth2lem2  27693  ostth3  27697  leexp1ad  41954  fltnltalem  42649  dvdivbd  45879  stoweidlem1  45957  stoweidlem24  45980  etransclem23  46213  lighneallem4a  47533
  Copyright terms: Public domain W3C validator