MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2a4 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2a4 29794
Description: Lemma 4 for clwlkclwwlklem2a 29795. (Contributed by Alexander van der Vekens, 21-Jun-2018.) (Revised by AV, 11-Apr-2021.)
Hypothesis
Ref Expression
clwlkclwwlklem2.f 𝐹 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))
Assertion
Ref Expression
clwlkclwwlklem2a4 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))) β†’ ({(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸 β†’ (πΈβ€˜(πΉβ€˜πΌ)) = {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))})))
Distinct variable groups:   π‘₯,𝑃   π‘₯,𝐸   π‘₯,𝑉   π‘₯,𝐼
Allowed substitution hints:   𝑅(π‘₯)   𝐹(π‘₯)

Proof of Theorem clwlkclwwlklem2a4
StepHypRef Expression
1 fveq2 6891 . . . . . . . . . 10 (𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ (πΉβ€˜πΌ) = (πΉβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)))
2 lencl 14507 . . . . . . . . . . 11 (𝑃 ∈ Word 𝑉 β†’ (β™―β€˜π‘ƒ) ∈ β„•0)
3 clwlkclwwlklem2.f . . . . . . . . . . . 12 𝐹 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ if(π‘₯ < ((β™―β€˜π‘ƒ) βˆ’ 2), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}), (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜0)})))
43clwlkclwwlklem2fv2 29793 . . . . . . . . . . 11 (((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (πΉβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)) = (β—‘πΈβ€˜{(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)}))
52, 4sylan 579 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (πΉβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)) = (β—‘πΈβ€˜{(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)}))
61, 5sylan9eqr 2789 . . . . . . . . 9 (((𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ (πΉβ€˜πΌ) = (β—‘πΈβ€˜{(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)}))
76ex 412 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ (πΉβ€˜πΌ) = (β—‘πΈβ€˜{(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)})))
873adant1 1128 . . . . . . 7 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ (πΉβ€˜πΌ) = (β—‘πΈβ€˜{(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)})))
98ad2antrr 725 . . . . . 6 ((((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸) β†’ (𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ (πΉβ€˜πΌ) = (β—‘πΈβ€˜{(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)})))
109impcom 407 . . . . 5 ((𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) ∧ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸)) β†’ (πΉβ€˜πΌ) = (β—‘πΈβ€˜{(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)}))
1110fveq2d 6895 . . . 4 ((𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) ∧ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸)) β†’ (πΈβ€˜(πΉβ€˜πΌ)) = (πΈβ€˜(β—‘πΈβ€˜{(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)})))
12 f1f1orn 6844 . . . . . . 7 (𝐸:dom 𝐸–1-1→𝑅 β†’ 𝐸:dom 𝐸–1-1-ontoβ†’ran 𝐸)
13123ad2ant1 1131 . . . . . 6 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ 𝐸:dom 𝐸–1-1-ontoβ†’ran 𝐸)
1413ad2antrr 725 . . . . 5 ((((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸) β†’ 𝐸:dom 𝐸–1-1-ontoβ†’ran 𝐸)
15 lsw 14538 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Word 𝑉 β†’ (lastSβ€˜π‘ƒ) = (π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1)))
1615eqeq1d 2729 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Word 𝑉 β†’ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ↔ (π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1)) = (π‘ƒβ€˜0)))
17 nn0cn 12504 . . . . . . . . . . . . . . . . . . . . . 22 ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (β™―β€˜π‘ƒ) ∈ β„‚)
18 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 ((β™―β€˜π‘ƒ) ∈ β„‚ β†’ (β™―β€˜π‘ƒ) ∈ β„‚)
19 2cnd 12312 . . . . . . . . . . . . . . . . . . . . . . . 24 ((β™―β€˜π‘ƒ) ∈ β„‚ β†’ 2 ∈ β„‚)
20 1cnd 11231 . . . . . . . . . . . . . . . . . . . . . . . 24 ((β™―β€˜π‘ƒ) ∈ β„‚ β†’ 1 ∈ β„‚)
2118, 19, 20subsubd 11621 . . . . . . . . . . . . . . . . . . . . . . 23 ((β™―β€˜π‘ƒ) ∈ β„‚ β†’ ((β™―β€˜π‘ƒ) βˆ’ (2 βˆ’ 1)) = (((β™―β€˜π‘ƒ) βˆ’ 2) + 1))
22 2m1e1 12360 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 βˆ’ 1) = 1
2322a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((β™―β€˜π‘ƒ) ∈ β„‚ β†’ (2 βˆ’ 1) = 1)
2423oveq2d 7430 . . . . . . . . . . . . . . . . . . . . . . 23 ((β™―β€˜π‘ƒ) ∈ β„‚ β†’ ((β™―β€˜π‘ƒ) βˆ’ (2 βˆ’ 1)) = ((β™―β€˜π‘ƒ) βˆ’ 1))
2521, 24eqtr3d 2769 . . . . . . . . . . . . . . . . . . . . . 22 ((β™―β€˜π‘ƒ) ∈ β„‚ β†’ (((β™―β€˜π‘ƒ) βˆ’ 2) + 1) = ((β™―β€˜π‘ƒ) βˆ’ 1))
262, 17, 253syl 18 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Word 𝑉 β†’ (((β™―β€˜π‘ƒ) βˆ’ 2) + 1) = ((β™―β€˜π‘ƒ) βˆ’ 1))
2726adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ Word 𝑉 ∧ (π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1)) = (π‘ƒβ€˜0)) β†’ (((β™―β€˜π‘ƒ) βˆ’ 2) + 1) = ((β™―β€˜π‘ƒ) βˆ’ 1))
2827fveq2d 6895 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ Word 𝑉 ∧ (π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1)) = (π‘ƒβ€˜0)) β†’ (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)) = (π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1)))
29 eqeq2 2739 . . . . . . . . . . . . . . . . . . . . 21 ((π‘ƒβ€˜0) = (π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1)) β†’ ((π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)) = (π‘ƒβ€˜0) ↔ (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)) = (π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1))))
3029eqcoms 2735 . . . . . . . . . . . . . . . . . . . 20 ((π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1)) = (π‘ƒβ€˜0) β†’ ((π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)) = (π‘ƒβ€˜0) ↔ (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)) = (π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1))))
3130adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ Word 𝑉 ∧ (π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1)) = (π‘ƒβ€˜0)) β†’ ((π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)) = (π‘ƒβ€˜0) ↔ (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)) = (π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1))))
3228, 31mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ Word 𝑉 ∧ (π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1)) = (π‘ƒβ€˜0)) β†’ (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)) = (π‘ƒβ€˜0))
3332ex 412 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Word 𝑉 β†’ ((π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1)) = (π‘ƒβ€˜0) β†’ (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)) = (π‘ƒβ€˜0)))
3416, 33sylbid 239 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 β†’ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) β†’ (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)) = (π‘ƒβ€˜0)))
35343ad2ant2 1132 . . . . . . . . . . . . . . 15 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) β†’ (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)) = (π‘ƒβ€˜0)))
3635com12 32 . . . . . . . . . . . . . 14 ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) β†’ ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)) = (π‘ƒβ€˜0)))
3736adantr 480 . . . . . . . . . . . . 13 (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))) β†’ ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)) = (π‘ƒβ€˜0)))
3837impcom 407 . . . . . . . . . . . 12 (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) β†’ (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)) = (π‘ƒβ€˜0))
3938adantr 480 . . . . . . . . . . 11 ((((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)) = (π‘ƒβ€˜0))
4039preq2d 4740 . . . . . . . . . 10 ((((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1))} = {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)})
41 fveq2 6891 . . . . . . . . . . . . 13 (𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ (π‘ƒβ€˜πΌ) = (π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)))
42 fvoveq1 7437 . . . . . . . . . . . . 13 (𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ (π‘ƒβ€˜(𝐼 + 1)) = (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)))
4341, 42preq12d 4741 . . . . . . . . . . . 12 (𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} = {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1))})
4443eqeq1d 2729 . . . . . . . . . . 11 (𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ ({(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} = {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ↔ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1))} = {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)}))
4544adantl 481 . . . . . . . . . 10 ((((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ ({(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} = {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ↔ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1))} = {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)}))
4640, 45mpbird 257 . . . . . . . . 9 ((((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} = {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)})
4746eleq1d 2813 . . . . . . . 8 ((((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ ({(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸 ↔ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸))
4847biimpd 228 . . . . . . 7 ((((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ ({(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸 β†’ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸))
4948impancom 451 . . . . . 6 ((((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸) β†’ (𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸))
5049impcom 407 . . . . 5 ((𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) ∧ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸)) β†’ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)
51 f1ocnvfv2 7280 . . . . 5 ((𝐸:dom 𝐸–1-1-ontoβ†’ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸) β†’ (πΈβ€˜(β—‘πΈβ€˜{(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)})) = {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)})
5214, 50, 51syl2an2 685 . . . 4 ((𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) ∧ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸)) β†’ (πΈβ€˜(β—‘πΈβ€˜{(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)})) = {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)})
53 eqcom 2734 . . . . . . . . . . . . . . . . . . 19 ((π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1)) = (π‘ƒβ€˜0) ↔ (π‘ƒβ€˜0) = (π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1)))
5453biimpi 215 . . . . . . . . . . . . . . . . . 18 ((π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1)) = (π‘ƒβ€˜0) β†’ (π‘ƒβ€˜0) = (π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1)))
55 1e2m1 12361 . . . . . . . . . . . . . . . . . . . . . 22 1 = (2 βˆ’ 1)
5655a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Word 𝑉 β†’ 1 = (2 βˆ’ 1))
5756oveq2d 7430 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ Word 𝑉 β†’ ((β™―β€˜π‘ƒ) βˆ’ 1) = ((β™―β€˜π‘ƒ) βˆ’ (2 βˆ’ 1)))
582, 17syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Word 𝑉 β†’ (β™―β€˜π‘ƒ) ∈ β„‚)
59 2cnd 12312 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Word 𝑉 β†’ 2 ∈ β„‚)
60 1cnd 11231 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Word 𝑉 β†’ 1 ∈ β„‚)
6158, 59, 60subsubd 11621 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ Word 𝑉 β†’ ((β™―β€˜π‘ƒ) βˆ’ (2 βˆ’ 1)) = (((β™―β€˜π‘ƒ) βˆ’ 2) + 1))
6257, 61eqtrd 2767 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 β†’ ((β™―β€˜π‘ƒ) βˆ’ 1) = (((β™―β€˜π‘ƒ) βˆ’ 2) + 1))
6362fveq2d 6895 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Word 𝑉 β†’ (π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1)) = (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)))
6454, 63sylan9eqr 2789 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ Word 𝑉 ∧ (π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1)) = (π‘ƒβ€˜0)) β†’ (π‘ƒβ€˜0) = (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)))
6564ex 412 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 β†’ ((π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 1)) = (π‘ƒβ€˜0) β†’ (π‘ƒβ€˜0) = (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1))))
6616, 65sylbid 239 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word 𝑉 β†’ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) β†’ (π‘ƒβ€˜0) = (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1))))
6766imp 406 . . . . . . . . . . . . . 14 ((𝑃 ∈ Word 𝑉 ∧ (lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0)) β†’ (π‘ƒβ€˜0) = (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1)))
6867preq2d 4740 . . . . . . . . . . . . 13 ((𝑃 ∈ Word 𝑉 ∧ (lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0)) β†’ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} = {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1))})
6968adantr 480 . . . . . . . . . . . 12 (((𝑃 ∈ Word 𝑉 ∧ (lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0)) ∧ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} = {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1))})
7043adantl 481 . . . . . . . . . . . 12 (((𝑃 ∈ Word 𝑉 ∧ (lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0)) ∧ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} = {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜(((β™―β€˜π‘ƒ) βˆ’ 2) + 1))})
7169, 70eqtr4d 2770 . . . . . . . . . . 11 (((𝑃 ∈ Word 𝑉 ∧ (lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0)) ∧ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} = {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))})
7271exp31 419 . . . . . . . . . 10 (𝑃 ∈ Word 𝑉 β†’ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) β†’ (𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} = {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))})))
73723ad2ant2 1132 . . . . . . . . 9 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) β†’ (𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} = {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))})))
7473com12 32 . . . . . . . 8 ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) β†’ ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} = {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))})))
7574adantr 480 . . . . . . 7 (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))) β†’ ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} = {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))})))
7675impcom 407 . . . . . 6 (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) β†’ (𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} = {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))}))
7776adantr 480 . . . . 5 ((((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸) β†’ (𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} = {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))}))
7877impcom 407 . . . 4 ((𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) ∧ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸)) β†’ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} = {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))})
7911, 52, 783eqtrd 2771 . . 3 ((𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) ∧ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸)) β†’ (πΈβ€˜(πΉβ€˜πΌ)) = {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))})
80 simpll 766 . . . . . . . . . . . . . . . . 17 ((((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ (𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2))) β†’ (β™―β€˜π‘ƒ) ∈ β„•0)
81 oveq1 7421 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((β™―β€˜π‘ƒ) = 2 β†’ ((β™―β€˜π‘ƒ) βˆ’ 1) = (2 βˆ’ 1))
8281, 22eqtrdi 2783 . . . . . . . . . . . . . . . . . . . . . . . 24 ((β™―β€˜π‘ƒ) = 2 β†’ ((β™―β€˜π‘ƒ) βˆ’ 1) = 1)
8382oveq2d 7430 . . . . . . . . . . . . . . . . . . . . . . 23 ((β™―β€˜π‘ƒ) = 2 β†’ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) = (0..^1))
8483eleq2d 2814 . . . . . . . . . . . . . . . . . . . . . 22 ((β™―β€˜π‘ƒ) = 2 β†’ (𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↔ 𝐼 ∈ (0..^1)))
85 oveq1 7421 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((β™―β€˜π‘ƒ) = 2 β†’ ((β™―β€˜π‘ƒ) βˆ’ 2) = (2 βˆ’ 2))
86 2cn 12309 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ β„‚
8786subidi 11553 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 βˆ’ 2) = 0
8885, 87eqtrdi 2783 . . . . . . . . . . . . . . . . . . . . . . . 24 ((β™―β€˜π‘ƒ) = 2 β†’ ((β™―β€˜π‘ƒ) βˆ’ 2) = 0)
8988eqeq2d 2738 . . . . . . . . . . . . . . . . . . . . . . 23 ((β™―β€˜π‘ƒ) = 2 β†’ (𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) ↔ 𝐼 = 0))
9089notbid 318 . . . . . . . . . . . . . . . . . . . . . 22 ((β™―β€˜π‘ƒ) = 2 β†’ (Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) ↔ Β¬ 𝐼 = 0))
9184, 90anbi12d 630 . . . . . . . . . . . . . . . . . . . . 21 ((β™―β€˜π‘ƒ) = 2 β†’ ((𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) ↔ (𝐼 ∈ (0..^1) ∧ Β¬ 𝐼 = 0)))
92 elsni 4641 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ {0} β†’ 𝐼 = 0)
9392pm2.24d 151 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐼 ∈ {0} β†’ (Β¬ 𝐼 = 0 β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2))))
94 fzo01 13738 . . . . . . . . . . . . . . . . . . . . . . 23 (0..^1) = {0}
9593, 94eleq2s 2846 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼 ∈ (0..^1) β†’ (Β¬ 𝐼 = 0 β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2))))
9695imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ (0..^1) ∧ Β¬ 𝐼 = 0) β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2)))
9791, 96biimtrdi 252 . . . . . . . . . . . . . . . . . . . 20 ((β™―β€˜π‘ƒ) = 2 β†’ ((𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2))))
9897adantld 490 . . . . . . . . . . . . . . . . . . 19 ((β™―β€˜π‘ƒ) = 2 β†’ ((((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ (𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2))) β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2))))
99 df-ne 2936 . . . . . . . . . . . . . . . . . . . . . . 23 ((β™―β€˜π‘ƒ) β‰  2 ↔ Β¬ (β™―β€˜π‘ƒ) = 2)
100 2re 12308 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℝ
101100a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ 2 ∈ ℝ)
102 nn0re 12503 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (β™―β€˜π‘ƒ) ∈ ℝ)
103102adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (β™―β€˜π‘ƒ) ∈ ℝ)
104 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ 2 ≀ (β™―β€˜π‘ƒ))
105101, 103, 104leltned 11389 . . . . . . . . . . . . . . . . . . . . . . . 24 (((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (2 < (β™―β€˜π‘ƒ) ↔ (β™―β€˜π‘ƒ) β‰  2))
106 elfzo0 13697 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↔ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 1) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 1)))
107 simp-4l 782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) ∧ 2 < (β™―β€˜π‘ƒ)) ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 1)) β†’ 𝐼 ∈ β„•0)
108 nn0z 12605 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (β™―β€˜π‘ƒ) ∈ β„€)
109 2z 12616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2 ∈ β„€
110109a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ 2 ∈ β„€)
111108, 110zsubcld 12693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„€)
112111adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 < (β™―β€˜π‘ƒ)) β†’ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„€)
113100a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ 2 ∈ ℝ)
114113, 102posdifd 11823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (2 < (β™―β€˜π‘ƒ) ↔ 0 < ((β™―β€˜π‘ƒ) βˆ’ 2)))
115114biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 < (β™―β€˜π‘ƒ)) β†’ 0 < ((β™―β€˜π‘ƒ) βˆ’ 2))
116 elnnz 12590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ↔ (((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„€ ∧ 0 < ((β™―β€˜π‘ƒ) βˆ’ 2)))
117112, 115, 116sylanbrc 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 < (β™―β€˜π‘ƒ)) β†’ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„•)
118117ad5ant24 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) ∧ 2 < (β™―β€˜π‘ƒ)) ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 1)) β†’ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„•)
119 nn0z 12605 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐼 ∈ β„•0 β†’ 𝐼 ∈ β„€)
120 peano2zm 12627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((β™―β€˜π‘ƒ) ∈ β„€ β†’ ((β™―β€˜π‘ƒ) βˆ’ 1) ∈ β„€)
121108, 120syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ ((β™―β€˜π‘ƒ) βˆ’ 1) ∈ β„€)
122 zltlem1 12637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝐼 ∈ β„€ ∧ ((β™―β€˜π‘ƒ) βˆ’ 1) ∈ β„€) β†’ (𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 1) ↔ 𝐼 ≀ (((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 1)))
123119, 121, 122syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) β†’ (𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 1) ↔ 𝐼 ≀ (((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 1)))
12417adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) β†’ (β™―β€˜π‘ƒ) ∈ β„‚)
125 1cnd 11231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) β†’ 1 ∈ β„‚)
126124, 125, 125subsub4d 11624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) β†’ (((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 1) = ((β™―β€˜π‘ƒ) βˆ’ (1 + 1)))
127 1p1e2 12359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (1 + 1) = 2
128127a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) β†’ (1 + 1) = 2)
129128oveq2d 7430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) β†’ ((β™―β€˜π‘ƒ) βˆ’ (1 + 1)) = ((β™―β€˜π‘ƒ) βˆ’ 2))
130126, 129eqtrd 2767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) β†’ (((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 1) = ((β™―β€˜π‘ƒ) βˆ’ 2))
131130breq2d 5154 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) β†’ (𝐼 ≀ (((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 1) ↔ 𝐼 ≀ ((β™―β€˜π‘ƒ) βˆ’ 2)))
132123, 131bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) β†’ (𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 1) ↔ 𝐼 ≀ ((β™―β€˜π‘ƒ) βˆ’ 2)))
133 necom 2989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((β™―β€˜π‘ƒ) βˆ’ 2) β‰  𝐼 ↔ 𝐼 β‰  ((β™―β€˜π‘ƒ) βˆ’ 2))
134 df-ne 2936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐼 β‰  ((β™―β€˜π‘ƒ) βˆ’ 2) ↔ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2))
135133, 134bitr2i 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) ↔ ((β™―β€˜π‘ƒ) βˆ’ 2) β‰  𝐼)
136 nn0re 12503 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐼 ∈ β„•0 β†’ 𝐼 ∈ ℝ)
137136ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ 𝐼 ≀ ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ 𝐼 ∈ ℝ)
138102, 113resubcld 11664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ ℝ)
139138ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ 𝐼 ≀ ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ ℝ)
140 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ 𝐼 ≀ ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ 𝐼 ≀ ((β™―β€˜π‘ƒ) βˆ’ 2))
141 leltne 11325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝐼 ∈ ℝ ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ ℝ ∧ 𝐼 ≀ ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ (𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2) ↔ ((β™―β€˜π‘ƒ) βˆ’ 2) β‰  𝐼))
142141bicomd 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐼 ∈ ℝ ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ ℝ ∧ 𝐼 ≀ ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ (((β™―β€˜π‘ƒ) βˆ’ 2) β‰  𝐼 ↔ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2)))
143137, 139, 140, 142syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ 𝐼 ≀ ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ (((β™―β€˜π‘ƒ) βˆ’ 2) β‰  𝐼 ↔ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2)))
144143biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ 𝐼 ≀ ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ (((β™―β€˜π‘ƒ) βˆ’ 2) β‰  𝐼 β†’ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2)))
145135, 144biimtrid 241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ 𝐼 ≀ ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ (Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2)))
146145ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) β†’ (𝐼 ≀ ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ (Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2))))
147132, 146sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) β†’ (𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 1) β†’ (Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2))))
148147com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) β†’ (Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ (𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 1) β†’ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2))))
149148imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ (𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 1) β†’ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2)))
150149adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) ∧ 2 < (β™―β€˜π‘ƒ)) β†’ (𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 1) β†’ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2)))
151150imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) ∧ 2 < (β™―β€˜π‘ƒ)) ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 1)) β†’ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2))
152107, 118, 1513jca 1126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) ∧ 2 < (β™―β€˜π‘ƒ)) ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 1)) β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2)))
153152ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐼 ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) ∧ 2 < (β™―β€˜π‘ƒ)) β†’ (𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 1) β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2))))
154153exp41 434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐼 ∈ β„•0 β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ (2 < (β™―β€˜π‘ƒ) β†’ (𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 1) β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2)))))))
155154com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐼 ∈ β„•0 β†’ (𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 1) β†’ (Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ (2 < (β™―β€˜π‘ƒ) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2)))))))
156155imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐼 ∈ β„•0 ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 1)) β†’ (Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ (2 < (β™―β€˜π‘ƒ) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2))))))
1571563adant2 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 1) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 1)) β†’ (Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ (2 < (β™―β€˜π‘ƒ) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2))))))
158106, 157sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) β†’ (Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ (2 < (β™―β€˜π‘ƒ) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2))))))
159158imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ (2 < (β™―β€˜π‘ƒ) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2)))))
160159com13 88 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (2 < (β™―β€˜π‘ƒ) β†’ ((𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2)))))
161160adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (2 < (β™―β€˜π‘ƒ) β†’ ((𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2)))))
162105, 161sylbird 260 . . . . . . . . . . . . . . . . . . . . . . 23 (((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ ((β™―β€˜π‘ƒ) β‰  2 β†’ ((𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2)))))
16399, 162biimtrrid 242 . . . . . . . . . . . . . . . . . . . . . 22 (((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (Β¬ (β™―β€˜π‘ƒ) = 2 β†’ ((𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2)))))
164163com23 86 . . . . . . . . . . . . . . . . . . . . 21 (((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ ((𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ (Β¬ (β™―β€˜π‘ƒ) = 2 β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2)))))
165164imp 406 . . . . . . . . . . . . . . . . . . . 20 ((((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ (𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2))) β†’ (Β¬ (β™―β€˜π‘ƒ) = 2 β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2))))
166165com12 32 . . . . . . . . . . . . . . . . . . 19 (Β¬ (β™―β€˜π‘ƒ) = 2 β†’ ((((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ (𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2))) β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2))))
16798, 166pm2.61i 182 . . . . . . . . . . . . . . . . . 18 ((((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ (𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2))) β†’ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2)))
168 elfzo0 13697 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 2)) ↔ (𝐼 ∈ β„•0 ∧ ((β™―β€˜π‘ƒ) βˆ’ 2) ∈ β„• ∧ 𝐼 < ((β™―β€˜π‘ƒ) βˆ’ 2)))
169167, 168sylibr 233 . . . . . . . . . . . . . . . . 17 ((((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ (𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2))) β†’ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 2)))
17080, 169jca 511 . . . . . . . . . . . . . . . 16 ((((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ (𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2))) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 2))))
171170exp31 419 . . . . . . . . . . . . . . 15 ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (2 ≀ (β™―β€˜π‘ƒ) β†’ ((𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 2))))))
1722, 171syl 17 . . . . . . . . . . . . . 14 (𝑃 ∈ Word 𝑉 β†’ (2 ≀ (β™―β€˜π‘ƒ) β†’ ((𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 2))))))
173172imp 406 . . . . . . . . . . . . 13 ((𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ ((𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 2)))))
1741733adant1 1128 . . . . . . . . . . . 12 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ ((𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∧ Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2)) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 2)))))
175174expd 415 . . . . . . . . . . 11 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) β†’ (Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 2))))))
176175com12 32 . . . . . . . . . 10 (𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) β†’ ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 2))))))
177176adantl 481 . . . . . . . . 9 (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))) β†’ ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 2))))))
178177impcom 407 . . . . . . . 8 (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) β†’ (Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 2)))))
179178adantr 480 . . . . . . 7 ((((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸) β†’ (Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 2)))))
180179impcom 407 . . . . . 6 ((Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) ∧ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸)) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 2))))
1813clwlkclwwlklem2fv1 29792 . . . . . 6 (((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 2))) β†’ (πΉβ€˜πΌ) = (β—‘πΈβ€˜{(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))}))
182180, 181syl 17 . . . . 5 ((Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) ∧ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸)) β†’ (πΉβ€˜πΌ) = (β—‘πΈβ€˜{(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))}))
183182fveq2d 6895 . . . 4 ((Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) ∧ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸)) β†’ (πΈβ€˜(πΉβ€˜πΌ)) = (πΈβ€˜(β—‘πΈβ€˜{(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))})))
184 simprr 772 . . . . 5 ((Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) ∧ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸)) β†’ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸)
185 f1ocnvfv2 7280 . . . . 5 ((𝐸:dom 𝐸–1-1-ontoβ†’ran 𝐸 ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸) β†’ (πΈβ€˜(β—‘πΈβ€˜{(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))})) = {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))})
18614, 184, 185syl2an2 685 . . . 4 ((Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) ∧ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸)) β†’ (πΈβ€˜(β—‘πΈβ€˜{(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))})) = {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))})
187183, 186eqtrd 2767 . . 3 ((Β¬ 𝐼 = ((β™―β€˜π‘ƒ) βˆ’ 2) ∧ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸)) β†’ (πΈβ€˜(πΉβ€˜πΌ)) = {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))})
18879, 187pm2.61ian 811 . 2 ((((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))) ∧ {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸) β†’ (πΈβ€˜(πΉβ€˜πΌ)) = {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))})
189188exp31 419 1 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))) β†’ ({(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))} ∈ ran 𝐸 β†’ (πΈβ€˜(πΉβ€˜πΌ)) = {(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   β‰  wne 2935  ifcif 4524  {csn 4624  {cpr 4626   class class class wbr 5142   ↦ cmpt 5225  β—‘ccnv 5671  dom cdm 5672  ran crn 5673  β€“1-1β†’wf1 6539  β€“1-1-ontoβ†’wf1o 6541  β€˜cfv 6542  (class class class)co 7414  β„‚cc 11128  β„cr 11129  0cc0 11130  1c1 11131   + caddc 11133   < clt 11270   ≀ cle 11271   βˆ’ cmin 11466  β„•cn 12234  2c2 12289  β„•0cn0 12494  β„€cz 12580  ..^cfzo 13651  β™―chash 14313  Word cword 14488  lastSclsw 14536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-n0 12495  df-z 12581  df-uz 12845  df-fz 13509  df-fzo 13652  df-hash 14314  df-word 14489  df-lsw 14537
This theorem is referenced by:  clwlkclwwlklem2a  29795
  Copyright terms: Public domain W3C validator