MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metust Structured version   Visualization version   GIF version

Theorem metust 23165
Description: The uniform structure generated by a metric 𝐷. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metust ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋))
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐹,𝑎

Proof of Theorem metust
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metust.1 . . . 4 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
21metustfbas 23164 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
3 fgcl 22483 . . 3 (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
4 filsspw 22456 . . 3 (((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋))
52, 3, 43syl 18 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋))
6 filtop 22460 . . 3 (((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) → (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹))
72, 3, 63syl 18 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹))
82, 3syl 17 . . . . . . . 8 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
98ad3antrrr 729 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
10 simpllr 775 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
11 simplr 768 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑤 ∈ 𝒫 (𝑋 × 𝑋))
1211elpwid 4508 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑤 ⊆ (𝑋 × 𝑋))
13 simpr 488 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑣𝑤)
14 filss 22458 . . . . . . 7 ((((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) ∧ (𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ 𝑤 ⊆ (𝑋 × 𝑋) ∧ 𝑣𝑤)) → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹))
159, 10, 12, 13, 14syl13anc 1369 . . . . . 6 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹))
1615ex 416 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → (𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)))
1716ralrimiva 3149 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)))
188ad2antrr 725 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
19 simplr 768 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
20 simpr 488 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹))
21 filin 22459 . . . . . 6 ((((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹))
2218, 19, 20, 21syl3anc 1368 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹))
2322ralrimiva 3149 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹))
241metustid 23161 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑢𝐹) → ( I ↾ 𝑋) ⊆ 𝑢)
2524ad5ant24 760 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ( I ↾ 𝑋) ⊆ 𝑢)
26 simpr 488 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢𝑣)
2725, 26sstrd 3925 . . . . . 6 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ( I ↾ 𝑋) ⊆ 𝑣)
28 elfg 22476 . . . . . . . . 9 (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → (𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ↔ (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑢𝐹 𝑢𝑣)))
2928biimpa 480 . . . . . . . 8 ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑢𝐹 𝑢𝑣))
3029simprd 499 . . . . . . 7 ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑢𝐹 𝑢𝑣)
312, 30sylan 583 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑢𝐹 𝑢𝑣)
3227, 31r19.29a 3248 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ( I ↾ 𝑋) ⊆ 𝑣)
338ad3antrrr 729 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
342adantr 484 . . . . . . . . . 10 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
35 ssfg 22477 . . . . . . . . . 10 (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → 𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹))
3634, 35syl 17 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹))
3736ad2antrr 725 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹))
38 simplr 768 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢𝐹)
3937, 38sseldd 3916 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢 ∈ ((𝑋 × 𝑋)filGen𝐹))
4029simpld 498 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ⊆ (𝑋 × 𝑋))
412, 40sylan 583 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ⊆ (𝑋 × 𝑋))
4241ad2antrr 725 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑣 ⊆ (𝑋 × 𝑋))
43 cnvss 5707 . . . . . . . . 9 (𝑣 ⊆ (𝑋 × 𝑋) → 𝑣(𝑋 × 𝑋))
44 cnvxp 5981 . . . . . . . . 9 (𝑋 × 𝑋) = (𝑋 × 𝑋)
4543, 44sseqtrdi 3965 . . . . . . . 8 (𝑣 ⊆ (𝑋 × 𝑋) → 𝑣 ⊆ (𝑋 × 𝑋))
4642, 45syl 17 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑣 ⊆ (𝑋 × 𝑋))
471metustsym 23162 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑢𝐹) → 𝑢 = 𝑢)
4847ad5ant24 760 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢 = 𝑢)
49 cnvss 5707 . . . . . . . . 9 (𝑢𝑣𝑢𝑣)
5049adantl 485 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢𝑣)
5148, 50eqsstrrd 3954 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢𝑣)
52 filss 22458 . . . . . . 7 ((((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) ∧ (𝑢 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ 𝑣 ⊆ (𝑋 × 𝑋) ∧ 𝑢𝑣)) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
5333, 39, 46, 51, 52syl13anc 1369 . . . . . 6 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
5453, 31r19.29a 3248 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
551metustexhalf 23163 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑢𝐹) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑢)
5655ad4ant13 750 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑢)
57 r19.41v 3300 . . . . . . . . 9 (∃𝑤𝐹 ((𝑤𝑤) ⊆ 𝑢𝑢𝑣) ↔ (∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑢𝑢𝑣))
58 sstr 3923 . . . . . . . . . 10 (((𝑤𝑤) ⊆ 𝑢𝑢𝑣) → (𝑤𝑤) ⊆ 𝑣)
5958reximi 3206 . . . . . . . . 9 (∃𝑤𝐹 ((𝑤𝑤) ⊆ 𝑢𝑢𝑣) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣)
6057, 59sylbir 238 . . . . . . . 8 ((∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑢𝑢𝑣) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣)
6156, 60sylancom 591 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣)
6261, 31r19.29a 3248 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣)
63 ssrexv 3982 . . . . . 6 (𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹) → (∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣 → ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣))
6436, 62, 63sylc 65 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)
6532, 54, 643jca 1125 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣))
6617, 23, 653jca 1125 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)))
6766ralrimiva 3149 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)(∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)))
68 elfvex 6678 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
6968adantl 485 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝑋 ∈ V)
70 isust 22809 . . 3 (𝑋 ∈ V → (((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) ↔ (((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)(∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)))))
7169, 70syl 17 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) ↔ (((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)(∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)))))
725, 7, 67, 71mpbir3and 1339 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497  cmpt 5110   I cid 5424   × cxp 5517  ccnv 5518  ran crn 5520  cres 5521  cima 5522  ccom 5523  cfv 6324  (class class class)co 7135  0cc0 10526  +crp 12377  [,)cico 12728  PsMetcpsmet 20075  fBascfbas 20079  filGencfg 20080  Filcfil 22450  UnifOncust 22805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-2 11688  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-psmet 20083  df-fbas 20088  df-fg 20089  df-fil 22451  df-ust 22806
This theorem is referenced by:  cfilucfil  23166  metuust  23167  metucn  23178
  Copyright terms: Public domain W3C validator