| Step | Hyp | Ref
| Expression |
| 1 | | metust.1 |
. . . 4
⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
| 2 | 1 | metustfbas 24570 |
. . 3
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋))) |
| 3 | | fgcl 23886 |
. . 3
⊢ (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋))) |
| 4 | | filsspw 23859 |
. . 3
⊢ (((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋)) |
| 5 | 2, 3, 4 | 3syl 18 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋)) |
| 6 | | filtop 23863 |
. . 3
⊢ (((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) → (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹)) |
| 7 | 2, 3, 6 | 3syl 18 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹)) |
| 8 | 2, 3 | syl 17 |
. . . . . . . 8
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋))) |
| 9 | 8 | ad3antrrr 730 |
. . . . . . 7
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣 ⊆ 𝑤) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋))) |
| 10 | | simpllr 776 |
. . . . . . 7
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣 ⊆ 𝑤) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) |
| 11 | | simplr 769 |
. . . . . . . 8
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣 ⊆ 𝑤) → 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) |
| 12 | 11 | elpwid 4609 |
. . . . . . 7
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣 ⊆ 𝑤) → 𝑤 ⊆ (𝑋 × 𝑋)) |
| 13 | | simpr 484 |
. . . . . . 7
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣 ⊆ 𝑤) → 𝑣 ⊆ 𝑤) |
| 14 | | filss 23861 |
. . . . . . 7
⊢ ((((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) ∧ (𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ 𝑤 ⊆ (𝑋 × 𝑋) ∧ 𝑣 ⊆ 𝑤)) → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) |
| 15 | 9, 10, 12, 13, 14 | syl13anc 1374 |
. . . . . 6
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣 ⊆ 𝑤) → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) |
| 16 | 15 | ex 412 |
. . . . 5
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → (𝑣 ⊆ 𝑤 → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹))) |
| 17 | 16 | ralrimiva 3146 |
. . . 4
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹))) |
| 18 | 8 | ad2antrr 726 |
. . . . . 6
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋))) |
| 19 | | simplr 769 |
. . . . . 6
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) |
| 20 | | simpr 484 |
. . . . . 6
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) |
| 21 | | filin 23862 |
. . . . . 6
⊢ ((((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣 ∩ 𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹)) |
| 22 | 18, 19, 20, 21 | syl3anc 1373 |
. . . . 5
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣 ∩ 𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹)) |
| 23 | 22 | ralrimiva 3146 |
. . . 4
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣 ∩ 𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹)) |
| 24 | 1 | metustid 24567 |
. . . . . . . 8
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑢 ∈ 𝐹) → ( I ↾ 𝑋) ⊆ 𝑢) |
| 25 | 24 | ad5ant24 761 |
. . . . . . 7
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢 ∈ 𝐹) ∧ 𝑢 ⊆ 𝑣) → ( I ↾ 𝑋) ⊆ 𝑢) |
| 26 | | simpr 484 |
. . . . . . 7
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢 ∈ 𝐹) ∧ 𝑢 ⊆ 𝑣) → 𝑢 ⊆ 𝑣) |
| 27 | 25, 26 | sstrd 3994 |
. . . . . 6
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢 ∈ 𝐹) ∧ 𝑢 ⊆ 𝑣) → ( I ↾ 𝑋) ⊆ 𝑣) |
| 28 | | elfg 23879 |
. . . . . . . . 9
⊢ (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → (𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ↔ (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑢 ∈ 𝐹 𝑢 ⊆ 𝑣))) |
| 29 | 28 | biimpa 476 |
. . . . . . . 8
⊢ ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑢 ∈ 𝐹 𝑢 ⊆ 𝑣)) |
| 30 | 29 | simprd 495 |
. . . . . . 7
⊢ ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑢 ∈ 𝐹 𝑢 ⊆ 𝑣) |
| 31 | 2, 30 | sylan 580 |
. . . . . 6
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑢 ∈ 𝐹 𝑢 ⊆ 𝑣) |
| 32 | 27, 31 | r19.29a 3162 |
. . . . 5
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ( I ↾ 𝑋) ⊆ 𝑣) |
| 33 | 8 | ad3antrrr 730 |
. . . . . . 7
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢 ∈ 𝐹) ∧ 𝑢 ⊆ 𝑣) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋))) |
| 34 | 2 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋))) |
| 35 | | ssfg 23880 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → 𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹)) |
| 36 | 34, 35 | syl 17 |
. . . . . . . . 9
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹)) |
| 37 | 36 | ad2antrr 726 |
. . . . . . . 8
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢 ∈ 𝐹) ∧ 𝑢 ⊆ 𝑣) → 𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹)) |
| 38 | | simplr 769 |
. . . . . . . 8
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢 ∈ 𝐹) ∧ 𝑢 ⊆ 𝑣) → 𝑢 ∈ 𝐹) |
| 39 | 37, 38 | sseldd 3984 |
. . . . . . 7
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢 ∈ 𝐹) ∧ 𝑢 ⊆ 𝑣) → 𝑢 ∈ ((𝑋 × 𝑋)filGen𝐹)) |
| 40 | 29 | simpld 494 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ⊆ (𝑋 × 𝑋)) |
| 41 | 2, 40 | sylan 580 |
. . . . . . . . 9
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ⊆ (𝑋 × 𝑋)) |
| 42 | 41 | ad2antrr 726 |
. . . . . . . 8
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢 ∈ 𝐹) ∧ 𝑢 ⊆ 𝑣) → 𝑣 ⊆ (𝑋 × 𝑋)) |
| 43 | | cnvss 5883 |
. . . . . . . . 9
⊢ (𝑣 ⊆ (𝑋 × 𝑋) → ◡𝑣 ⊆ ◡(𝑋 × 𝑋)) |
| 44 | | cnvxp 6177 |
. . . . . . . . 9
⊢ ◡(𝑋 × 𝑋) = (𝑋 × 𝑋) |
| 45 | 43, 44 | sseqtrdi 4024 |
. . . . . . . 8
⊢ (𝑣 ⊆ (𝑋 × 𝑋) → ◡𝑣 ⊆ (𝑋 × 𝑋)) |
| 46 | 42, 45 | syl 17 |
. . . . . . 7
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢 ∈ 𝐹) ∧ 𝑢 ⊆ 𝑣) → ◡𝑣 ⊆ (𝑋 × 𝑋)) |
| 47 | 1 | metustsym 24568 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑢 ∈ 𝐹) → ◡𝑢 = 𝑢) |
| 48 | 47 | ad5ant24 761 |
. . . . . . . 8
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢 ∈ 𝐹) ∧ 𝑢 ⊆ 𝑣) → ◡𝑢 = 𝑢) |
| 49 | | cnvss 5883 |
. . . . . . . . 9
⊢ (𝑢 ⊆ 𝑣 → ◡𝑢 ⊆ ◡𝑣) |
| 50 | 49 | adantl 481 |
. . . . . . . 8
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢 ∈ 𝐹) ∧ 𝑢 ⊆ 𝑣) → ◡𝑢 ⊆ ◡𝑣) |
| 51 | 48, 50 | eqsstrrd 4019 |
. . . . . . 7
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢 ∈ 𝐹) ∧ 𝑢 ⊆ 𝑣) → 𝑢 ⊆ ◡𝑣) |
| 52 | | filss 23861 |
. . . . . . 7
⊢ ((((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) ∧ (𝑢 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ◡𝑣 ⊆ (𝑋 × 𝑋) ∧ 𝑢 ⊆ ◡𝑣)) → ◡𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) |
| 53 | 33, 39, 46, 51, 52 | syl13anc 1374 |
. . . . . 6
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢 ∈ 𝐹) ∧ 𝑢 ⊆ 𝑣) → ◡𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) |
| 54 | 53, 31 | r19.29a 3162 |
. . . . 5
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ◡𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) |
| 55 | 1 | metustexhalf 24569 |
. . . . . . . . 9
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑢 ∈ 𝐹) → ∃𝑤 ∈ 𝐹 (𝑤 ∘ 𝑤) ⊆ 𝑢) |
| 56 | 55 | ad4ant13 751 |
. . . . . . . 8
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢 ∈ 𝐹) ∧ 𝑢 ⊆ 𝑣) → ∃𝑤 ∈ 𝐹 (𝑤 ∘ 𝑤) ⊆ 𝑢) |
| 57 | | r19.41v 3189 |
. . . . . . . . 9
⊢
(∃𝑤 ∈
𝐹 ((𝑤 ∘ 𝑤) ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑣) ↔ (∃𝑤 ∈ 𝐹 (𝑤 ∘ 𝑤) ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑣)) |
| 58 | | sstr 3992 |
. . . . . . . . . 10
⊢ (((𝑤 ∘ 𝑤) ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑣) → (𝑤 ∘ 𝑤) ⊆ 𝑣) |
| 59 | 58 | reximi 3084 |
. . . . . . . . 9
⊢
(∃𝑤 ∈
𝐹 ((𝑤 ∘ 𝑤) ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑣) → ∃𝑤 ∈ 𝐹 (𝑤 ∘ 𝑤) ⊆ 𝑣) |
| 60 | 57, 59 | sylbir 235 |
. . . . . . . 8
⊢
((∃𝑤 ∈
𝐹 (𝑤 ∘ 𝑤) ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑣) → ∃𝑤 ∈ 𝐹 (𝑤 ∘ 𝑤) ⊆ 𝑣) |
| 61 | 56, 60 | sylancom 588 |
. . . . . . 7
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢 ∈ 𝐹) ∧ 𝑢 ⊆ 𝑣) → ∃𝑤 ∈ 𝐹 (𝑤 ∘ 𝑤) ⊆ 𝑣) |
| 62 | 61, 31 | r19.29a 3162 |
. . . . . 6
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑤 ∈ 𝐹 (𝑤 ∘ 𝑤) ⊆ 𝑣) |
| 63 | | ssrexv 4053 |
. . . . . 6
⊢ (𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹) → (∃𝑤 ∈ 𝐹 (𝑤 ∘ 𝑤) ⊆ 𝑣 → ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤 ∘ 𝑤) ⊆ 𝑣)) |
| 64 | 36, 62, 63 | sylc 65 |
. . . . 5
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤 ∘ 𝑤) ⊆ 𝑣) |
| 65 | 32, 54, 64 | 3jca 1129 |
. . . 4
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤 ∘ 𝑤) ⊆ 𝑣)) |
| 66 | 17, 23, 65 | 3jca 1129 |
. . 3
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣 ∩ 𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤 ∘ 𝑤) ⊆ 𝑣))) |
| 67 | 66 | ralrimiva 3146 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)(∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣 ∩ 𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤 ∘ 𝑤) ⊆ 𝑣))) |
| 68 | | elfvex 6944 |
. . . 4
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V) |
| 69 | 68 | adantl 481 |
. . 3
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝑋 ∈ V) |
| 70 | | isust 24212 |
. . 3
⊢ (𝑋 ∈ V → (((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) ↔ (((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)(∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣 ∩ 𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤 ∘ 𝑤) ⊆ 𝑣))))) |
| 71 | 69, 70 | syl 17 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) ↔ (((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)(∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣 ∩ 𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤 ∘ 𝑤) ⊆ 𝑣))))) |
| 72 | 5, 7, 67, 71 | mpbir3and 1343 |
1
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋)) |