MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metust Structured version   Visualization version   GIF version

Theorem metust 22740
Description: The uniform structure generated by a metric 𝐷. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metust ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋))
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐹,𝑎

Proof of Theorem metust
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metust.1 . . . 4 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
21metustfbas 22739 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
3 fgcl 22059 . . 3 (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
4 filsspw 22032 . . 3 (((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋))
52, 3, 43syl 18 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋))
6 filtop 22036 . . 3 (((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) → (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹))
72, 3, 63syl 18 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹))
82, 3syl 17 . . . . . . . 8 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
98ad3antrrr 721 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
10 simpllr 793 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
11 simplr 785 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑤 ∈ 𝒫 (𝑋 × 𝑋))
1211elpwid 4392 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑤 ⊆ (𝑋 × 𝑋))
13 simpr 479 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑣𝑤)
14 filss 22034 . . . . . . 7 ((((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) ∧ (𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ 𝑤 ⊆ (𝑋 × 𝑋) ∧ 𝑣𝑤)) → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹))
159, 10, 12, 13, 14syl13anc 1495 . . . . . 6 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹))
1615ex 403 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → (𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)))
1716ralrimiva 3175 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)))
188ad2antrr 717 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
19 simplr 785 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
20 simpr 479 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹))
21 filin 22035 . . . . . 6 ((((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹))
2218, 19, 20, 21syl3anc 1494 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹))
2322ralrimiva 3175 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹))
241metustid 22736 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑢𝐹) → ( I ↾ 𝑋) ⊆ 𝑢)
2524ad5ant24 775 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ( I ↾ 𝑋) ⊆ 𝑢)
26 simpr 479 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢𝑣)
2725, 26sstrd 3837 . . . . . 6 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ( I ↾ 𝑋) ⊆ 𝑣)
28 elfg 22052 . . . . . . . . 9 (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → (𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ↔ (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑢𝐹 𝑢𝑣)))
2928biimpa 470 . . . . . . . 8 ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑢𝐹 𝑢𝑣))
3029simprd 491 . . . . . . 7 ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑢𝐹 𝑢𝑣)
312, 30sylan 575 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑢𝐹 𝑢𝑣)
3227, 31r19.29a 3288 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ( I ↾ 𝑋) ⊆ 𝑣)
338ad3antrrr 721 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
342adantr 474 . . . . . . . . . 10 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
35 ssfg 22053 . . . . . . . . . 10 (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → 𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹))
3634, 35syl 17 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹))
3736ad2antrr 717 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹))
38 simplr 785 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢𝐹)
3937, 38sseldd 3828 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢 ∈ ((𝑋 × 𝑋)filGen𝐹))
4029simpld 490 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ⊆ (𝑋 × 𝑋))
412, 40sylan 575 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ⊆ (𝑋 × 𝑋))
4241ad2antrr 717 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑣 ⊆ (𝑋 × 𝑋))
43 cnvss 5531 . . . . . . . . 9 (𝑣 ⊆ (𝑋 × 𝑋) → 𝑣(𝑋 × 𝑋))
44 cnvxp 5796 . . . . . . . . 9 (𝑋 × 𝑋) = (𝑋 × 𝑋)
4543, 44syl6sseq 3876 . . . . . . . 8 (𝑣 ⊆ (𝑋 × 𝑋) → 𝑣 ⊆ (𝑋 × 𝑋))
4642, 45syl 17 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑣 ⊆ (𝑋 × 𝑋))
471metustsym 22737 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑢𝐹) → 𝑢 = 𝑢)
4847ad5ant24 775 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢 = 𝑢)
49 cnvss 5531 . . . . . . . . 9 (𝑢𝑣𝑢𝑣)
5049adantl 475 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢𝑣)
5148, 50eqsstr3d 3865 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢𝑣)
52 filss 22034 . . . . . . 7 ((((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) ∧ (𝑢 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ 𝑣 ⊆ (𝑋 × 𝑋) ∧ 𝑢𝑣)) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
5333, 39, 46, 51, 52syl13anc 1495 . . . . . 6 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
5453, 31r19.29a 3288 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
551metustexhalf 22738 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑢𝐹) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑢)
5655ad4ant13 757 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑢)
57 r19.41v 3299 . . . . . . . . 9 (∃𝑤𝐹 ((𝑤𝑤) ⊆ 𝑢𝑢𝑣) ↔ (∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑢𝑢𝑣))
58 sstr 3835 . . . . . . . . . 10 (((𝑤𝑤) ⊆ 𝑢𝑢𝑣) → (𝑤𝑤) ⊆ 𝑣)
5958reximi 3219 . . . . . . . . 9 (∃𝑤𝐹 ((𝑤𝑤) ⊆ 𝑢𝑢𝑣) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣)
6057, 59sylbir 227 . . . . . . . 8 ((∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑢𝑢𝑣) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣)
6156, 26, 60syl2anc 579 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣)
6261, 31r19.29a 3288 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣)
63 ssrexv 3892 . . . . . 6 (𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹) → (∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣 → ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣))
6436, 62, 63sylc 65 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)
6532, 54, 643jca 1162 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣))
6617, 23, 653jca 1162 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)))
6766ralrimiva 3175 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)(∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)))
68 elfvex 6471 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
6968adantl 475 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝑋 ∈ V)
70 isust 22384 . . 3 (𝑋 ∈ V → (((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) ↔ (((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)(∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)))))
7169, 70syl 17 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) ↔ (((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)(∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)))))
725, 7, 67, 71mpbir3and 1446 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wne 2999  wral 3117  wrex 3118  Vcvv 3414  cin 3797  wss 3798  c0 4146  𝒫 cpw 4380  cmpt 4954   I cid 5251   × cxp 5344  ccnv 5345  ran crn 5347  cres 5348  cima 5349  ccom 5350  cfv 6127  (class class class)co 6910  0cc0 10259  +crp 12119  [,)cico 12472  PsMetcpsmet 20097  fBascfbas 20101  filGencfg 20102  Filcfil 22026  UnifOncust 22380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-po 5265  df-so 5266  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-1st 7433  df-2nd 7434  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-2 11421  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-ico 12476  df-psmet 20105  df-fbas 20110  df-fg 20111  df-fil 22027  df-ust 22381
This theorem is referenced by:  cfilucfil  22741  metuust  22742  metucn  22753
  Copyright terms: Public domain W3C validator