MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metust Structured version   Visualization version   GIF version

Theorem metust 23620
Description: The uniform structure generated by a metric 𝐷. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metust ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋))
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐹,𝑎

Proof of Theorem metust
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metust.1 . . . 4 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
21metustfbas 23619 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
3 fgcl 22937 . . 3 (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
4 filsspw 22910 . . 3 (((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋))
52, 3, 43syl 18 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋))
6 filtop 22914 . . 3 (((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) → (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹))
72, 3, 63syl 18 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹))
82, 3syl 17 . . . . . . . 8 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
98ad3antrrr 726 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
10 simpllr 772 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
11 simplr 765 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑤 ∈ 𝒫 (𝑋 × 𝑋))
1211elpwid 4541 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑤 ⊆ (𝑋 × 𝑋))
13 simpr 484 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑣𝑤)
14 filss 22912 . . . . . . 7 ((((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) ∧ (𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ 𝑤 ⊆ (𝑋 × 𝑋) ∧ 𝑣𝑤)) → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹))
159, 10, 12, 13, 14syl13anc 1370 . . . . . 6 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹))
1615ex 412 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → (𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)))
1716ralrimiva 3107 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)))
188ad2antrr 722 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
19 simplr 765 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
20 simpr 484 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹))
21 filin 22913 . . . . . 6 ((((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹))
2218, 19, 20, 21syl3anc 1369 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹))
2322ralrimiva 3107 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹))
241metustid 23616 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑢𝐹) → ( I ↾ 𝑋) ⊆ 𝑢)
2524ad5ant24 757 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ( I ↾ 𝑋) ⊆ 𝑢)
26 simpr 484 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢𝑣)
2725, 26sstrd 3927 . . . . . 6 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ( I ↾ 𝑋) ⊆ 𝑣)
28 elfg 22930 . . . . . . . . 9 (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → (𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ↔ (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑢𝐹 𝑢𝑣)))
2928biimpa 476 . . . . . . . 8 ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑢𝐹 𝑢𝑣))
3029simprd 495 . . . . . . 7 ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑢𝐹 𝑢𝑣)
312, 30sylan 579 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑢𝐹 𝑢𝑣)
3227, 31r19.29a 3217 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ( I ↾ 𝑋) ⊆ 𝑣)
338ad3antrrr 726 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
342adantr 480 . . . . . . . . . 10 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
35 ssfg 22931 . . . . . . . . . 10 (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → 𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹))
3634, 35syl 17 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹))
3736ad2antrr 722 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹))
38 simplr 765 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢𝐹)
3937, 38sseldd 3918 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢 ∈ ((𝑋 × 𝑋)filGen𝐹))
4029simpld 494 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ⊆ (𝑋 × 𝑋))
412, 40sylan 579 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ⊆ (𝑋 × 𝑋))
4241ad2antrr 722 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑣 ⊆ (𝑋 × 𝑋))
43 cnvss 5770 . . . . . . . . 9 (𝑣 ⊆ (𝑋 × 𝑋) → 𝑣(𝑋 × 𝑋))
44 cnvxp 6049 . . . . . . . . 9 (𝑋 × 𝑋) = (𝑋 × 𝑋)
4543, 44sseqtrdi 3967 . . . . . . . 8 (𝑣 ⊆ (𝑋 × 𝑋) → 𝑣 ⊆ (𝑋 × 𝑋))
4642, 45syl 17 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑣 ⊆ (𝑋 × 𝑋))
471metustsym 23617 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑢𝐹) → 𝑢 = 𝑢)
4847ad5ant24 757 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢 = 𝑢)
49 cnvss 5770 . . . . . . . . 9 (𝑢𝑣𝑢𝑣)
5049adantl 481 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢𝑣)
5148, 50eqsstrrd 3956 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢𝑣)
52 filss 22912 . . . . . . 7 ((((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) ∧ (𝑢 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ 𝑣 ⊆ (𝑋 × 𝑋) ∧ 𝑢𝑣)) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
5333, 39, 46, 51, 52syl13anc 1370 . . . . . 6 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
5453, 31r19.29a 3217 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
551metustexhalf 23618 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑢𝐹) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑢)
5655ad4ant13 747 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑢)
57 r19.41v 3273 . . . . . . . . 9 (∃𝑤𝐹 ((𝑤𝑤) ⊆ 𝑢𝑢𝑣) ↔ (∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑢𝑢𝑣))
58 sstr 3925 . . . . . . . . . 10 (((𝑤𝑤) ⊆ 𝑢𝑢𝑣) → (𝑤𝑤) ⊆ 𝑣)
5958reximi 3174 . . . . . . . . 9 (∃𝑤𝐹 ((𝑤𝑤) ⊆ 𝑢𝑢𝑣) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣)
6057, 59sylbir 234 . . . . . . . 8 ((∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑢𝑢𝑣) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣)
6156, 60sylancom 587 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣)
6261, 31r19.29a 3217 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣)
63 ssrexv 3984 . . . . . 6 (𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹) → (∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣 → ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣))
6436, 62, 63sylc 65 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)
6532, 54, 643jca 1126 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣))
6617, 23, 653jca 1126 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)))
6766ralrimiva 3107 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)(∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)))
68 elfvex 6789 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
6968adantl 481 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝑋 ∈ V)
70 isust 23263 . . 3 (𝑋 ∈ V → (((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) ↔ (((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)(∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)))))
7169, 70syl 17 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) ↔ (((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)(∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)))))
725, 7, 67, 71mpbir3and 1340 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  cmpt 5153   I cid 5479   × cxp 5578  ccnv 5579  ran crn 5581  cres 5582  cima 5583  ccom 5584  cfv 6418  (class class class)co 7255  0cc0 10802  +crp 12659  [,)cico 13010  PsMetcpsmet 20494  fBascfbas 20498  filGencfg 20499  Filcfil 22904  UnifOncust 23259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-psmet 20502  df-fbas 20507  df-fg 20508  df-fil 22905  df-ust 23260
This theorem is referenced by:  cfilucfil  23621  metuust  23622  metucn  23633
  Copyright terms: Public domain W3C validator