Step | Hyp | Ref
| Expression |
1 | | cofsmo.1 |
. . . . . . . . . . . . 13
⊢ 𝐶 = {𝑦 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝑦 (𝑓‘𝑤) ∈ (𝑓‘𝑦)} |
2 | 1 | ssrab3 4011 |
. . . . . . . . . . . 12
⊢ 𝐶 ⊆ 𝐵 |
3 | | ssexg 5242 |
. . . . . . . . . . . 12
⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ On) → 𝐶 ∈ V) |
4 | 2, 3 | mpan 686 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ On → 𝐶 ∈ V) |
5 | | onss 7611 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ On → 𝐵 ⊆ On) |
6 | 2, 5 | sstrid 3928 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ On → 𝐶 ⊆ On) |
7 | | epweon 7603 |
. . . . . . . . . . . 12
⊢ E We
On |
8 | | wess 5567 |
. . . . . . . . . . . 12
⊢ (𝐶 ⊆ On → ( E We On
→ E We 𝐶)) |
9 | 6, 7, 8 | mpisyl 21 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ On → E We 𝐶) |
10 | | cofsmo.3 |
. . . . . . . . . . . 12
⊢ 𝑂 = OrdIso( E , 𝐶) |
11 | 10 | oiiso 9226 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ V ∧ E We 𝐶) → 𝑂 Isom E , E (dom 𝑂, 𝐶)) |
12 | 4, 9, 11 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝐵 ∈ On → 𝑂 Isom E , E (dom 𝑂, 𝐶)) |
13 | 12 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → 𝑂 Isom E , E (dom 𝑂, 𝐶)) |
14 | | isof1o 7174 |
. . . . . . . . 9
⊢ (𝑂 Isom E , E (dom 𝑂, 𝐶) → 𝑂:dom 𝑂–1-1-onto→𝐶) |
15 | | f1ofo 6707 |
. . . . . . . . 9
⊢ (𝑂:dom 𝑂–1-1-onto→𝐶 → 𝑂:dom 𝑂–onto→𝐶) |
16 | 13, 14, 15 | 3syl 18 |
. . . . . . . 8
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → 𝑂:dom 𝑂–onto→𝐶) |
17 | | fof 6672 |
. . . . . . . . 9
⊢ (𝑂:dom 𝑂–onto→𝐶 → 𝑂:dom 𝑂⟶𝐶) |
18 | | fss 6601 |
. . . . . . . . 9
⊢ ((𝑂:dom 𝑂⟶𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝑂:dom 𝑂⟶𝐵) |
19 | 17, 2, 18 | sylancl 585 |
. . . . . . . 8
⊢ (𝑂:dom 𝑂–onto→𝐶 → 𝑂:dom 𝑂⟶𝐵) |
20 | 16, 19 | syl 17 |
. . . . . . 7
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → 𝑂:dom 𝑂⟶𝐵) |
21 | 10 | oion 9225 |
. . . . . . . . . 10
⊢ (𝐶 ∈ V → dom 𝑂 ∈ On) |
22 | 4, 21 | syl 17 |
. . . . . . . . 9
⊢ (𝐵 ∈ On → dom 𝑂 ∈ On) |
23 | 22 | ad2antlr 723 |
. . . . . . . 8
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → dom 𝑂 ∈ On) |
24 | | simplr 765 |
. . . . . . . 8
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → 𝐵 ∈ On) |
25 | | eloni 6261 |
. . . . . . . . . . 11
⊢ (dom
𝑂 ∈ On → Ord dom
𝑂) |
26 | | smoiso2 8171 |
. . . . . . . . . . 11
⊢ ((Ord dom
𝑂 ∧ 𝐶 ⊆ On) → ((𝑂:dom 𝑂–onto→𝐶 ∧ Smo 𝑂) ↔ 𝑂 Isom E , E (dom 𝑂, 𝐶))) |
27 | 25, 6, 26 | syl2an 595 |
. . . . . . . . . 10
⊢ ((dom
𝑂 ∈ On ∧ 𝐵 ∈ On) → ((𝑂:dom 𝑂–onto→𝐶 ∧ Smo 𝑂) ↔ 𝑂 Isom E , E (dom 𝑂, 𝐶))) |
28 | 27 | biimpar 477 |
. . . . . . . . 9
⊢ (((dom
𝑂 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑂 Isom E , E (dom 𝑂, 𝐶)) → (𝑂:dom 𝑂–onto→𝐶 ∧ Smo 𝑂)) |
29 | 28 | simprd 495 |
. . . . . . . 8
⊢ (((dom
𝑂 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑂 Isom E , E (dom 𝑂, 𝐶)) → Smo 𝑂) |
30 | 23, 24, 13, 29 | syl21anc 834 |
. . . . . . 7
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → Smo 𝑂) |
31 | | eloni 6261 |
. . . . . . . 8
⊢ (𝐵 ∈ On → Ord 𝐵) |
32 | 31 | ad2antlr 723 |
. . . . . . 7
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → Ord 𝐵) |
33 | | smorndom 8170 |
. . . . . . 7
⊢ ((𝑂:dom 𝑂⟶𝐵 ∧ Smo 𝑂 ∧ Ord 𝐵) → dom 𝑂 ⊆ 𝐵) |
34 | 20, 30, 32, 33 | syl3anc 1369 |
. . . . . 6
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → dom 𝑂 ⊆ 𝐵) |
35 | | onsssuc 6338 |
. . . . . . 7
⊢ ((dom
𝑂 ∈ On ∧ 𝐵 ∈ On) → (dom 𝑂 ⊆ 𝐵 ↔ dom 𝑂 ∈ suc 𝐵)) |
36 | 23, 24, 35 | syl2anc 583 |
. . . . . 6
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → (dom 𝑂 ⊆ 𝐵 ↔ dom 𝑂 ∈ suc 𝐵)) |
37 | 34, 36 | mpbid 231 |
. . . . 5
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → dom 𝑂 ∈ suc 𝐵) |
38 | 37 | adantrr 713 |
. . . 4
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → dom 𝑂 ∈ suc 𝐵) |
39 | | vex 3426 |
. . . . . 6
⊢ 𝑓 ∈ V |
40 | 10 | oiexg 9224 |
. . . . . . . 8
⊢ (𝐶 ∈ V → 𝑂 ∈ V) |
41 | 4, 40 | syl 17 |
. . . . . . 7
⊢ (𝐵 ∈ On → 𝑂 ∈ V) |
42 | 41 | ad2antlr 723 |
. . . . . 6
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → 𝑂 ∈ V) |
43 | | coexg 7750 |
. . . . . 6
⊢ ((𝑓 ∈ V ∧ 𝑂 ∈ V) → (𝑓 ∘ 𝑂) ∈ V) |
44 | 39, 42, 43 | sylancr 586 |
. . . . 5
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → (𝑓 ∘ 𝑂) ∈ V) |
45 | | simprl 767 |
. . . . . . 7
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → 𝑓:𝐵⟶𝐴) |
46 | 20 | adantrr 713 |
. . . . . . 7
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → 𝑂:dom 𝑂⟶𝐵) |
47 | 45, 46 | fcod 6610 |
. . . . . 6
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → (𝑓 ∘ 𝑂):dom 𝑂⟶𝐴) |
48 | | simpr 484 |
. . . . . . . . 9
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → 𝑓:𝐵⟶𝐴) |
49 | 48, 20 | fcod 6610 |
. . . . . . . 8
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → (𝑓 ∘ 𝑂):dom 𝑂⟶𝐴) |
50 | | ordsson 7610 |
. . . . . . . . 9
⊢ (Ord
𝐴 → 𝐴 ⊆ On) |
51 | 50 | ad2antrr 722 |
. . . . . . . 8
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → 𝐴 ⊆ On) |
52 | 23, 25 | syl 17 |
. . . . . . . 8
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → Ord dom 𝑂) |
53 | 16, 17 | syl 17 |
. . . . . . . . . . . 12
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → 𝑂:dom 𝑂⟶𝐶) |
54 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠) → 𝑠 ∈ dom 𝑂) |
55 | | ffvelrn 6941 |
. . . . . . . . . . . 12
⊢ ((𝑂:dom 𝑂⟶𝐶 ∧ 𝑠 ∈ dom 𝑂) → (𝑂‘𝑠) ∈ 𝐶) |
56 | 53, 54, 55 | syl2an 595 |
. . . . . . . . . . 11
⊢ ((((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) ∧ (𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠)) → (𝑂‘𝑠) ∈ 𝐶) |
57 | | ffn 6584 |
. . . . . . . . . . . . . 14
⊢ (𝑂:dom 𝑂⟶𝐶 → 𝑂 Fn dom 𝑂) |
58 | 16, 17, 57 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → 𝑂 Fn dom 𝑂) |
59 | 58, 30 | jca 511 |
. . . . . . . . . . . 12
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → (𝑂 Fn dom 𝑂 ∧ Smo 𝑂)) |
60 | | smoel2 8165 |
. . . . . . . . . . . 12
⊢ (((𝑂 Fn dom 𝑂 ∧ Smo 𝑂) ∧ (𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠)) → (𝑂‘𝑡) ∈ (𝑂‘𝑠)) |
61 | 59, 60 | sylan 579 |
. . . . . . . . . . 11
⊢ ((((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) ∧ (𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠)) → (𝑂‘𝑡) ∈ (𝑂‘𝑠)) |
62 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑂‘𝑠) → (𝑓‘𝑧) = (𝑓‘(𝑂‘𝑠))) |
63 | 62 | eleq2d 2824 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑂‘𝑠) → ((𝑓‘𝑥) ∈ (𝑓‘𝑧) ↔ (𝑓‘𝑥) ∈ (𝑓‘(𝑂‘𝑠)))) |
64 | 63 | raleqbi1dv 3331 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑂‘𝑠) → (∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ (𝑓‘𝑧) ↔ ∀𝑥 ∈ (𝑂‘𝑠)(𝑓‘𝑥) ∈ (𝑓‘(𝑂‘𝑠)))) |
65 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑥 → (𝑓‘𝑤) = (𝑓‘𝑥)) |
66 | 65 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑥 → ((𝑓‘𝑤) ∈ (𝑓‘𝑦) ↔ (𝑓‘𝑥) ∈ (𝑓‘𝑦))) |
67 | 66 | cbvralvw 3372 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑤 ∈
𝑦 (𝑓‘𝑤) ∈ (𝑓‘𝑦) ↔ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) ∈ (𝑓‘𝑦)) |
68 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑧 → (𝑓‘𝑦) = (𝑓‘𝑧)) |
69 | 68 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑧 → ((𝑓‘𝑥) ∈ (𝑓‘𝑦) ↔ (𝑓‘𝑥) ∈ (𝑓‘𝑧))) |
70 | 69 | raleqbi1dv 3331 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑧 → (∀𝑥 ∈ 𝑦 (𝑓‘𝑥) ∈ (𝑓‘𝑦) ↔ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ (𝑓‘𝑧))) |
71 | 67, 70 | syl5bb 282 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → (∀𝑤 ∈ 𝑦 (𝑓‘𝑤) ∈ (𝑓‘𝑦) ↔ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ (𝑓‘𝑧))) |
72 | 71 | cbvrabv 3416 |
. . . . . . . . . . . . . . 15
⊢ {𝑦 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝑦 (𝑓‘𝑤) ∈ (𝑓‘𝑦)} = {𝑧 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ (𝑓‘𝑧)} |
73 | 1, 72 | eqtri 2766 |
. . . . . . . . . . . . . 14
⊢ 𝐶 = {𝑧 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ (𝑓‘𝑧)} |
74 | 64, 73 | elrab2 3620 |
. . . . . . . . . . . . 13
⊢ ((𝑂‘𝑠) ∈ 𝐶 ↔ ((𝑂‘𝑠) ∈ 𝐵 ∧ ∀𝑥 ∈ (𝑂‘𝑠)(𝑓‘𝑥) ∈ (𝑓‘(𝑂‘𝑠)))) |
75 | 74 | simprbi 496 |
. . . . . . . . . . . 12
⊢ ((𝑂‘𝑠) ∈ 𝐶 → ∀𝑥 ∈ (𝑂‘𝑠)(𝑓‘𝑥) ∈ (𝑓‘(𝑂‘𝑠))) |
76 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑂‘𝑡) → (𝑓‘𝑥) = (𝑓‘(𝑂‘𝑡))) |
77 | 76 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑂‘𝑡) → ((𝑓‘𝑥) ∈ (𝑓‘(𝑂‘𝑠)) ↔ (𝑓‘(𝑂‘𝑡)) ∈ (𝑓‘(𝑂‘𝑠)))) |
78 | 77 | rspccv 3549 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
(𝑂‘𝑠)(𝑓‘𝑥) ∈ (𝑓‘(𝑂‘𝑠)) → ((𝑂‘𝑡) ∈ (𝑂‘𝑠) → (𝑓‘(𝑂‘𝑡)) ∈ (𝑓‘(𝑂‘𝑠)))) |
79 | 75, 78 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑂‘𝑠) ∈ 𝐶 → ((𝑂‘𝑡) ∈ (𝑂‘𝑠) → (𝑓‘(𝑂‘𝑡)) ∈ (𝑓‘(𝑂‘𝑠)))) |
80 | 56, 61, 79 | sylc 65 |
. . . . . . . . . 10
⊢ ((((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) ∧ (𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠)) → (𝑓‘(𝑂‘𝑡)) ∈ (𝑓‘(𝑂‘𝑠))) |
81 | | ordtr1 6294 |
. . . . . . . . . . . . . 14
⊢ (Ord dom
𝑂 → ((𝑡 ∈ 𝑠 ∧ 𝑠 ∈ dom 𝑂) → 𝑡 ∈ dom 𝑂)) |
82 | 81 | ancomsd 465 |
. . . . . . . . . . . . 13
⊢ (Ord dom
𝑂 → ((𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠) → 𝑡 ∈ dom 𝑂)) |
83 | 23, 25, 82 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → ((𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠) → 𝑡 ∈ dom 𝑂)) |
84 | 83 | imp 406 |
. . . . . . . . . . 11
⊢ ((((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) ∧ (𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠)) → 𝑡 ∈ dom 𝑂) |
85 | | fvco3 6849 |
. . . . . . . . . . 11
⊢ ((𝑂:dom 𝑂⟶𝐵 ∧ 𝑡 ∈ dom 𝑂) → ((𝑓 ∘ 𝑂)‘𝑡) = (𝑓‘(𝑂‘𝑡))) |
86 | 20, 84, 85 | syl2an2r 681 |
. . . . . . . . . 10
⊢ ((((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) ∧ (𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠)) → ((𝑓 ∘ 𝑂)‘𝑡) = (𝑓‘(𝑂‘𝑡))) |
87 | | simprl 767 |
. . . . . . . . . . 11
⊢ ((((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) ∧ (𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠)) → 𝑠 ∈ dom 𝑂) |
88 | | fvco3 6849 |
. . . . . . . . . . 11
⊢ ((𝑂:dom 𝑂⟶𝐵 ∧ 𝑠 ∈ dom 𝑂) → ((𝑓 ∘ 𝑂)‘𝑠) = (𝑓‘(𝑂‘𝑠))) |
89 | 20, 87, 88 | syl2an2r 681 |
. . . . . . . . . 10
⊢ ((((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) ∧ (𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠)) → ((𝑓 ∘ 𝑂)‘𝑠) = (𝑓‘(𝑂‘𝑠))) |
90 | 80, 86, 89 | 3eltr4d 2854 |
. . . . . . . . 9
⊢ ((((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) ∧ (𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠)) → ((𝑓 ∘ 𝑂)‘𝑡) ∈ ((𝑓 ∘ 𝑂)‘𝑠)) |
91 | 90 | ralrimivva 3114 |
. . . . . . . 8
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → ∀𝑠 ∈ dom 𝑂∀𝑡 ∈ 𝑠 ((𝑓 ∘ 𝑂)‘𝑡) ∈ ((𝑓 ∘ 𝑂)‘𝑠)) |
92 | | issmo2 8151 |
. . . . . . . . 9
⊢ ((𝑓 ∘ 𝑂):dom 𝑂⟶𝐴 → ((𝐴 ⊆ On ∧ Ord dom 𝑂 ∧ ∀𝑠 ∈ dom 𝑂∀𝑡 ∈ 𝑠 ((𝑓 ∘ 𝑂)‘𝑡) ∈ ((𝑓 ∘ 𝑂)‘𝑠)) → Smo (𝑓 ∘ 𝑂))) |
93 | 92 | imp 406 |
. . . . . . . 8
⊢ (((𝑓 ∘ 𝑂):dom 𝑂⟶𝐴 ∧ (𝐴 ⊆ On ∧ Ord dom 𝑂 ∧ ∀𝑠 ∈ dom 𝑂∀𝑡 ∈ 𝑠 ((𝑓 ∘ 𝑂)‘𝑡) ∈ ((𝑓 ∘ 𝑂)‘𝑠))) → Smo (𝑓 ∘ 𝑂)) |
94 | 49, 51, 52, 91, 93 | syl13anc 1370 |
. . . . . . 7
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → Smo (𝑓 ∘ 𝑂)) |
95 | 94 | adantrr 713 |
. . . . . 6
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → Smo (𝑓 ∘ 𝑂)) |
96 | | rabn0 4316 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} ≠ ∅ ↔ ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) |
97 | | ssrab2 4009 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} ⊆ 𝐵 |
98 | 97, 5 | sstrid 3928 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ∈ On → {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} ⊆ On) |
99 | | cofsmo.2 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐾 = ∩
{𝑥 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑥)} |
100 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝑤 → (𝑓‘𝑥) = (𝑓‘𝑤)) |
101 | 100 | sseq2d 3949 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑤 → (𝑧 ⊆ (𝑓‘𝑥) ↔ 𝑧 ⊆ (𝑓‘𝑤))) |
102 | 101 | cbvrabv 3416 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ {𝑥 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑥)} = {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} |
103 | 102 | inteqi 4880 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∩ {𝑥
∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑥)} = ∩ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} |
104 | 99, 103 | eqtri 2766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐾 = ∩
{𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} |
105 | | onint 7617 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (({𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} ⊆ On ∧ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} ≠ ∅) → ∩ {𝑤
∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} ∈ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)}) |
106 | 104, 105 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} ⊆ On ∧ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} ≠ ∅) → 𝐾 ∈ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)}) |
107 | 98, 106 | sylan 579 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 ∈ On ∧ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} ≠ ∅) → 𝐾 ∈ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)}) |
108 | 96, 107 | sylan2br 594 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ∈ On ∧ ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → 𝐾 ∈ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)}) |
109 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝐾 → (𝑓‘𝑤) = (𝑓‘𝐾)) |
110 | 109 | sseq2d 3949 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝐾 → (𝑧 ⊆ (𝑓‘𝑤) ↔ 𝑧 ⊆ (𝑓‘𝐾))) |
111 | 110 | elrab 3617 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} ↔ (𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾))) |
112 | 108, 111 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈ On ∧ ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → (𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾))) |
113 | 112 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ On → (∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤) → (𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)))) |
114 | 113 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((Ord
𝐴 ∧ 𝐵 ∈ On) → (∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤) → (𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)))) |
115 | | simpr2 1193 |
. . . . . . . . . . . . . . . . . 18
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾))) → 𝐾 ∈ 𝐵) |
116 | | simp3 1136 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) ∧ 𝑤 ∈ 𝐾) → 𝑤 ∈ 𝐾) |
117 | 104 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 ∈ 𝐾 ↔ 𝑤 ∈ ∩ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)}) |
118 | | simp21 1204 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) ∧ 𝑤 ∈ 𝐾) → 𝑓:𝐵⟶𝐴) |
119 | | simp1l 1195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) ∧ 𝑤 ∈ 𝐾) → Ord 𝐴) |
120 | 119, 50 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) ∧ 𝑤 ∈ 𝐾) → 𝐴 ⊆ On) |
121 | 118, 120 | fssd 6602 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) ∧ 𝑤 ∈ 𝐾) → 𝑓:𝐵⟶On) |
122 | | simp22 1205 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) ∧ 𝑤 ∈ 𝐾) → 𝐾 ∈ 𝐵) |
123 | 121, 122 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) ∧ 𝑤 ∈ 𝐾) → (𝑓‘𝐾) ∈ On) |
124 | | simp1r 1196 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) ∧ 𝑤 ∈ 𝐾) → 𝐵 ∈ On) |
125 | | ontr1 6297 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐵 ∈ On → ((𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵) → 𝑤 ∈ 𝐵)) |
126 | 125 | 3impib 1114 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵) → 𝑤 ∈ 𝐵) |
127 | 124, 116,
122, 126 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) ∧ 𝑤 ∈ 𝐾) → 𝑤 ∈ 𝐵) |
128 | 121, 127 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) ∧ 𝑤 ∈ 𝐾) → (𝑓‘𝑤) ∈ On) |
129 | | ontri1 6285 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓‘𝐾) ∈ On ∧ (𝑓‘𝑤) ∈ On) → ((𝑓‘𝐾) ⊆ (𝑓‘𝑤) ↔ ¬ (𝑓‘𝑤) ∈ (𝑓‘𝐾))) |
130 | 123, 128,
129 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) ∧ 𝑤 ∈ 𝐾) → ((𝑓‘𝐾) ⊆ (𝑓‘𝑤) ↔ ¬ (𝑓‘𝑤) ∈ (𝑓‘𝐾))) |
131 | | simp23 1206 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) ∧ 𝑤 ∈ 𝐾) → 𝑧 ⊆ (𝑓‘𝐾)) |
132 | | simpl1 1189 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵) ∧ (𝑧 ⊆ (𝑓‘𝐾) ∧ (𝑓‘𝐾) ⊆ (𝑓‘𝑤))) → 𝐵 ∈ On) |
133 | 132, 98 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵) ∧ (𝑧 ⊆ (𝑓‘𝐾) ∧ (𝑓‘𝐾) ⊆ (𝑓‘𝑤))) → {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} ⊆ On) |
134 | | sstr 3925 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑧 ⊆ (𝑓‘𝐾) ∧ (𝑓‘𝐾) ⊆ (𝑓‘𝑤)) → 𝑧 ⊆ (𝑓‘𝑤)) |
135 | 126, 134 | anim12i 612 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵) ∧ (𝑧 ⊆ (𝑓‘𝐾) ∧ (𝑓‘𝐾) ⊆ (𝑓‘𝑤))) → (𝑤 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝑤))) |
136 | | rabid 3304 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 ∈ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} ↔ (𝑤 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝑤))) |
137 | 135, 136 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵) ∧ (𝑧 ⊆ (𝑓‘𝐾) ∧ (𝑓‘𝐾) ⊆ (𝑓‘𝑤))) → 𝑤 ∈ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)}) |
138 | | onnmin 7625 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (({𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} ⊆ On ∧ 𝑤 ∈ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)}) → ¬ 𝑤 ∈ ∩ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)}) |
139 | 133, 137,
138 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵) ∧ (𝑧 ⊆ (𝑓‘𝐾) ∧ (𝑓‘𝐾) ⊆ (𝑓‘𝑤))) → ¬ 𝑤 ∈ ∩ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)}) |
140 | 139 | expr 456 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵) ∧ 𝑧 ⊆ (𝑓‘𝐾)) → ((𝑓‘𝐾) ⊆ (𝑓‘𝑤) → ¬ 𝑤 ∈ ∩ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)})) |
141 | 124, 116,
122, 131, 140 | syl31anc 1371 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) ∧ 𝑤 ∈ 𝐾) → ((𝑓‘𝐾) ⊆ (𝑓‘𝑤) → ¬ 𝑤 ∈ ∩ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)})) |
142 | 130, 141 | sylbird 259 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) ∧ 𝑤 ∈ 𝐾) → (¬ (𝑓‘𝑤) ∈ (𝑓‘𝐾) → ¬ 𝑤 ∈ ∩ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)})) |
143 | 142 | con4d 115 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) ∧ 𝑤 ∈ 𝐾) → (𝑤 ∈ ∩ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} → (𝑓‘𝑤) ∈ (𝑓‘𝐾))) |
144 | 117, 143 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) ∧ 𝑤 ∈ 𝐾) → (𝑤 ∈ 𝐾 → (𝑓‘𝑤) ∈ (𝑓‘𝐾))) |
145 | 116, 144 | mpd 15 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) ∧ 𝑤 ∈ 𝐾) → (𝑓‘𝑤) ∈ (𝑓‘𝐾)) |
146 | 145 | 3expia 1119 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾))) → (𝑤 ∈ 𝐾 → (𝑓‘𝑤) ∈ (𝑓‘𝐾))) |
147 | 146 | ralrimiv 3106 |
. . . . . . . . . . . . . . . . . 18
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾))) → ∀𝑤 ∈ 𝐾 (𝑓‘𝑤) ∈ (𝑓‘𝐾)) |
148 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝐾 → (𝑓‘𝑦) = (𝑓‘𝐾)) |
149 | 148 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝐾 → ((𝑓‘𝑤) ∈ (𝑓‘𝑦) ↔ (𝑓‘𝑤) ∈ (𝑓‘𝐾))) |
150 | 149 | raleqbi1dv 3331 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝐾 → (∀𝑤 ∈ 𝑦 (𝑓‘𝑤) ∈ (𝑓‘𝑦) ↔ ∀𝑤 ∈ 𝐾 (𝑓‘𝑤) ∈ (𝑓‘𝐾))) |
151 | 150, 1 | elrab2 3620 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ 𝐶 ↔ (𝐾 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐾 (𝑓‘𝑤) ∈ (𝑓‘𝐾))) |
152 | 115, 147,
151 | sylanbrc 582 |
. . . . . . . . . . . . . . . . 17
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾))) → 𝐾 ∈ 𝐶) |
153 | 152 | expcom 413 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:𝐵⟶𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) → ((Ord 𝐴 ∧ 𝐵 ∈ On) → 𝐾 ∈ 𝐶)) |
154 | 153 | 3expib 1120 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝐵⟶𝐴 → ((𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) → ((Ord 𝐴 ∧ 𝐵 ∈ On) → 𝐾 ∈ 𝐶))) |
155 | 154 | com13 88 |
. . . . . . . . . . . . . 14
⊢ ((Ord
𝐴 ∧ 𝐵 ∈ On) → ((𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘𝐾)) → (𝑓:𝐵⟶𝐴 → 𝐾 ∈ 𝐶))) |
156 | 114, 155 | syld 47 |
. . . . . . . . . . . . 13
⊢ ((Ord
𝐴 ∧ 𝐵 ∈ On) → (∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤) → (𝑓:𝐵⟶𝐴 → 𝐾 ∈ 𝐶))) |
157 | 156 | com23 86 |
. . . . . . . . . . . 12
⊢ ((Ord
𝐴 ∧ 𝐵 ∈ On) → (𝑓:𝐵⟶𝐴 → (∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤) → 𝐾 ∈ 𝐶))) |
158 | 157 | imp31 417 |
. . . . . . . . . . 11
⊢ ((((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) ∧ ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → 𝐾 ∈ 𝐶) |
159 | | foelrn 6964 |
. . . . . . . . . . 11
⊢ ((𝑂:dom 𝑂–onto→𝐶 ∧ 𝐾 ∈ 𝐶) → ∃𝑣 ∈ dom 𝑂 𝐾 = (𝑂‘𝑣)) |
160 | 16, 158, 159 | syl2an2r 681 |
. . . . . . . . . 10
⊢ ((((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) ∧ ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → ∃𝑣 ∈ dom 𝑂 𝐾 = (𝑂‘𝑣)) |
161 | | eleq1 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 = (𝑂‘𝑣) → (𝐾 ∈ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} ↔ (𝑂‘𝑣) ∈ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)})) |
162 | 161 | biimpcd 248 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} → (𝐾 = (𝑂‘𝑣) → (𝑂‘𝑣) ∈ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)})) |
163 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑂‘𝑣) → (𝑓‘𝑥) = (𝑓‘(𝑂‘𝑣))) |
164 | 163 | sseq2d 3949 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑂‘𝑣) → (𝑧 ⊆ (𝑓‘𝑥) ↔ 𝑧 ⊆ (𝑓‘(𝑂‘𝑣)))) |
165 | 65 | sseq2d 3949 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑥 → (𝑧 ⊆ (𝑓‘𝑤) ↔ 𝑧 ⊆ (𝑓‘𝑥))) |
166 | 165 | cbvrabv 3416 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} = {𝑥 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑥)} |
167 | 164, 166 | elrab2 3620 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑂‘𝑣) ∈ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} ↔ ((𝑂‘𝑣) ∈ 𝐵 ∧ 𝑧 ⊆ (𝑓‘(𝑂‘𝑣)))) |
168 | 167 | simprbi 496 |
. . . . . . . . . . . . . . 15
⊢ ((𝑂‘𝑣) ∈ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} → 𝑧 ⊆ (𝑓‘(𝑂‘𝑣))) |
169 | 162, 168 | syl6 35 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ {𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ (𝑓‘𝑤)} → (𝐾 = (𝑂‘𝑣) → 𝑧 ⊆ (𝑓‘(𝑂‘𝑣)))) |
170 | 108, 169 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ On ∧ ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → (𝐾 = (𝑂‘𝑣) → 𝑧 ⊆ (𝑓‘(𝑂‘𝑣)))) |
171 | 170 | ad5ant24 757 |
. . . . . . . . . . . 12
⊢ (((((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) ∧ ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) ∧ 𝑣 ∈ dom 𝑂) → (𝐾 = (𝑂‘𝑣) → 𝑧 ⊆ (𝑓‘(𝑂‘𝑣)))) |
172 | 20 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) ∧ ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) ∧ 𝑣 ∈ dom 𝑂) → 𝑂:dom 𝑂⟶𝐵) |
173 | | fvco3 6849 |
. . . . . . . . . . . . . 14
⊢ ((𝑂:dom 𝑂⟶𝐵 ∧ 𝑣 ∈ dom 𝑂) → ((𝑓 ∘ 𝑂)‘𝑣) = (𝑓‘(𝑂‘𝑣))) |
174 | 172, 173 | sylancom 587 |
. . . . . . . . . . . . 13
⊢ (((((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) ∧ ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) ∧ 𝑣 ∈ dom 𝑂) → ((𝑓 ∘ 𝑂)‘𝑣) = (𝑓‘(𝑂‘𝑣))) |
175 | 174 | sseq2d 3949 |
. . . . . . . . . . . 12
⊢ (((((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) ∧ ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) ∧ 𝑣 ∈ dom 𝑂) → (𝑧 ⊆ ((𝑓 ∘ 𝑂)‘𝑣) ↔ 𝑧 ⊆ (𝑓‘(𝑂‘𝑣)))) |
176 | 171, 175 | sylibrd 258 |
. . . . . . . . . . 11
⊢ (((((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) ∧ ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) ∧ 𝑣 ∈ dom 𝑂) → (𝐾 = (𝑂‘𝑣) → 𝑧 ⊆ ((𝑓 ∘ 𝑂)‘𝑣))) |
177 | 176 | reximdva 3202 |
. . . . . . . . . 10
⊢ ((((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) ∧ ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → (∃𝑣 ∈ dom 𝑂 𝐾 = (𝑂‘𝑣) → ∃𝑣 ∈ dom 𝑂 𝑧 ⊆ ((𝑓 ∘ 𝑂)‘𝑣))) |
178 | 160, 177 | mpd 15 |
. . . . . . . . 9
⊢ ((((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) ∧ ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → ∃𝑣 ∈ dom 𝑂 𝑧 ⊆ ((𝑓 ∘ 𝑂)‘𝑣)) |
179 | 178 | ex 412 |
. . . . . . . 8
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → (∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤) → ∃𝑣 ∈ dom 𝑂 𝑧 ⊆ ((𝑓 ∘ 𝑂)‘𝑣))) |
180 | 179 | ralimdv 3103 |
. . . . . . 7
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → (∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤) → ∀𝑧 ∈ 𝐴 ∃𝑣 ∈ dom 𝑂 𝑧 ⊆ ((𝑓 ∘ 𝑂)‘𝑣))) |
181 | 180 | impr 454 |
. . . . . 6
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → ∀𝑧 ∈ 𝐴 ∃𝑣 ∈ dom 𝑂 𝑧 ⊆ ((𝑓 ∘ 𝑂)‘𝑣)) |
182 | 47, 95, 181 | 3jca 1126 |
. . . . 5
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → ((𝑓 ∘ 𝑂):dom 𝑂⟶𝐴 ∧ Smo (𝑓 ∘ 𝑂) ∧ ∀𝑧 ∈ 𝐴 ∃𝑣 ∈ dom 𝑂 𝑧 ⊆ ((𝑓 ∘ 𝑂)‘𝑣))) |
183 | | feq1 6565 |
. . . . . 6
⊢ (𝑔 = (𝑓 ∘ 𝑂) → (𝑔:dom 𝑂⟶𝐴 ↔ (𝑓 ∘ 𝑂):dom 𝑂⟶𝐴)) |
184 | | smoeq 8152 |
. . . . . 6
⊢ (𝑔 = (𝑓 ∘ 𝑂) → (Smo 𝑔 ↔ Smo (𝑓 ∘ 𝑂))) |
185 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑔 = (𝑓 ∘ 𝑂) → (𝑔‘𝑣) = ((𝑓 ∘ 𝑂)‘𝑣)) |
186 | 185 | sseq2d 3949 |
. . . . . . . 8
⊢ (𝑔 = (𝑓 ∘ 𝑂) → (𝑧 ⊆ (𝑔‘𝑣) ↔ 𝑧 ⊆ ((𝑓 ∘ 𝑂)‘𝑣))) |
187 | 186 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑔 = (𝑓 ∘ 𝑂) → (∃𝑣 ∈ dom 𝑂 𝑧 ⊆ (𝑔‘𝑣) ↔ ∃𝑣 ∈ dom 𝑂 𝑧 ⊆ ((𝑓 ∘ 𝑂)‘𝑣))) |
188 | 187 | ralbidv 3120 |
. . . . . 6
⊢ (𝑔 = (𝑓 ∘ 𝑂) → (∀𝑧 ∈ 𝐴 ∃𝑣 ∈ dom 𝑂 𝑧 ⊆ (𝑔‘𝑣) ↔ ∀𝑧 ∈ 𝐴 ∃𝑣 ∈ dom 𝑂 𝑧 ⊆ ((𝑓 ∘ 𝑂)‘𝑣))) |
189 | 183, 184,
188 | 3anbi123d 1434 |
. . . . 5
⊢ (𝑔 = (𝑓 ∘ 𝑂) → ((𝑔:dom 𝑂⟶𝐴 ∧ Smo 𝑔 ∧ ∀𝑧 ∈ 𝐴 ∃𝑣 ∈ dom 𝑂 𝑧 ⊆ (𝑔‘𝑣)) ↔ ((𝑓 ∘ 𝑂):dom 𝑂⟶𝐴 ∧ Smo (𝑓 ∘ 𝑂) ∧ ∀𝑧 ∈ 𝐴 ∃𝑣 ∈ dom 𝑂 𝑧 ⊆ ((𝑓 ∘ 𝑂)‘𝑣)))) |
190 | 44, 182, 189 | spcedv 3527 |
. . . 4
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → ∃𝑔(𝑔:dom 𝑂⟶𝐴 ∧ Smo 𝑔 ∧ ∀𝑧 ∈ 𝐴 ∃𝑣 ∈ dom 𝑂 𝑧 ⊆ (𝑔‘𝑣))) |
191 | | feq2 6566 |
. . . . . . 7
⊢ (𝑥 = dom 𝑂 → (𝑔:𝑥⟶𝐴 ↔ 𝑔:dom 𝑂⟶𝐴)) |
192 | | rexeq 3334 |
. . . . . . . 8
⊢ (𝑥 = dom 𝑂 → (∃𝑣 ∈ 𝑥 𝑧 ⊆ (𝑔‘𝑣) ↔ ∃𝑣 ∈ dom 𝑂 𝑧 ⊆ (𝑔‘𝑣))) |
193 | 192 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑥 = dom 𝑂 → (∀𝑧 ∈ 𝐴 ∃𝑣 ∈ 𝑥 𝑧 ⊆ (𝑔‘𝑣) ↔ ∀𝑧 ∈ 𝐴 ∃𝑣 ∈ dom 𝑂 𝑧 ⊆ (𝑔‘𝑣))) |
194 | 191, 193 | 3anbi13d 1436 |
. . . . . 6
⊢ (𝑥 = dom 𝑂 → ((𝑔:𝑥⟶𝐴 ∧ Smo 𝑔 ∧ ∀𝑧 ∈ 𝐴 ∃𝑣 ∈ 𝑥 𝑧 ⊆ (𝑔‘𝑣)) ↔ (𝑔:dom 𝑂⟶𝐴 ∧ Smo 𝑔 ∧ ∀𝑧 ∈ 𝐴 ∃𝑣 ∈ dom 𝑂 𝑧 ⊆ (𝑔‘𝑣)))) |
195 | 194 | exbidv 1925 |
. . . . 5
⊢ (𝑥 = dom 𝑂 → (∃𝑔(𝑔:𝑥⟶𝐴 ∧ Smo 𝑔 ∧ ∀𝑧 ∈ 𝐴 ∃𝑣 ∈ 𝑥 𝑧 ⊆ (𝑔‘𝑣)) ↔ ∃𝑔(𝑔:dom 𝑂⟶𝐴 ∧ Smo 𝑔 ∧ ∀𝑧 ∈ 𝐴 ∃𝑣 ∈ dom 𝑂 𝑧 ⊆ (𝑔‘𝑣)))) |
196 | 195 | rspcev 3552 |
. . . 4
⊢ ((dom
𝑂 ∈ suc 𝐵 ∧ ∃𝑔(𝑔:dom 𝑂⟶𝐴 ∧ Smo 𝑔 ∧ ∀𝑧 ∈ 𝐴 ∃𝑣 ∈ dom 𝑂 𝑧 ⊆ (𝑔‘𝑣))) → ∃𝑥 ∈ suc 𝐵∃𝑔(𝑔:𝑥⟶𝐴 ∧ Smo 𝑔 ∧ ∀𝑧 ∈ 𝐴 ∃𝑣 ∈ 𝑥 𝑧 ⊆ (𝑔‘𝑣))) |
197 | 38, 190, 196 | syl2anc 583 |
. . 3
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → ∃𝑥 ∈ suc 𝐵∃𝑔(𝑔:𝑥⟶𝐴 ∧ Smo 𝑔 ∧ ∀𝑧 ∈ 𝐴 ∃𝑣 ∈ 𝑥 𝑧 ⊆ (𝑔‘𝑣))) |
198 | 197 | ex 412 |
. 2
⊢ ((Ord
𝐴 ∧ 𝐵 ∈ On) → ((𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → ∃𝑥 ∈ suc 𝐵∃𝑔(𝑔:𝑥⟶𝐴 ∧ Smo 𝑔 ∧ ∀𝑧 ∈ 𝐴 ∃𝑣 ∈ 𝑥 𝑧 ⊆ (𝑔‘𝑣)))) |
199 | 198 | exlimdv 1937 |
1
⊢ ((Ord
𝐴 ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → ∃𝑥 ∈ suc 𝐵∃𝑔(𝑔:𝑥⟶𝐴 ∧ Smo 𝑔 ∧ ∀𝑧 ∈ 𝐴 ∃𝑣 ∈ 𝑥 𝑧 ⊆ (𝑔‘𝑣)))) |