MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgerlem Structured version   Visualization version   GIF version

Theorem hpgerlem 28699
Description: Lemma for the proof that the half-plane relation is an equivalence relation. Lemma 9.10 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
hpgid.1 (𝜑 → ¬ 𝐴𝐷)
Assertion
Ref Expression
hpgerlem (𝜑 → ∃𝑐𝑃 𝐴𝑂𝑐)
Distinct variable groups:   𝐴,𝑐,𝑡   𝐷,𝑎,𝑏,𝑐,𝑡   𝐺,𝑎,𝑏,𝑐,𝑡   𝐼,𝑎,𝑏,𝑐,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑐,𝑡   𝜑,𝑐,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐿(𝑡,𝑎,𝑏,𝑐)   𝑂(𝑐)

Proof of Theorem hpgerlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hpgid.l . . . 4 𝐿 = (LineG‘𝐺)
2 hpgid.g . . . 4 (𝜑𝐺 ∈ TarskiG)
3 hpgid.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
41, 2, 3tglnne0 28574 . . 3 (𝜑𝐷 ≠ ∅)
5 n0 4319 . . 3 (𝐷 ≠ ∅ ↔ ∃𝑥 𝑥𝐷)
64, 5sylib 218 . 2 (𝜑 → ∃𝑥 𝑥𝐷)
7 hpgid.p . . . 4 𝑃 = (Base‘𝐺)
8 eqid 2730 . . . 4 (dist‘𝐺) = (dist‘𝐺)
9 hpgid.i . . . 4 𝐼 = (Itv‘𝐺)
102adantr 480 . . . 4 ((𝜑𝑥𝐷) → 𝐺 ∈ TarskiG)
11 hpgid.a . . . . 5 (𝜑𝐴𝑃)
1211adantr 480 . . . 4 ((𝜑𝑥𝐷) → 𝐴𝑃)
133adantr 480 . . . . 5 ((𝜑𝑥𝐷) → 𝐷 ∈ ran 𝐿)
14 simpr 484 . . . . 5 ((𝜑𝑥𝐷) → 𝑥𝐷)
157, 1, 9, 10, 13, 14tglnpt 28483 . . . 4 ((𝜑𝑥𝐷) → 𝑥𝑃)
163adantr 480 . . . . . . 7 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐷 ∈ ran 𝐿)
172adantr 480 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG)
18 simpr 484 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1)
197, 9, 1, 17, 18tglndim0 28563 . . . . . . 7 ((𝜑 ∧ (♯‘𝑃) = 1) → ¬ 𝐷 ∈ ran 𝐿)
2016, 19pm2.65da 816 . . . . . 6 (𝜑 → ¬ (♯‘𝑃) = 1)
217, 11tgldimor 28436 . . . . . . 7 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
2221ord 864 . . . . . 6 (𝜑 → (¬ (♯‘𝑃) = 1 → 2 ≤ (♯‘𝑃)))
2320, 22mpd 15 . . . . 5 (𝜑 → 2 ≤ (♯‘𝑃))
2423adantr 480 . . . 4 ((𝜑𝑥𝐷) → 2 ≤ (♯‘𝑃))
257, 8, 9, 10, 12, 15, 24tgbtwndiff 28440 . . 3 ((𝜑𝑥𝐷) → ∃𝑐𝑃 (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐))
26 hpgid.1 . . . . . . . . 9 (𝜑 → ¬ 𝐴𝐷)
2726ad4antr 732 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ¬ 𝐴𝐷)
2810ad4antr 732 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐺 ∈ TarskiG)
2915ad4antr 732 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥𝑃)
30 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → 𝑐𝑃)
3130ad3antrrr 730 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑐𝑃)
3212ad4antr 732 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐴𝑃)
33 simplr 768 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥𝑐)
34 simplr 768 . . . . . . . . . . . 12 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → 𝑥 ∈ (𝐴𝐼𝑐))
3534adantr 480 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥 ∈ (𝐴𝐼𝑐))
367, 9, 1, 28, 29, 31, 32, 33, 35btwnlng2 28554 . . . . . . . . . 10 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐴 ∈ (𝑥𝐿𝑐))
3713ad4antr 732 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐷 ∈ ran 𝐿)
3814ad4antr 732 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥𝐷)
39 simpr 484 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑐𝐷)
407, 9, 1, 28, 29, 31, 33, 33, 37, 38, 39tglinethru 28570 . . . . . . . . . 10 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐷 = (𝑥𝐿𝑐))
4136, 40eleqtrrd 2832 . . . . . . . . 9 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐴𝐷)
4227, 41mtand 815 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ¬ 𝑐𝐷)
43 eleq1w 2812 . . . . . . . . . 10 (𝑡 = 𝑥 → (𝑡 ∈ (𝐴𝐼𝑐) ↔ 𝑥 ∈ (𝐴𝐼𝑐)))
4443rspcev 3591 . . . . . . . . 9 ((𝑥𝐷𝑥 ∈ (𝐴𝐼𝑐)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))
4544ad5ant24 760 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))
4627, 42, 45jca31 514 . . . . . . 7 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐)))
4746anasss 466 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐)) → ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐)))
48 hpgid.o . . . . . . . 8 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
4912adantr 480 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → 𝐴𝑃)
507, 8, 9, 48, 49, 30islnopp 28673 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → (𝐴𝑂𝑐 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))))
5150adantr 480 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐)) → (𝐴𝑂𝑐 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))))
5247, 51mpbird 257 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐)) → 𝐴𝑂𝑐)
5352ex 412 . . . 4 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → ((𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐) → 𝐴𝑂𝑐))
5453reximdva 3147 . . 3 ((𝜑𝑥𝐷) → (∃𝑐𝑃 (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐) → ∃𝑐𝑃 𝐴𝑂𝑐))
5525, 54mpd 15 . 2 ((𝜑𝑥𝐷) → ∃𝑐𝑃 𝐴𝑂𝑐)
566, 55exlimddv 1935 1 (𝜑 → ∃𝑐𝑃 𝐴𝑂𝑐)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  wrex 3054  cdif 3914  c0 4299   class class class wbr 5110  {copab 5172  ran crn 5642  cfv 6514  (class class class)co 7390  1c1 11076  cle 11216  2c2 12248  chash 14302  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  Itvcitv 28367  LineGclng 28368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822  df-trkgc 28382  df-trkgb 28383  df-trkgcb 28384  df-trkg 28387  df-cgrg 28445
This theorem is referenced by:  hpgid  28700  lnperpex  28737
  Copyright terms: Public domain W3C validator