MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgerlem Structured version   Visualization version   GIF version

Theorem hpgerlem 26268
Description: Lemma for the proof that the half-plane relation is an equivalence relation. Lemma 9.10 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
hpgid.1 (𝜑 → ¬ 𝐴𝐷)
Assertion
Ref Expression
hpgerlem (𝜑 → ∃𝑐𝑃 𝐴𝑂𝑐)
Distinct variable groups:   𝐴,𝑐,𝑡   𝐷,𝑎,𝑏,𝑐,𝑡   𝐺,𝑎,𝑏,𝑐,𝑡   𝐼,𝑎,𝑏,𝑐,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑐,𝑡   𝜑,𝑐,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐿(𝑡,𝑎,𝑏,𝑐)   𝑂(𝑐)

Proof of Theorem hpgerlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hpgid.l . . . 4 𝐿 = (LineG‘𝐺)
2 hpgid.g . . . 4 (𝜑𝐺 ∈ TarskiG)
3 hpgid.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
41, 2, 3tglnne0 26143 . . 3 (𝜑𝐷 ≠ ∅)
5 n0 4190 . . 3 (𝐷 ≠ ∅ ↔ ∃𝑥 𝑥𝐷)
64, 5sylib 210 . 2 (𝜑 → ∃𝑥 𝑥𝐷)
7 hpgid.p . . . 4 𝑃 = (Base‘𝐺)
8 eqid 2771 . . . 4 (dist‘𝐺) = (dist‘𝐺)
9 hpgid.i . . . 4 𝐼 = (Itv‘𝐺)
102adantr 473 . . . 4 ((𝜑𝑥𝐷) → 𝐺 ∈ TarskiG)
11 hpgid.a . . . . 5 (𝜑𝐴𝑃)
1211adantr 473 . . . 4 ((𝜑𝑥𝐷) → 𝐴𝑃)
133adantr 473 . . . . 5 ((𝜑𝑥𝐷) → 𝐷 ∈ ran 𝐿)
14 simpr 477 . . . . 5 ((𝜑𝑥𝐷) → 𝑥𝐷)
157, 1, 9, 10, 13, 14tglnpt 26052 . . . 4 ((𝜑𝑥𝐷) → 𝑥𝑃)
163adantr 473 . . . . . . 7 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐷 ∈ ran 𝐿)
172adantr 473 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG)
18 simpr 477 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1)
197, 9, 1, 17, 18tglndim0 26132 . . . . . . 7 ((𝜑 ∧ (♯‘𝑃) = 1) → ¬ 𝐷 ∈ ran 𝐿)
2016, 19pm2.65da 805 . . . . . 6 (𝜑 → ¬ (♯‘𝑃) = 1)
217, 11tgldimor 26005 . . . . . . 7 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
2221ord 851 . . . . . 6 (𝜑 → (¬ (♯‘𝑃) = 1 → 2 ≤ (♯‘𝑃)))
2320, 22mpd 15 . . . . 5 (𝜑 → 2 ≤ (♯‘𝑃))
2423adantr 473 . . . 4 ((𝜑𝑥𝐷) → 2 ≤ (♯‘𝑃))
257, 8, 9, 10, 12, 15, 24tgbtwndiff 26009 . . 3 ((𝜑𝑥𝐷) → ∃𝑐𝑃 (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐))
26 hpgid.1 . . . . . . . . 9 (𝜑 → ¬ 𝐴𝐷)
2726ad4antr 720 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ¬ 𝐴𝐷)
2810ad4antr 720 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐺 ∈ TarskiG)
2915ad4antr 720 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥𝑃)
30 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → 𝑐𝑃)
3130ad3antrrr 718 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑐𝑃)
3212ad4antr 720 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐴𝑃)
33 simplr 757 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥𝑐)
34 simplr 757 . . . . . . . . . . . 12 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → 𝑥 ∈ (𝐴𝐼𝑐))
3534adantr 473 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥 ∈ (𝐴𝐼𝑐))
367, 9, 1, 28, 29, 31, 32, 33, 35btwnlng2 26123 . . . . . . . . . 10 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐴 ∈ (𝑥𝐿𝑐))
3713ad4antr 720 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐷 ∈ ran 𝐿)
3814ad4antr 720 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥𝐷)
39 simpr 477 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑐𝐷)
407, 9, 1, 28, 29, 31, 33, 33, 37, 38, 39tglinethru 26139 . . . . . . . . . 10 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐷 = (𝑥𝐿𝑐))
4136, 40eleqtrrd 2862 . . . . . . . . 9 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐴𝐷)
4227, 41mtand 804 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ¬ 𝑐𝐷)
43 eleq1w 2841 . . . . . . . . . 10 (𝑡 = 𝑥 → (𝑡 ∈ (𝐴𝐼𝑐) ↔ 𝑥 ∈ (𝐴𝐼𝑐)))
4443rspcev 3528 . . . . . . . . 9 ((𝑥𝐷𝑥 ∈ (𝐴𝐼𝑐)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))
4544ad5ant24 749 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))
4627, 42, 45jca31 507 . . . . . . 7 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐)))
4746anasss 459 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐)) → ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐)))
48 hpgid.o . . . . . . . 8 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
4912adantr 473 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → 𝐴𝑃)
507, 8, 9, 48, 49, 30islnopp 26242 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → (𝐴𝑂𝑐 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))))
5150adantr 473 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐)) → (𝐴𝑂𝑐 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))))
5247, 51mpbird 249 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐)) → 𝐴𝑂𝑐)
5352ex 405 . . . 4 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → ((𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐) → 𝐴𝑂𝑐))
5453reximdva 3212 . . 3 ((𝜑𝑥𝐷) → (∃𝑐𝑃 (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐) → ∃𝑐𝑃 𝐴𝑂𝑐))
5525, 54mpd 15 . 2 ((𝜑𝑥𝐷) → ∃𝑐𝑃 𝐴𝑂𝑐)
566, 55exlimddv 1895 1 (𝜑 → ∃𝑐𝑃 𝐴𝑂𝑐)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1508  wex 1743  wcel 2051  wne 2960  wrex 3082  cdif 3819  c0 4172   class class class wbr 4925  {copab 4987  ran crn 5404  cfv 6185  (class class class)co 6974  1c1 10334  cle 10473  2c2 11493  chash 13503  Basecbs 16337  distcds 16428  TarskiGcstrkg 25933  Itvcitv 25939  LineGclng 25940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-pm 8207  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-dju 9122  df-card 9160  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-2 11501  df-3 11502  df-n0 11706  df-xnn0 11778  df-z 11792  df-uz 12057  df-fz 12707  df-fzo 12848  df-hash 13504  df-word 13671  df-concat 13732  df-s1 13757  df-s2 14070  df-s3 14071  df-trkgc 25951  df-trkgb 25952  df-trkgcb 25953  df-trkg 25956  df-cgrg 26014
This theorem is referenced by:  hpgid  26269  lnperpex  26306
  Copyright terms: Public domain W3C validator