MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgerlem Structured version   Visualization version   GIF version

Theorem hpgerlem 27707
Description: Lemma for the proof that the half-plane relation is an equivalence relation. Lemma 9.10 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
hpgid.1 (𝜑 → ¬ 𝐴𝐷)
Assertion
Ref Expression
hpgerlem (𝜑 → ∃𝑐𝑃 𝐴𝑂𝑐)
Distinct variable groups:   𝐴,𝑐,𝑡   𝐷,𝑎,𝑏,𝑐,𝑡   𝐺,𝑎,𝑏,𝑐,𝑡   𝐼,𝑎,𝑏,𝑐,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑐,𝑡   𝜑,𝑐,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐿(𝑡,𝑎,𝑏,𝑐)   𝑂(𝑐)

Proof of Theorem hpgerlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hpgid.l . . . 4 𝐿 = (LineG‘𝐺)
2 hpgid.g . . . 4 (𝜑𝐺 ∈ TarskiG)
3 hpgid.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
41, 2, 3tglnne0 27582 . . 3 (𝜑𝐷 ≠ ∅)
5 n0 4306 . . 3 (𝐷 ≠ ∅ ↔ ∃𝑥 𝑥𝐷)
64, 5sylib 217 . 2 (𝜑 → ∃𝑥 𝑥𝐷)
7 hpgid.p . . . 4 𝑃 = (Base‘𝐺)
8 eqid 2736 . . . 4 (dist‘𝐺) = (dist‘𝐺)
9 hpgid.i . . . 4 𝐼 = (Itv‘𝐺)
102adantr 481 . . . 4 ((𝜑𝑥𝐷) → 𝐺 ∈ TarskiG)
11 hpgid.a . . . . 5 (𝜑𝐴𝑃)
1211adantr 481 . . . 4 ((𝜑𝑥𝐷) → 𝐴𝑃)
133adantr 481 . . . . 5 ((𝜑𝑥𝐷) → 𝐷 ∈ ran 𝐿)
14 simpr 485 . . . . 5 ((𝜑𝑥𝐷) → 𝑥𝐷)
157, 1, 9, 10, 13, 14tglnpt 27491 . . . 4 ((𝜑𝑥𝐷) → 𝑥𝑃)
163adantr 481 . . . . . . 7 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐷 ∈ ran 𝐿)
172adantr 481 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG)
18 simpr 485 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1)
197, 9, 1, 17, 18tglndim0 27571 . . . . . . 7 ((𝜑 ∧ (♯‘𝑃) = 1) → ¬ 𝐷 ∈ ran 𝐿)
2016, 19pm2.65da 815 . . . . . 6 (𝜑 → ¬ (♯‘𝑃) = 1)
217, 11tgldimor 27444 . . . . . . 7 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
2221ord 862 . . . . . 6 (𝜑 → (¬ (♯‘𝑃) = 1 → 2 ≤ (♯‘𝑃)))
2320, 22mpd 15 . . . . 5 (𝜑 → 2 ≤ (♯‘𝑃))
2423adantr 481 . . . 4 ((𝜑𝑥𝐷) → 2 ≤ (♯‘𝑃))
257, 8, 9, 10, 12, 15, 24tgbtwndiff 27448 . . 3 ((𝜑𝑥𝐷) → ∃𝑐𝑃 (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐))
26 hpgid.1 . . . . . . . . 9 (𝜑 → ¬ 𝐴𝐷)
2726ad4antr 730 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ¬ 𝐴𝐷)
2810ad4antr 730 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐺 ∈ TarskiG)
2915ad4antr 730 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥𝑃)
30 simpr 485 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → 𝑐𝑃)
3130ad3antrrr 728 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑐𝑃)
3212ad4antr 730 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐴𝑃)
33 simplr 767 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥𝑐)
34 simplr 767 . . . . . . . . . . . 12 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → 𝑥 ∈ (𝐴𝐼𝑐))
3534adantr 481 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥 ∈ (𝐴𝐼𝑐))
367, 9, 1, 28, 29, 31, 32, 33, 35btwnlng2 27562 . . . . . . . . . 10 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐴 ∈ (𝑥𝐿𝑐))
3713ad4antr 730 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐷 ∈ ran 𝐿)
3814ad4antr 730 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥𝐷)
39 simpr 485 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑐𝐷)
407, 9, 1, 28, 29, 31, 33, 33, 37, 38, 39tglinethru 27578 . . . . . . . . . 10 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐷 = (𝑥𝐿𝑐))
4136, 40eleqtrrd 2841 . . . . . . . . 9 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐴𝐷)
4227, 41mtand 814 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ¬ 𝑐𝐷)
43 eleq1w 2820 . . . . . . . . . 10 (𝑡 = 𝑥 → (𝑡 ∈ (𝐴𝐼𝑐) ↔ 𝑥 ∈ (𝐴𝐼𝑐)))
4443rspcev 3581 . . . . . . . . 9 ((𝑥𝐷𝑥 ∈ (𝐴𝐼𝑐)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))
4544ad5ant24 759 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))
4627, 42, 45jca31 515 . . . . . . 7 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐)))
4746anasss 467 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐)) → ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐)))
48 hpgid.o . . . . . . . 8 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
4912adantr 481 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → 𝐴𝑃)
507, 8, 9, 48, 49, 30islnopp 27681 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → (𝐴𝑂𝑐 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))))
5150adantr 481 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐)) → (𝐴𝑂𝑐 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))))
5247, 51mpbird 256 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐)) → 𝐴𝑂𝑐)
5352ex 413 . . . 4 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → ((𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐) → 𝐴𝑂𝑐))
5453reximdva 3165 . . 3 ((𝜑𝑥𝐷) → (∃𝑐𝑃 (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐) → ∃𝑐𝑃 𝐴𝑂𝑐))
5525, 54mpd 15 . 2 ((𝜑𝑥𝐷) → ∃𝑐𝑃 𝐴𝑂𝑐)
566, 55exlimddv 1938 1 (𝜑 → ∃𝑐𝑃 𝐴𝑂𝑐)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2943  wrex 3073  cdif 3907  c0 4282   class class class wbr 5105  {copab 5167  ran crn 5634  cfv 6496  (class class class)co 7357  1c1 11052  cle 11190  2c2 12208  chash 14230  Basecbs 17083  distcds 17142  TarskiGcstrkg 27369  Itvcitv 27375  LineGclng 27376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-s2 14737  df-s3 14738  df-trkgc 27390  df-trkgb 27391  df-trkgcb 27392  df-trkg 27395  df-cgrg 27453
This theorem is referenced by:  hpgid  27708  lnperpex  27745
  Copyright terms: Public domain W3C validator