MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgerlem Structured version   Visualization version   GIF version

Theorem hpgerlem 28744
Description: Lemma for the proof that the half-plane relation is an equivalence relation. Lemma 9.10 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
hpgid.1 (𝜑 → ¬ 𝐴𝐷)
Assertion
Ref Expression
hpgerlem (𝜑 → ∃𝑐𝑃 𝐴𝑂𝑐)
Distinct variable groups:   𝐴,𝑐,𝑡   𝐷,𝑎,𝑏,𝑐,𝑡   𝐺,𝑎,𝑏,𝑐,𝑡   𝐼,𝑎,𝑏,𝑐,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑐,𝑡   𝜑,𝑐,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐿(𝑡,𝑎,𝑏,𝑐)   𝑂(𝑐)

Proof of Theorem hpgerlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hpgid.l . . . 4 𝐿 = (LineG‘𝐺)
2 hpgid.g . . . 4 (𝜑𝐺 ∈ TarskiG)
3 hpgid.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
41, 2, 3tglnne0 28619 . . 3 (𝜑𝐷 ≠ ∅)
5 n0 4302 . . 3 (𝐷 ≠ ∅ ↔ ∃𝑥 𝑥𝐷)
64, 5sylib 218 . 2 (𝜑 → ∃𝑥 𝑥𝐷)
7 hpgid.p . . . 4 𝑃 = (Base‘𝐺)
8 eqid 2733 . . . 4 (dist‘𝐺) = (dist‘𝐺)
9 hpgid.i . . . 4 𝐼 = (Itv‘𝐺)
102adantr 480 . . . 4 ((𝜑𝑥𝐷) → 𝐺 ∈ TarskiG)
11 hpgid.a . . . . 5 (𝜑𝐴𝑃)
1211adantr 480 . . . 4 ((𝜑𝑥𝐷) → 𝐴𝑃)
133adantr 480 . . . . 5 ((𝜑𝑥𝐷) → 𝐷 ∈ ran 𝐿)
14 simpr 484 . . . . 5 ((𝜑𝑥𝐷) → 𝑥𝐷)
157, 1, 9, 10, 13, 14tglnpt 28528 . . . 4 ((𝜑𝑥𝐷) → 𝑥𝑃)
163adantr 480 . . . . . . 7 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐷 ∈ ran 𝐿)
172adantr 480 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG)
18 simpr 484 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1)
197, 9, 1, 17, 18tglndim0 28608 . . . . . . 7 ((𝜑 ∧ (♯‘𝑃) = 1) → ¬ 𝐷 ∈ ran 𝐿)
2016, 19pm2.65da 816 . . . . . 6 (𝜑 → ¬ (♯‘𝑃) = 1)
217, 11tgldimor 28481 . . . . . . 7 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
2221ord 864 . . . . . 6 (𝜑 → (¬ (♯‘𝑃) = 1 → 2 ≤ (♯‘𝑃)))
2320, 22mpd 15 . . . . 5 (𝜑 → 2 ≤ (♯‘𝑃))
2423adantr 480 . . . 4 ((𝜑𝑥𝐷) → 2 ≤ (♯‘𝑃))
257, 8, 9, 10, 12, 15, 24tgbtwndiff 28485 . . 3 ((𝜑𝑥𝐷) → ∃𝑐𝑃 (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐))
26 hpgid.1 . . . . . . . . 9 (𝜑 → ¬ 𝐴𝐷)
2726ad4antr 732 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ¬ 𝐴𝐷)
2810ad4antr 732 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐺 ∈ TarskiG)
2915ad4antr 732 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥𝑃)
30 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → 𝑐𝑃)
3130ad3antrrr 730 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑐𝑃)
3212ad4antr 732 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐴𝑃)
33 simplr 768 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥𝑐)
34 simplr 768 . . . . . . . . . . . 12 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → 𝑥 ∈ (𝐴𝐼𝑐))
3534adantr 480 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥 ∈ (𝐴𝐼𝑐))
367, 9, 1, 28, 29, 31, 32, 33, 35btwnlng2 28599 . . . . . . . . . 10 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐴 ∈ (𝑥𝐿𝑐))
3713ad4antr 732 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐷 ∈ ran 𝐿)
3814ad4antr 732 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑥𝐷)
39 simpr 484 . . . . . . . . . . 11 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝑐𝐷)
407, 9, 1, 28, 29, 31, 33, 33, 37, 38, 39tglinethru 28615 . . . . . . . . . 10 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐷 = (𝑥𝐿𝑐))
4136, 40eleqtrrd 2836 . . . . . . . . 9 ((((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) ∧ 𝑐𝐷) → 𝐴𝐷)
4227, 41mtand 815 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ¬ 𝑐𝐷)
43 eleq1w 2816 . . . . . . . . . 10 (𝑡 = 𝑥 → (𝑡 ∈ (𝐴𝐼𝑐) ↔ 𝑥 ∈ (𝐴𝐼𝑐)))
4443rspcev 3573 . . . . . . . . 9 ((𝑥𝐷𝑥 ∈ (𝐴𝐼𝑐)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))
4544ad5ant24 760 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))
4627, 42, 45jca31 514 . . . . . . 7 (((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝑐)) ∧ 𝑥𝑐) → ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐)))
4746anasss 466 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐)) → ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐)))
48 hpgid.o . . . . . . . 8 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
4912adantr 480 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → 𝐴𝑃)
507, 8, 9, 48, 49, 30islnopp 28718 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → (𝐴𝑂𝑐 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))))
5150adantr 480 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐)) → (𝐴𝑂𝑐 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝑐𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑐))))
5247, 51mpbird 257 . . . . 5 ((((𝜑𝑥𝐷) ∧ 𝑐𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐)) → 𝐴𝑂𝑐)
5352ex 412 . . . 4 (((𝜑𝑥𝐷) ∧ 𝑐𝑃) → ((𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐) → 𝐴𝑂𝑐))
5453reximdva 3146 . . 3 ((𝜑𝑥𝐷) → (∃𝑐𝑃 (𝑥 ∈ (𝐴𝐼𝑐) ∧ 𝑥𝑐) → ∃𝑐𝑃 𝐴𝑂𝑐))
5525, 54mpd 15 . 2 ((𝜑𝑥𝐷) → ∃𝑐𝑃 𝐴𝑂𝑐)
566, 55exlimddv 1936 1 (𝜑 → ∃𝑐𝑃 𝐴𝑂𝑐)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wne 2929  wrex 3057  cdif 3895  c0 4282   class class class wbr 5093  {copab 5155  ran crn 5620  cfv 6486  (class class class)co 7352  1c1 11014  cle 11154  2c2 12187  chash 14239  Basecbs 17122  distcds 17172  TarskiGcstrkg 28406  Itvcitv 28412  LineGclng 28413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-er 8628  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-concat 14480  df-s1 14506  df-s2 14757  df-s3 14758  df-trkgc 28427  df-trkgb 28428  df-trkgcb 28429  df-trkg 28432  df-cgrg 28490
This theorem is referenced by:  hpgid  28745  lnperpex  28782
  Copyright terms: Public domain W3C validator