Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgqusf1olem1 Structured version   Visualization version   GIF version

Theorem nsgqusf1olem1 33063
Description: Lemma for nsgqusf1o 33066. (Contributed by Thierry Arnoux, 4-Aug-2024.)
Hypotheses
Ref Expression
nsgqusf1o.b 𝐡 = (Baseβ€˜πΊ)
nsgqusf1o.s 𝑆 = {β„Ž ∈ (SubGrpβ€˜πΊ) ∣ 𝑁 βŠ† β„Ž}
nsgqusf1o.t 𝑇 = (SubGrpβ€˜π‘„)
nsgqusf1o.1 ≀ = (leβ€˜(toIncβ€˜π‘†))
nsgqusf1o.2 ≲ = (leβ€˜(toIncβ€˜π‘‡))
nsgqusf1o.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgqusf1o.p βŠ• = (LSSumβ€˜πΊ)
nsgqusf1o.e 𝐸 = (β„Ž ∈ 𝑆 ↦ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
nsgqusf1o.f 𝐹 = (𝑓 ∈ 𝑇 ↦ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓})
nsgqusf1o.n (πœ‘ β†’ 𝑁 ∈ (NrmSGrpβ€˜πΊ))
Assertion
Ref Expression
nsgqusf1olem1 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∈ 𝑇)
Distinct variable groups:   βŠ• ,π‘Ž,𝑓,β„Ž,π‘₯   𝐡,π‘Ž,𝑓,β„Ž,π‘₯   𝐸,π‘Ž,𝑓,β„Ž,π‘₯   𝑓,𝐹,β„Ž,π‘₯   𝐺,π‘Ž,𝑓,β„Ž,π‘₯   𝑁,π‘Ž,𝑓,β„Ž,π‘₯   𝑄,π‘Ž,𝑓,β„Ž,π‘₯   𝑆,π‘Ž,𝑓,β„Ž,π‘₯   𝑇,π‘Ž,𝑓,β„Ž,π‘₯   πœ‘,π‘Ž,𝑓,β„Ž,π‘₯
Allowed substitution hints:   𝐹(π‘Ž)   ≀ (π‘₯,𝑓,β„Ž,π‘Ž)   ≲ (π‘₯,𝑓,β„Ž,π‘Ž)

Proof of Theorem nsgqusf1olem1
Dummy variables 𝑖 𝑗 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgqusf1o.n . . . . 5 (πœ‘ β†’ 𝑁 ∈ (NrmSGrpβ€˜πΊ))
2 nsgqusf1o.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
32qusgrp 19132 . . . . 5 (𝑁 ∈ (NrmSGrpβ€˜πΊ) β†’ 𝑄 ∈ Grp)
41, 3syl 17 . . . 4 (πœ‘ β†’ 𝑄 ∈ Grp)
54ad2antrr 725 . . 3 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ 𝑄 ∈ Grp)
6 nsgqusf1o.b . . . . . . . . . 10 𝐡 = (Baseβ€˜πΊ)
76subgss 19073 . . . . . . . . 9 (β„Ž ∈ (SubGrpβ€˜πΊ) β†’ β„Ž βŠ† 𝐡)
87ad2antlr 726 . . . . . . . 8 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ β„Ž βŠ† 𝐡)
98sselda 3978 . . . . . . 7 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ π‘₯ ∈ 𝐡)
10 ovex 7447 . . . . . . . 8 (𝐺 ~QG 𝑁) ∈ V
1110ecelqsi 8783 . . . . . . 7 (π‘₯ ∈ 𝐡 β†’ [π‘₯](𝐺 ~QG 𝑁) ∈ (𝐡 / (𝐺 ~QG 𝑁)))
129, 11syl 17 . . . . . 6 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ [π‘₯](𝐺 ~QG 𝑁) ∈ (𝐡 / (𝐺 ~QG 𝑁)))
13 nsgqusf1o.p . . . . . . 7 βŠ• = (LSSumβ€˜πΊ)
14 nsgsubg 19104 . . . . . . . . 9 (𝑁 ∈ (NrmSGrpβ€˜πΊ) β†’ 𝑁 ∈ (SubGrpβ€˜πΊ))
151, 14syl 17 . . . . . . . 8 (πœ‘ β†’ 𝑁 ∈ (SubGrpβ€˜πΊ))
1615ad3antrrr 729 . . . . . . 7 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ 𝑁 ∈ (SubGrpβ€˜πΊ))
176, 13, 16, 9quslsm 33055 . . . . . 6 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ [π‘₯](𝐺 ~QG 𝑁) = ({π‘₯} βŠ• 𝑁))
182a1i 11 . . . . . . . 8 (πœ‘ β†’ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
196a1i 11 . . . . . . . 8 (πœ‘ β†’ 𝐡 = (Baseβ€˜πΊ))
20 ovexd 7449 . . . . . . . 8 (πœ‘ β†’ (𝐺 ~QG 𝑁) ∈ V)
21 subgrcl 19077 . . . . . . . . 9 (𝑁 ∈ (SubGrpβ€˜πΊ) β†’ 𝐺 ∈ Grp)
2215, 21syl 17 . . . . . . . 8 (πœ‘ β†’ 𝐺 ∈ Grp)
2318, 19, 20, 22qusbas 17518 . . . . . . 7 (πœ‘ β†’ (𝐡 / (𝐺 ~QG 𝑁)) = (Baseβ€˜π‘„))
2423ad3antrrr 729 . . . . . 6 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ (𝐡 / (𝐺 ~QG 𝑁)) = (Baseβ€˜π‘„))
2512, 17, 243eltr3d 2842 . . . . 5 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ ({π‘₯} βŠ• 𝑁) ∈ (Baseβ€˜π‘„))
2625ralrimiva 3141 . . . 4 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ βˆ€π‘₯ ∈ β„Ž ({π‘₯} βŠ• 𝑁) ∈ (Baseβ€˜π‘„))
27 eqid 2727 . . . . 5 (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) = (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))
2827rnmptss 7127 . . . 4 (βˆ€π‘₯ ∈ β„Ž ({π‘₯} βŠ• 𝑁) ∈ (Baseβ€˜π‘„) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) βŠ† (Baseβ€˜π‘„))
2926, 28syl 17 . . 3 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) βŠ† (Baseβ€˜π‘„))
30 nfv 1910 . . . 4 β„²π‘₯((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž)
31 ovexd 7449 . . . 4 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ ({π‘₯} βŠ• 𝑁) ∈ V)
32 eqid 2727 . . . . . . 7 (0gβ€˜πΊ) = (0gβ€˜πΊ)
3332subg0cl 19080 . . . . . 6 (β„Ž ∈ (SubGrpβ€˜πΊ) β†’ (0gβ€˜πΊ) ∈ β„Ž)
3433ne0d 4331 . . . . 5 (β„Ž ∈ (SubGrpβ€˜πΊ) β†’ β„Ž β‰  βˆ…)
3534ad2antlr 726 . . . 4 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ β„Ž β‰  βˆ…)
3630, 31, 27, 35rnmptn0 6242 . . 3 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) β‰  βˆ…)
37 nfmpt1 5250 . . . . . . . 8 β„²π‘₯(π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))
3837nfrn 5948 . . . . . . 7 β„²π‘₯ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))
3938nfel2 2916 . . . . . 6 β„²π‘₯ 𝑖 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))
4030, 39nfan 1895 . . . . 5 β„²π‘₯(((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ 𝑖 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
4138nfel2 2916 . . . . . . 7 β„²π‘₯(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))
4238, 41nfralw 3303 . . . . . 6 β„²π‘₯βˆ€π‘— ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))
4338nfel2 2916 . . . . . 6 β„²π‘₯((invgβ€˜π‘„)β€˜π‘–) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))
4442, 43nfan 1895 . . . . 5 β„²π‘₯(βˆ€π‘— ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∧ ((invgβ€˜π‘„)β€˜π‘–) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
45 sneq 4634 . . . . . . . . . . . . 13 (π‘₯ = 𝑧 β†’ {π‘₯} = {𝑧})
4645oveq1d 7429 . . . . . . . . . . . 12 (π‘₯ = 𝑧 β†’ ({π‘₯} βŠ• 𝑁) = ({𝑧} βŠ• 𝑁))
4746cbvmptv 5255 . . . . . . . . . . 11 (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) = (𝑧 ∈ β„Ž ↦ ({𝑧} βŠ• 𝑁))
48 simp-4r 783 . . . . . . . . . . . . . 14 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ β„Ž ∈ (SubGrpβ€˜πΊ))
4948ad2antrr 725 . . . . . . . . . . . . 13 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ β„Ž ∈ (SubGrpβ€˜πΊ))
50 simp-4r 783 . . . . . . . . . . . . 13 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ π‘₯ ∈ β„Ž)
51 simplr 768 . . . . . . . . . . . . 13 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ 𝑦 ∈ β„Ž)
52 eqid 2727 . . . . . . . . . . . . . 14 (+gβ€˜πΊ) = (+gβ€˜πΊ)
5352subgcl 19082 . . . . . . . . . . . . 13 ((β„Ž ∈ (SubGrpβ€˜πΊ) ∧ π‘₯ ∈ β„Ž ∧ 𝑦 ∈ β„Ž) β†’ (π‘₯(+gβ€˜πΊ)𝑦) ∈ β„Ž)
5449, 50, 51, 53syl3anc 1369 . . . . . . . . . . . 12 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ (π‘₯(+gβ€˜πΊ)𝑦) ∈ β„Ž)
55 sneq 4634 . . . . . . . . . . . . . . 15 (𝑧 = (π‘₯(+gβ€˜πΊ)𝑦) β†’ {𝑧} = {(π‘₯(+gβ€˜πΊ)𝑦)})
5655oveq1d 7429 . . . . . . . . . . . . . 14 (𝑧 = (π‘₯(+gβ€˜πΊ)𝑦) β†’ ({𝑧} βŠ• 𝑁) = ({(π‘₯(+gβ€˜πΊ)𝑦)} βŠ• 𝑁))
5756eqeq2d 2738 . . . . . . . . . . . . 13 (𝑧 = (π‘₯(+gβ€˜πΊ)𝑦) β†’ ((𝑖(+gβ€˜π‘„)𝑗) = ({𝑧} βŠ• 𝑁) ↔ (𝑖(+gβ€˜π‘„)𝑗) = ({(π‘₯(+gβ€˜πΊ)𝑦)} βŠ• 𝑁)))
5857adantl 481 . . . . . . . . . . . 12 ((((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) ∧ 𝑧 = (π‘₯(+gβ€˜πΊ)𝑦)) β†’ ((𝑖(+gβ€˜π‘„)𝑗) = ({𝑧} βŠ• 𝑁) ↔ (𝑖(+gβ€˜π‘„)𝑗) = ({(π‘₯(+gβ€˜πΊ)𝑦)} βŠ• 𝑁)))
59 simpr 484 . . . . . . . . . . . . . . . 16 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ 𝑖 = ({π‘₯} βŠ• 𝑁))
6017adantr 480 . . . . . . . . . . . . . . . 16 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ [π‘₯](𝐺 ~QG 𝑁) = ({π‘₯} βŠ• 𝑁))
6159, 60eqtr4d 2770 . . . . . . . . . . . . . . 15 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ 𝑖 = [π‘₯](𝐺 ~QG 𝑁))
6261ad2antrr 725 . . . . . . . . . . . . . 14 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ 𝑖 = [π‘₯](𝐺 ~QG 𝑁))
63 simpr 484 . . . . . . . . . . . . . . 15 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ 𝑗 = ({𝑦} βŠ• 𝑁))
641ad4antr 731 . . . . . . . . . . . . . . . . . 18 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ 𝑁 ∈ (NrmSGrpβ€˜πΊ))
6564ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ 𝑁 ∈ (NrmSGrpβ€˜πΊ))
6665, 14syl 17 . . . . . . . . . . . . . . . 16 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ 𝑁 ∈ (SubGrpβ€˜πΊ))
6749, 7syl 17 . . . . . . . . . . . . . . . . 17 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ β„Ž βŠ† 𝐡)
6867, 51sseldd 3979 . . . . . . . . . . . . . . . 16 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ 𝑦 ∈ 𝐡)
696, 13, 66, 68quslsm 33055 . . . . . . . . . . . . . . 15 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ [𝑦](𝐺 ~QG 𝑁) = ({𝑦} βŠ• 𝑁))
7063, 69eqtr4d 2770 . . . . . . . . . . . . . 14 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ 𝑗 = [𝑦](𝐺 ~QG 𝑁))
7162, 70oveq12d 7432 . . . . . . . . . . . . 13 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ (𝑖(+gβ€˜π‘„)𝑗) = ([π‘₯](𝐺 ~QG 𝑁)(+gβ€˜π‘„)[𝑦](𝐺 ~QG 𝑁)))
729adantr 480 . . . . . . . . . . . . . . 15 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ π‘₯ ∈ 𝐡)
7372ad2antrr 725 . . . . . . . . . . . . . 14 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ π‘₯ ∈ 𝐡)
74 eqid 2727 . . . . . . . . . . . . . . 15 (+gβ€˜π‘„) = (+gβ€˜π‘„)
752, 6, 52, 74qusadd 19134 . . . . . . . . . . . . . 14 ((𝑁 ∈ (NrmSGrpβ€˜πΊ) ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ ([π‘₯](𝐺 ~QG 𝑁)(+gβ€˜π‘„)[𝑦](𝐺 ~QG 𝑁)) = [(π‘₯(+gβ€˜πΊ)𝑦)](𝐺 ~QG 𝑁))
7665, 73, 68, 75syl3anc 1369 . . . . . . . . . . . . 13 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ ([π‘₯](𝐺 ~QG 𝑁)(+gβ€˜π‘„)[𝑦](𝐺 ~QG 𝑁)) = [(π‘₯(+gβ€˜πΊ)𝑦)](𝐺 ~QG 𝑁))
7767, 54sseldd 3979 . . . . . . . . . . . . . 14 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ (π‘₯(+gβ€˜πΊ)𝑦) ∈ 𝐡)
786, 13, 66, 77quslsm 33055 . . . . . . . . . . . . 13 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ [(π‘₯(+gβ€˜πΊ)𝑦)](𝐺 ~QG 𝑁) = ({(π‘₯(+gβ€˜πΊ)𝑦)} βŠ• 𝑁))
7971, 76, 783eqtrd 2771 . . . . . . . . . . . 12 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ (𝑖(+gβ€˜π‘„)𝑗) = ({(π‘₯(+gβ€˜πΊ)𝑦)} βŠ• 𝑁))
8054, 58, 79rspcedvd 3609 . . . . . . . . . . 11 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ βˆƒπ‘§ ∈ β„Ž (𝑖(+gβ€˜π‘„)𝑗) = ({𝑧} βŠ• 𝑁))
81 ovexd 7449 . . . . . . . . . . 11 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ (𝑖(+gβ€˜π‘„)𝑗) ∈ V)
8247, 80, 81elrnmptd 5957 . . . . . . . . . 10 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ (𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
8382adantllr 718 . . . . . . . . 9 ((((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑗 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ (𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
84 sneq 4634 . . . . . . . . . . . . . 14 (π‘₯ = 𝑦 β†’ {π‘₯} = {𝑦})
8584oveq1d 7429 . . . . . . . . . . . . 13 (π‘₯ = 𝑦 β†’ ({π‘₯} βŠ• 𝑁) = ({𝑦} βŠ• 𝑁))
8685cbvmptv 5255 . . . . . . . . . . . 12 (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) = (𝑦 ∈ β„Ž ↦ ({𝑦} βŠ• 𝑁))
87 ovex 7447 . . . . . . . . . . . 12 ({𝑦} βŠ• 𝑁) ∈ V
8886, 87elrnmpti 5956 . . . . . . . . . . 11 (𝑗 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ↔ βˆƒπ‘¦ ∈ β„Ž 𝑗 = ({𝑦} βŠ• 𝑁))
8988biimpi 215 . . . . . . . . . 10 (𝑗 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) β†’ βˆƒπ‘¦ ∈ β„Ž 𝑗 = ({𝑦} βŠ• 𝑁))
9089adantl 481 . . . . . . . . 9 ((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑗 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))) β†’ βˆƒπ‘¦ ∈ β„Ž 𝑗 = ({𝑦} βŠ• 𝑁))
9183, 90r19.29a 3157 . . . . . . . 8 ((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑗 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))) β†’ (𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
9291ralrimiva 3141 . . . . . . 7 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ βˆ€π‘— ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
93 eqid 2727 . . . . . . . . . . 11 (invgβ€˜πΊ) = (invgβ€˜πΊ)
9493subginvcl 19081 . . . . . . . . . 10 ((β„Ž ∈ (SubGrpβ€˜πΊ) ∧ π‘₯ ∈ β„Ž) β†’ ((invgβ€˜πΊ)β€˜π‘₯) ∈ β„Ž)
9594ad5ant24 760 . . . . . . . . 9 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ ((invgβ€˜πΊ)β€˜π‘₯) ∈ β„Ž)
96 simpr 484 . . . . . . . . . . . . 13 ((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 = ((invgβ€˜πΊ)β€˜π‘₯)) β†’ 𝑦 = ((invgβ€˜πΊ)β€˜π‘₯))
9796sneqd 4636 . . . . . . . . . . . 12 ((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 = ((invgβ€˜πΊ)β€˜π‘₯)) β†’ {𝑦} = {((invgβ€˜πΊ)β€˜π‘₯)})
9897oveq1d 7429 . . . . . . . . . . 11 ((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 = ((invgβ€˜πΊ)β€˜π‘₯)) β†’ ({𝑦} βŠ• 𝑁) = ({((invgβ€˜πΊ)β€˜π‘₯)} βŠ• 𝑁))
998adantr 480 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ β„Ž βŠ† 𝐡)
10094ad4ant24 753 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ ((invgβ€˜πΊ)β€˜π‘₯) ∈ β„Ž)
10199, 100sseldd 3979 . . . . . . . . . . . . 13 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ ((invgβ€˜πΊ)β€˜π‘₯) ∈ 𝐡)
1026, 13, 16, 101quslsm 33055 . . . . . . . . . . . 12 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ [((invgβ€˜πΊ)β€˜π‘₯)](𝐺 ~QG 𝑁) = ({((invgβ€˜πΊ)β€˜π‘₯)} βŠ• 𝑁))
103102ad2antrr 725 . . . . . . . . . . 11 ((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 = ((invgβ€˜πΊ)β€˜π‘₯)) β†’ [((invgβ€˜πΊ)β€˜π‘₯)](𝐺 ~QG 𝑁) = ({((invgβ€˜πΊ)β€˜π‘₯)} βŠ• 𝑁))
10498, 103eqtr4d 2770 . . . . . . . . . 10 ((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 = ((invgβ€˜πΊ)β€˜π‘₯)) β†’ ({𝑦} βŠ• 𝑁) = [((invgβ€˜πΊ)β€˜π‘₯)](𝐺 ~QG 𝑁))
105104eqeq2d 2738 . . . . . . . . 9 ((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 = ((invgβ€˜πΊ)β€˜π‘₯)) β†’ (((invgβ€˜π‘„)β€˜π‘–) = ({𝑦} βŠ• 𝑁) ↔ ((invgβ€˜π‘„)β€˜π‘–) = [((invgβ€˜πΊ)β€˜π‘₯)](𝐺 ~QG 𝑁)))
10661fveq2d 6895 . . . . . . . . . 10 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ ((invgβ€˜π‘„)β€˜π‘–) = ((invgβ€˜π‘„)β€˜[π‘₯](𝐺 ~QG 𝑁)))
107 eqid 2727 . . . . . . . . . . . 12 (invgβ€˜π‘„) = (invgβ€˜π‘„)
1082, 6, 93, 107qusinv 19136 . . . . . . . . . . 11 ((𝑁 ∈ (NrmSGrpβ€˜πΊ) ∧ π‘₯ ∈ 𝐡) β†’ ((invgβ€˜π‘„)β€˜[π‘₯](𝐺 ~QG 𝑁)) = [((invgβ€˜πΊ)β€˜π‘₯)](𝐺 ~QG 𝑁))
10964, 72, 108syl2anc 583 . . . . . . . . . 10 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ ((invgβ€˜π‘„)β€˜[π‘₯](𝐺 ~QG 𝑁)) = [((invgβ€˜πΊ)β€˜π‘₯)](𝐺 ~QG 𝑁))
110106, 109eqtrd 2767 . . . . . . . . 9 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ ((invgβ€˜π‘„)β€˜π‘–) = [((invgβ€˜πΊ)β€˜π‘₯)](𝐺 ~QG 𝑁))
11195, 105, 110rspcedvd 3609 . . . . . . . 8 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ βˆƒπ‘¦ ∈ β„Ž ((invgβ€˜π‘„)β€˜π‘–) = ({𝑦} βŠ• 𝑁))
112 fvexd 6906 . . . . . . . 8 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ ((invgβ€˜π‘„)β€˜π‘–) ∈ V)
11386, 111, 112elrnmptd 5957 . . . . . . 7 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ ((invgβ€˜π‘„)β€˜π‘–) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
11492, 113jca 511 . . . . . 6 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ (βˆ€π‘— ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∧ ((invgβ€˜π‘„)β€˜π‘–) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))))
115114adantllr 718 . . . . 5 ((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ 𝑖 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ (βˆ€π‘— ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∧ ((invgβ€˜π‘„)β€˜π‘–) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))))
116 ovex 7447 . . . . . . . 8 ({π‘₯} βŠ• 𝑁) ∈ V
11727, 116elrnmpti 5956 . . . . . . 7 (𝑖 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ↔ βˆƒπ‘₯ ∈ β„Ž 𝑖 = ({π‘₯} βŠ• 𝑁))
118117biimpi 215 . . . . . 6 (𝑖 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) β†’ βˆƒπ‘₯ ∈ β„Ž 𝑖 = ({π‘₯} βŠ• 𝑁))
119118adantl 481 . . . . 5 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ 𝑖 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))) β†’ βˆƒπ‘₯ ∈ β„Ž 𝑖 = ({π‘₯} βŠ• 𝑁))
12040, 44, 115, 119r19.29af2 3259 . . . 4 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ 𝑖 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))) β†’ (βˆ€π‘— ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∧ ((invgβ€˜π‘„)β€˜π‘–) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))))
121120ralrimiva 3141 . . 3 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ βˆ€π‘– ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(βˆ€π‘— ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∧ ((invgβ€˜π‘„)β€˜π‘–) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))))
122 eqid 2727 . . . . 5 (Baseβ€˜π‘„) = (Baseβ€˜π‘„)
123122, 74, 107issubg2 19087 . . . 4 (𝑄 ∈ Grp β†’ (ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∈ (SubGrpβ€˜π‘„) ↔ (ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) βŠ† (Baseβ€˜π‘„) ∧ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) β‰  βˆ… ∧ βˆ€π‘– ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(βˆ€π‘— ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∧ ((invgβ€˜π‘„)β€˜π‘–) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))))))
124123biimpar 477 . . 3 ((𝑄 ∈ Grp ∧ (ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) βŠ† (Baseβ€˜π‘„) ∧ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) β‰  βˆ… ∧ βˆ€π‘– ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(βˆ€π‘— ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∧ ((invgβ€˜π‘„)β€˜π‘–) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))))) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∈ (SubGrpβ€˜π‘„))
1255, 29, 36, 121, 124syl13anc 1370 . 2 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∈ (SubGrpβ€˜π‘„))
126 nsgqusf1o.t . 2 𝑇 = (SubGrpβ€˜π‘„)
127125, 126eleqtrrdi 2839 1 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   β‰  wne 2935  βˆ€wral 3056  βˆƒwrex 3065  {crab 3427  Vcvv 3469   βŠ† wss 3944  βˆ…c0 4318  {csn 4624   ↦ cmpt 5225  ran crn 5673  β€˜cfv 6542  (class class class)co 7414  [cec 8716   / cqs 8717  Basecbs 17171  +gcplusg 17224  lecple 17231  0gc0g 17412   /s cqus 17478  toInccipo 18510  Grpcgrp 18881  invgcminusg 18882  SubGrpcsubg 19066  NrmSGrpcnsg 19067   ~QG cqg 19068  LSSumclsm 19580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-ec 8720  df-qs 8724  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-inf 9458  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-0g 17414  df-imas 17481  df-qus 17482  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-grp 18884  df-minusg 18885  df-subg 19069  df-nsg 19070  df-eqg 19071  df-oppg 19288  df-lsm 19582
This theorem is referenced by:  nsgqusf1olem2  33064  nsgqusf1olem3  33065
  Copyright terms: Public domain W3C validator