Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgqusf1olem1 Structured version   Visualization version   GIF version

Theorem nsgqusf1olem1 31598
Description: Lemma for nsgqusf1o 31601. (Contributed by Thierry Arnoux, 4-Aug-2024.)
Hypotheses
Ref Expression
nsgqusf1o.b 𝐵 = (Base‘𝐺)
nsgqusf1o.s 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
nsgqusf1o.t 𝑇 = (SubGrp‘𝑄)
nsgqusf1o.1 = (le‘(toInc‘𝑆))
nsgqusf1o.2 = (le‘(toInc‘𝑇))
nsgqusf1o.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgqusf1o.p = (LSSum‘𝐺)
nsgqusf1o.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
nsgqusf1o.f 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
nsgqusf1o.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
nsgqusf1olem1 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ 𝑇)
Distinct variable groups:   ,𝑎,𝑓,,𝑥   𝐵,𝑎,𝑓,,𝑥   𝐸,𝑎,𝑓,,𝑥   𝑓,𝐹,,𝑥   𝐺,𝑎,𝑓,,𝑥   𝑁,𝑎,𝑓,,𝑥   𝑄,𝑎,𝑓,,𝑥   𝑆,𝑎,𝑓,,𝑥   𝑇,𝑎,𝑓,,𝑥   𝜑,𝑎,𝑓,,𝑥
Allowed substitution hints:   𝐹(𝑎)   (𝑥,𝑓,,𝑎)   (𝑥,𝑓,,𝑎)

Proof of Theorem nsgqusf1olem1
Dummy variables 𝑖 𝑗 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgqusf1o.n . . . . 5 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
2 nsgqusf1o.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
32qusgrp 18811 . . . . 5 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑄 ∈ Grp)
41, 3syl 17 . . . 4 (𝜑𝑄 ∈ Grp)
54ad2antrr 723 . . 3 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → 𝑄 ∈ Grp)
6 nsgqusf1o.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
76subgss 18756 . . . . . . . . 9 ( ∈ (SubGrp‘𝐺) → 𝐵)
87ad2antlr 724 . . . . . . . 8 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → 𝐵)
98sselda 3921 . . . . . . 7 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → 𝑥𝐵)
10 ovex 7308 . . . . . . . 8 (𝐺 ~QG 𝑁) ∈ V
1110ecelqsi 8562 . . . . . . 7 (𝑥𝐵 → [𝑥](𝐺 ~QG 𝑁) ∈ (𝐵 / (𝐺 ~QG 𝑁)))
129, 11syl 17 . . . . . 6 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → [𝑥](𝐺 ~QG 𝑁) ∈ (𝐵 / (𝐺 ~QG 𝑁)))
13 nsgqusf1o.p . . . . . . 7 = (LSSum‘𝐺)
14 nsgsubg 18786 . . . . . . . . 9 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
151, 14syl 17 . . . . . . . 8 (𝜑𝑁 ∈ (SubGrp‘𝐺))
1615ad3antrrr 727 . . . . . . 7 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → 𝑁 ∈ (SubGrp‘𝐺))
176, 13, 16, 9quslsm 31593 . . . . . 6 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
182a1i 11 . . . . . . . 8 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
196a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
20 ovexd 7310 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝑁) ∈ V)
21 subgrcl 18760 . . . . . . . . 9 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2215, 21syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
2318, 19, 20, 22qusbas 17256 . . . . . . 7 (𝜑 → (𝐵 / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
2423ad3antrrr 727 . . . . . 6 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → (𝐵 / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
2512, 17, 243eltr3d 2853 . . . . 5 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → ({𝑥} 𝑁) ∈ (Base‘𝑄))
2625ralrimiva 3103 . . . 4 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ∀𝑥 ({𝑥} 𝑁) ∈ (Base‘𝑄))
27 eqid 2738 . . . . 5 (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥 ↦ ({𝑥} 𝑁))
2827rnmptss 6996 . . . 4 (∀𝑥 ({𝑥} 𝑁) ∈ (Base‘𝑄) → ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ (Base‘𝑄))
2926, 28syl 17 . . 3 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ (Base‘𝑄))
30 nfv 1917 . . . 4 𝑥((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁)
31 ovexd 7310 . . . 4 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → ({𝑥} 𝑁) ∈ V)
32 eqid 2738 . . . . . . 7 (0g𝐺) = (0g𝐺)
3332subg0cl 18763 . . . . . 6 ( ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ )
3433ne0d 4269 . . . . 5 ( ∈ (SubGrp‘𝐺) → ≠ ∅)
3534ad2antlr 724 . . . 4 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ≠ ∅)
3630, 31, 27, 35rnmptn0 6147 . . 3 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ≠ ∅)
37 nfmpt1 5182 . . . . . . . 8 𝑥(𝑥 ↦ ({𝑥} 𝑁))
3837nfrn 5861 . . . . . . 7 𝑥ran (𝑥 ↦ ({𝑥} 𝑁))
3938nfel2 2925 . . . . . 6 𝑥 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
4030, 39nfan 1902 . . . . 5 𝑥(((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
4138nfel2 2925 . . . . . . 7 𝑥(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
4238, 41nfralw 3151 . . . . . 6 𝑥𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
4338nfel2 2925 . . . . . 6 𝑥((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
4442, 43nfan 1902 . . . . 5 𝑥(∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
45 sneq 4571 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → {𝑥} = {𝑧})
4645oveq1d 7290 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ({𝑥} 𝑁) = ({𝑧} 𝑁))
4746cbvmptv 5187 . . . . . . . . . . 11 (𝑥 ↦ ({𝑥} 𝑁)) = (𝑧 ↦ ({𝑧} 𝑁))
48 simp-4r 781 . . . . . . . . . . . . . 14 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ∈ (SubGrp‘𝐺))
4948ad2antrr 723 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → ∈ (SubGrp‘𝐺))
50 simp-4r 781 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑥)
51 simplr 766 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑦)
52 eqid 2738 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
5352subgcl 18765 . . . . . . . . . . . . 13 (( ∈ (SubGrp‘𝐺) ∧ 𝑥𝑦) → (𝑥(+g𝐺)𝑦) ∈ )
5449, 50, 51, 53syl3anc 1370 . . . . . . . . . . . 12 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑥(+g𝐺)𝑦) ∈ )
55 sneq 4571 . . . . . . . . . . . . . . 15 (𝑧 = (𝑥(+g𝐺)𝑦) → {𝑧} = {(𝑥(+g𝐺)𝑦)})
5655oveq1d 7290 . . . . . . . . . . . . . 14 (𝑧 = (𝑥(+g𝐺)𝑦) → ({𝑧} 𝑁) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
5756eqeq2d 2749 . . . . . . . . . . . . 13 (𝑧 = (𝑥(+g𝐺)𝑦) → ((𝑖(+g𝑄)𝑗) = ({𝑧} 𝑁) ↔ (𝑖(+g𝑄)𝑗) = ({(𝑥(+g𝐺)𝑦)} 𝑁)))
5857adantl 482 . . . . . . . . . . . 12 ((((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) ∧ 𝑧 = (𝑥(+g𝐺)𝑦)) → ((𝑖(+g𝑄)𝑗) = ({𝑧} 𝑁) ↔ (𝑖(+g𝑄)𝑗) = ({(𝑥(+g𝐺)𝑦)} 𝑁)))
59 simpr 485 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑖 = ({𝑥} 𝑁))
6017adantr 481 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
6159, 60eqtr4d 2781 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑖 = [𝑥](𝐺 ~QG 𝑁))
6261ad2antrr 723 . . . . . . . . . . . . . 14 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑖 = [𝑥](𝐺 ~QG 𝑁))
63 simpr 485 . . . . . . . . . . . . . . 15 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑗 = ({𝑦} 𝑁))
641ad4antr 729 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑁 ∈ (NrmSGrp‘𝐺))
6564ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑁 ∈ (NrmSGrp‘𝐺))
6665, 14syl 17 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑁 ∈ (SubGrp‘𝐺))
6749, 7syl 17 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝐵)
6867, 51sseldd 3922 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑦𝐵)
696, 13, 66, 68quslsm 31593 . . . . . . . . . . . . . . 15 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → [𝑦](𝐺 ~QG 𝑁) = ({𝑦} 𝑁))
7063, 69eqtr4d 2781 . . . . . . . . . . . . . 14 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑗 = [𝑦](𝐺 ~QG 𝑁))
7162, 70oveq12d 7293 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) = ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)))
729adantr 481 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑥𝐵)
7372ad2antrr 723 . . . . . . . . . . . . . 14 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑥𝐵)
74 eqid 2738 . . . . . . . . . . . . . . 15 (+g𝑄) = (+g𝑄)
752, 6, 52, 74qusadd 18813 . . . . . . . . . . . . . 14 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝐵𝑦𝐵) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
7665, 73, 68, 75syl3anc 1370 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
7767, 54sseldd 3922 . . . . . . . . . . . . . 14 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
786, 13, 66, 77quslsm 31593 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
7971, 76, 783eqtrd 2782 . . . . . . . . . . . 12 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
8054, 58, 79rspcedvd 3563 . . . . . . . . . . 11 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → ∃𝑧 (𝑖(+g𝑄)𝑗) = ({𝑧} 𝑁))
81 ovexd 7310 . . . . . . . . . . 11 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) ∈ V)
8247, 80, 81elrnmptd 5870 . . . . . . . . . 10 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
8382adantllr 716 . . . . . . . . 9 ((((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
84 sneq 4571 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → {𝑥} = {𝑦})
8584oveq1d 7290 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ({𝑥} 𝑁) = ({𝑦} 𝑁))
8685cbvmptv 5187 . . . . . . . . . . . 12 (𝑥 ↦ ({𝑥} 𝑁)) = (𝑦 ↦ ({𝑦} 𝑁))
87 ovex 7308 . . . . . . . . . . . 12 ({𝑦} 𝑁) ∈ V
8886, 87elrnmpti 5869 . . . . . . . . . . 11 (𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ ∃𝑦 𝑗 = ({𝑦} 𝑁))
8988biimpi 215 . . . . . . . . . 10 (𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) → ∃𝑦 𝑗 = ({𝑦} 𝑁))
9089adantl 482 . . . . . . . . 9 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → ∃𝑦 𝑗 = ({𝑦} 𝑁))
9183, 90r19.29a 3218 . . . . . . . 8 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → (𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
9291ralrimiva 3103 . . . . . . 7 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
93 eqid 2738 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
9493subginvcl 18764 . . . . . . . . . 10 (( ∈ (SubGrp‘𝐺) ∧ 𝑥) → ((invg𝐺)‘𝑥) ∈ )
9594ad5ant24 758 . . . . . . . . 9 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝐺)‘𝑥) ∈ )
96 simpr 485 . . . . . . . . . . . . 13 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → 𝑦 = ((invg𝐺)‘𝑥))
9796sneqd 4573 . . . . . . . . . . . 12 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → {𝑦} = {((invg𝐺)‘𝑥)})
9897oveq1d 7290 . . . . . . . . . . 11 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → ({𝑦} 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
998adantr 481 . . . . . . . . . . . . . 14 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → 𝐵)
10094ad4ant24 751 . . . . . . . . . . . . . 14 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → ((invg𝐺)‘𝑥) ∈ )
10199, 100sseldd 3922 . . . . . . . . . . . . 13 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → ((invg𝐺)‘𝑥) ∈ 𝐵)
1026, 13, 16, 101quslsm 31593 . . . . . . . . . . . 12 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
103102ad2antrr 723 . . . . . . . . . . 11 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
10498, 103eqtr4d 2781 . . . . . . . . . 10 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → ({𝑦} 𝑁) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
105104eqeq2d 2749 . . . . . . . . 9 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → (((invg𝑄)‘𝑖) = ({𝑦} 𝑁) ↔ ((invg𝑄)‘𝑖) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁)))
10661fveq2d 6778 . . . . . . . . . 10 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘𝑖) = ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)))
107 eqid 2738 . . . . . . . . . . . 12 (invg𝑄) = (invg𝑄)
1082, 6, 93, 107qusinv 18815 . . . . . . . . . . 11 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
10964, 72, 108syl2anc 584 . . . . . . . . . 10 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
110106, 109eqtrd 2778 . . . . . . . . 9 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘𝑖) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
11195, 105, 110rspcedvd 3563 . . . . . . . 8 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ∃𝑦 ((invg𝑄)‘𝑖) = ({𝑦} 𝑁))
112 fvexd 6789 . . . . . . . 8 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘𝑖) ∈ V)
11386, 111, 112elrnmptd 5870 . . . . . . 7 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
11492, 113jca 512 . . . . . 6 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → (∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
115114adantllr 716 . . . . 5 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → (∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
116 ovex 7308 . . . . . . . 8 ({𝑥} 𝑁) ∈ V
11727, 116elrnmpti 5869 . . . . . . 7 (𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ ∃𝑥 𝑖 = ({𝑥} 𝑁))
118117biimpi 215 . . . . . 6 (𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) → ∃𝑥 𝑖 = ({𝑥} 𝑁))
119118adantl 482 . . . . 5 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → ∃𝑥 𝑖 = ({𝑥} 𝑁))
12040, 44, 115, 119r19.29af2 3261 . . . 4 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → (∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
121120ralrimiva 3103 . . 3 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ∀𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
122 eqid 2738 . . . . 5 (Base‘𝑄) = (Base‘𝑄)
123122, 74, 107issubg2 18770 . . . 4 (𝑄 ∈ Grp → (ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄) ↔ (ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ (Base‘𝑄) ∧ ran (𝑥 ↦ ({𝑥} 𝑁)) ≠ ∅ ∧ ∀𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))))
124123biimpar 478 . . 3 ((𝑄 ∈ Grp ∧ (ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ (Base‘𝑄) ∧ ran (𝑥 ↦ ({𝑥} 𝑁)) ≠ ∅ ∧ ∀𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄))
1255, 29, 36, 121, 124syl13anc 1371 . 2 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄))
126 nsgqusf1o.t . 2 𝑇 = (SubGrp‘𝑄)
127125, 126eleqtrrdi 2850 1 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  wss 3887  c0 4256  {csn 4561  cmpt 5157  ran crn 5590  cfv 6433  (class class class)co 7275  [cec 8496   / cqs 8497  Basecbs 16912  +gcplusg 16962  lecple 16969  0gc0g 17150   /s cqus 17216  toInccipo 18245  Grpcgrp 18577  invgcminusg 18578  SubGrpcsubg 18749  NrmSGrpcnsg 18750   ~QG cqg 18751  LSSumclsm 19239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-ec 8500  df-qs 8504  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-0g 17152  df-imas 17219  df-qus 17220  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-subg 18752  df-nsg 18753  df-eqg 18754  df-oppg 18950  df-lsm 19241
This theorem is referenced by:  nsgqusf1olem2  31599  nsgqusf1olem3  31600
  Copyright terms: Public domain W3C validator