Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgqusf1olem1 Structured version   Visualization version   GIF version

Theorem nsgqusf1olem1 33377
Description: Lemma for nsgqusf1o 33380. (Contributed by Thierry Arnoux, 4-Aug-2024.)
Hypotheses
Ref Expression
nsgqusf1o.b 𝐵 = (Base‘𝐺)
nsgqusf1o.s 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
nsgqusf1o.t 𝑇 = (SubGrp‘𝑄)
nsgqusf1o.1 = (le‘(toInc‘𝑆))
nsgqusf1o.2 = (le‘(toInc‘𝑇))
nsgqusf1o.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgqusf1o.p = (LSSum‘𝐺)
nsgqusf1o.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
nsgqusf1o.f 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
nsgqusf1o.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
nsgqusf1olem1 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ 𝑇)
Distinct variable groups:   ,𝑎,𝑓,,𝑥   𝐵,𝑎,𝑓,,𝑥   𝐸,𝑎,𝑓,,𝑥   𝑓,𝐹,,𝑥   𝐺,𝑎,𝑓,,𝑥   𝑁,𝑎,𝑓,,𝑥   𝑄,𝑎,𝑓,,𝑥   𝑆,𝑎,𝑓,,𝑥   𝑇,𝑎,𝑓,,𝑥   𝜑,𝑎,𝑓,,𝑥
Allowed substitution hints:   𝐹(𝑎)   (𝑥,𝑓,,𝑎)   (𝑥,𝑓,,𝑎)

Proof of Theorem nsgqusf1olem1
Dummy variables 𝑖 𝑗 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgqusf1o.n . . . . 5 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
2 nsgqusf1o.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
32qusgrp 19100 . . . . 5 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑄 ∈ Grp)
41, 3syl 17 . . . 4 (𝜑𝑄 ∈ Grp)
54ad2antrr 726 . . 3 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → 𝑄 ∈ Grp)
6 nsgqusf1o.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
76subgss 19041 . . . . . . . . 9 ( ∈ (SubGrp‘𝐺) → 𝐵)
87ad2antlr 727 . . . . . . . 8 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → 𝐵)
98sselda 3943 . . . . . . 7 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → 𝑥𝐵)
10 ovex 7402 . . . . . . . 8 (𝐺 ~QG 𝑁) ∈ V
1110ecelqsi 8720 . . . . . . 7 (𝑥𝐵 → [𝑥](𝐺 ~QG 𝑁) ∈ (𝐵 / (𝐺 ~QG 𝑁)))
129, 11syl 17 . . . . . 6 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → [𝑥](𝐺 ~QG 𝑁) ∈ (𝐵 / (𝐺 ~QG 𝑁)))
13 nsgqusf1o.p . . . . . . 7 = (LSSum‘𝐺)
14 nsgsubg 19072 . . . . . . . . 9 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
151, 14syl 17 . . . . . . . 8 (𝜑𝑁 ∈ (SubGrp‘𝐺))
1615ad3antrrr 730 . . . . . . 7 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → 𝑁 ∈ (SubGrp‘𝐺))
176, 13, 16, 9quslsm 33369 . . . . . 6 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
182a1i 11 . . . . . . . 8 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
196a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
20 ovexd 7404 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝑁) ∈ V)
21 subgrcl 19045 . . . . . . . . 9 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2215, 21syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
2318, 19, 20, 22qusbas 17484 . . . . . . 7 (𝜑 → (𝐵 / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
2423ad3antrrr 730 . . . . . 6 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → (𝐵 / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
2512, 17, 243eltr3d 2842 . . . . 5 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → ({𝑥} 𝑁) ∈ (Base‘𝑄))
2625ralrimiva 3125 . . . 4 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ∀𝑥 ({𝑥} 𝑁) ∈ (Base‘𝑄))
27 eqid 2729 . . . . 5 (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥 ↦ ({𝑥} 𝑁))
2827rnmptss 7077 . . . 4 (∀𝑥 ({𝑥} 𝑁) ∈ (Base‘𝑄) → ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ (Base‘𝑄))
2926, 28syl 17 . . 3 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ (Base‘𝑄))
30 nfv 1914 . . . 4 𝑥((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁)
31 ovexd 7404 . . . 4 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → ({𝑥} 𝑁) ∈ V)
32 eqid 2729 . . . . . . 7 (0g𝐺) = (0g𝐺)
3332subg0cl 19048 . . . . . 6 ( ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ )
3433ne0d 4301 . . . . 5 ( ∈ (SubGrp‘𝐺) → ≠ ∅)
3534ad2antlr 727 . . . 4 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ≠ ∅)
3630, 31, 27, 35rnmptn0 6205 . . 3 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ≠ ∅)
37 nfmpt1 5201 . . . . . . . 8 𝑥(𝑥 ↦ ({𝑥} 𝑁))
3837nfrn 5905 . . . . . . 7 𝑥ran (𝑥 ↦ ({𝑥} 𝑁))
3938nfel2 2910 . . . . . 6 𝑥 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
4030, 39nfan 1899 . . . . 5 𝑥(((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
4138nfel2 2910 . . . . . . 7 𝑥(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
4238, 41nfralw 3283 . . . . . 6 𝑥𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
4338nfel2 2910 . . . . . 6 𝑥((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
4442, 43nfan 1899 . . . . 5 𝑥(∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
45 sneq 4595 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → {𝑥} = {𝑧})
4645oveq1d 7384 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ({𝑥} 𝑁) = ({𝑧} 𝑁))
4746cbvmptv 5206 . . . . . . . . . . 11 (𝑥 ↦ ({𝑥} 𝑁)) = (𝑧 ↦ ({𝑧} 𝑁))
48 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ∈ (SubGrp‘𝐺))
4948ad2antrr 726 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → ∈ (SubGrp‘𝐺))
50 simp-4r 783 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑥)
51 simplr 768 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑦)
52 eqid 2729 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
5352subgcl 19050 . . . . . . . . . . . . 13 (( ∈ (SubGrp‘𝐺) ∧ 𝑥𝑦) → (𝑥(+g𝐺)𝑦) ∈ )
5449, 50, 51, 53syl3anc 1373 . . . . . . . . . . . 12 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑥(+g𝐺)𝑦) ∈ )
55 sneq 4595 . . . . . . . . . . . . . . 15 (𝑧 = (𝑥(+g𝐺)𝑦) → {𝑧} = {(𝑥(+g𝐺)𝑦)})
5655oveq1d 7384 . . . . . . . . . . . . . 14 (𝑧 = (𝑥(+g𝐺)𝑦) → ({𝑧} 𝑁) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
5756eqeq2d 2740 . . . . . . . . . . . . 13 (𝑧 = (𝑥(+g𝐺)𝑦) → ((𝑖(+g𝑄)𝑗) = ({𝑧} 𝑁) ↔ (𝑖(+g𝑄)𝑗) = ({(𝑥(+g𝐺)𝑦)} 𝑁)))
5857adantl 481 . . . . . . . . . . . 12 ((((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) ∧ 𝑧 = (𝑥(+g𝐺)𝑦)) → ((𝑖(+g𝑄)𝑗) = ({𝑧} 𝑁) ↔ (𝑖(+g𝑄)𝑗) = ({(𝑥(+g𝐺)𝑦)} 𝑁)))
59 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑖 = ({𝑥} 𝑁))
6017adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
6159, 60eqtr4d 2767 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑖 = [𝑥](𝐺 ~QG 𝑁))
6261ad2antrr 726 . . . . . . . . . . . . . 14 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑖 = [𝑥](𝐺 ~QG 𝑁))
63 simpr 484 . . . . . . . . . . . . . . 15 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑗 = ({𝑦} 𝑁))
641ad4antr 732 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑁 ∈ (NrmSGrp‘𝐺))
6564ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑁 ∈ (NrmSGrp‘𝐺))
6665, 14syl 17 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑁 ∈ (SubGrp‘𝐺))
6749, 7syl 17 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝐵)
6867, 51sseldd 3944 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑦𝐵)
696, 13, 66, 68quslsm 33369 . . . . . . . . . . . . . . 15 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → [𝑦](𝐺 ~QG 𝑁) = ({𝑦} 𝑁))
7063, 69eqtr4d 2767 . . . . . . . . . . . . . 14 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑗 = [𝑦](𝐺 ~QG 𝑁))
7162, 70oveq12d 7387 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) = ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)))
729adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑥𝐵)
7372ad2antrr 726 . . . . . . . . . . . . . 14 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑥𝐵)
74 eqid 2729 . . . . . . . . . . . . . . 15 (+g𝑄) = (+g𝑄)
752, 6, 52, 74qusadd 19102 . . . . . . . . . . . . . 14 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝐵𝑦𝐵) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
7665, 73, 68, 75syl3anc 1373 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
7767, 54sseldd 3944 . . . . . . . . . . . . . 14 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
786, 13, 66, 77quslsm 33369 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
7971, 76, 783eqtrd 2768 . . . . . . . . . . . 12 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
8054, 58, 79rspcedvd 3587 . . . . . . . . . . 11 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → ∃𝑧 (𝑖(+g𝑄)𝑗) = ({𝑧} 𝑁))
81 ovexd 7404 . . . . . . . . . . 11 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) ∈ V)
8247, 80, 81elrnmptd 5916 . . . . . . . . . 10 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
8382adantllr 719 . . . . . . . . 9 ((((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
84 sneq 4595 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → {𝑥} = {𝑦})
8584oveq1d 7384 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ({𝑥} 𝑁) = ({𝑦} 𝑁))
8685cbvmptv 5206 . . . . . . . . . . . 12 (𝑥 ↦ ({𝑥} 𝑁)) = (𝑦 ↦ ({𝑦} 𝑁))
87 ovex 7402 . . . . . . . . . . . 12 ({𝑦} 𝑁) ∈ V
8886, 87elrnmpti 5915 . . . . . . . . . . 11 (𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ ∃𝑦 𝑗 = ({𝑦} 𝑁))
8988biimpi 216 . . . . . . . . . 10 (𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) → ∃𝑦 𝑗 = ({𝑦} 𝑁))
9089adantl 481 . . . . . . . . 9 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → ∃𝑦 𝑗 = ({𝑦} 𝑁))
9183, 90r19.29a 3141 . . . . . . . 8 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → (𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
9291ralrimiva 3125 . . . . . . 7 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
93 eqid 2729 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
9493subginvcl 19049 . . . . . . . . . 10 (( ∈ (SubGrp‘𝐺) ∧ 𝑥) → ((invg𝐺)‘𝑥) ∈ )
9594ad5ant24 760 . . . . . . . . 9 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝐺)‘𝑥) ∈ )
96 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → 𝑦 = ((invg𝐺)‘𝑥))
9796sneqd 4597 . . . . . . . . . . . 12 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → {𝑦} = {((invg𝐺)‘𝑥)})
9897oveq1d 7384 . . . . . . . . . . 11 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → ({𝑦} 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
998adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → 𝐵)
10094ad4ant24 754 . . . . . . . . . . . . . 14 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → ((invg𝐺)‘𝑥) ∈ )
10199, 100sseldd 3944 . . . . . . . . . . . . 13 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → ((invg𝐺)‘𝑥) ∈ 𝐵)
1026, 13, 16, 101quslsm 33369 . . . . . . . . . . . 12 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
103102ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
10498, 103eqtr4d 2767 . . . . . . . . . 10 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → ({𝑦} 𝑁) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
105104eqeq2d 2740 . . . . . . . . 9 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → (((invg𝑄)‘𝑖) = ({𝑦} 𝑁) ↔ ((invg𝑄)‘𝑖) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁)))
10661fveq2d 6844 . . . . . . . . . 10 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘𝑖) = ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)))
107 eqid 2729 . . . . . . . . . . . 12 (invg𝑄) = (invg𝑄)
1082, 6, 93, 107qusinv 19104 . . . . . . . . . . 11 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
10964, 72, 108syl2anc 584 . . . . . . . . . 10 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
110106, 109eqtrd 2764 . . . . . . . . 9 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘𝑖) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
11195, 105, 110rspcedvd 3587 . . . . . . . 8 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ∃𝑦 ((invg𝑄)‘𝑖) = ({𝑦} 𝑁))
112 fvexd 6855 . . . . . . . 8 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘𝑖) ∈ V)
11386, 111, 112elrnmptd 5916 . . . . . . 7 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
11492, 113jca 511 . . . . . 6 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → (∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
115114adantllr 719 . . . . 5 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → (∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
116 ovex 7402 . . . . . . . 8 ({𝑥} 𝑁) ∈ V
11727, 116elrnmpti 5915 . . . . . . 7 (𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ ∃𝑥 𝑖 = ({𝑥} 𝑁))
118117biimpi 216 . . . . . 6 (𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) → ∃𝑥 𝑖 = ({𝑥} 𝑁))
119118adantl 481 . . . . 5 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → ∃𝑥 𝑖 = ({𝑥} 𝑁))
12040, 44, 115, 119r19.29af2 3243 . . . 4 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → (∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
121120ralrimiva 3125 . . 3 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ∀𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
122 eqid 2729 . . . . 5 (Base‘𝑄) = (Base‘𝑄)
123122, 74, 107issubg2 19055 . . . 4 (𝑄 ∈ Grp → (ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄) ↔ (ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ (Base‘𝑄) ∧ ran (𝑥 ↦ ({𝑥} 𝑁)) ≠ ∅ ∧ ∀𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))))
124123biimpar 477 . . 3 ((𝑄 ∈ Grp ∧ (ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ (Base‘𝑄) ∧ ran (𝑥 ↦ ({𝑥} 𝑁)) ≠ ∅ ∧ ∀𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄))
1255, 29, 36, 121, 124syl13anc 1374 . 2 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄))
126 nsgqusf1o.t . 2 𝑇 = (SubGrp‘𝑄)
127125, 126eleqtrrdi 2839 1 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  wss 3911  c0 4292  {csn 4585  cmpt 5183  ran crn 5632  cfv 6499  (class class class)co 7369  [cec 8646   / cqs 8647  Basecbs 17155  +gcplusg 17196  lecple 17203  0gc0g 17378   /s cqus 17444  toInccipo 18468  Grpcgrp 18847  invgcminusg 18848  SubGrpcsubg 19034  NrmSGrpcnsg 19035   ~QG cqg 19036  LSSumclsm 19548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-ec 8650  df-qs 8654  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17380  df-imas 17447  df-qus 17448  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-subg 19037  df-nsg 19038  df-eqg 19039  df-oppg 19260  df-lsm 19550
This theorem is referenced by:  nsgqusf1olem2  33378  nsgqusf1olem3  33379
  Copyright terms: Public domain W3C validator