Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgqusf1olem1 Structured version   Visualization version   GIF version

Theorem nsgqusf1olem1 33168
Description: Lemma for nsgqusf1o 33171. (Contributed by Thierry Arnoux, 4-Aug-2024.)
Hypotheses
Ref Expression
nsgqusf1o.b 𝐡 = (Baseβ€˜πΊ)
nsgqusf1o.s 𝑆 = {β„Ž ∈ (SubGrpβ€˜πΊ) ∣ 𝑁 βŠ† β„Ž}
nsgqusf1o.t 𝑇 = (SubGrpβ€˜π‘„)
nsgqusf1o.1 ≀ = (leβ€˜(toIncβ€˜π‘†))
nsgqusf1o.2 ≲ = (leβ€˜(toIncβ€˜π‘‡))
nsgqusf1o.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgqusf1o.p βŠ• = (LSSumβ€˜πΊ)
nsgqusf1o.e 𝐸 = (β„Ž ∈ 𝑆 ↦ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
nsgqusf1o.f 𝐹 = (𝑓 ∈ 𝑇 ↦ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓})
nsgqusf1o.n (πœ‘ β†’ 𝑁 ∈ (NrmSGrpβ€˜πΊ))
Assertion
Ref Expression
nsgqusf1olem1 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∈ 𝑇)
Distinct variable groups:   βŠ• ,π‘Ž,𝑓,β„Ž,π‘₯   𝐡,π‘Ž,𝑓,β„Ž,π‘₯   𝐸,π‘Ž,𝑓,β„Ž,π‘₯   𝑓,𝐹,β„Ž,π‘₯   𝐺,π‘Ž,𝑓,β„Ž,π‘₯   𝑁,π‘Ž,𝑓,β„Ž,π‘₯   𝑄,π‘Ž,𝑓,β„Ž,π‘₯   𝑆,π‘Ž,𝑓,β„Ž,π‘₯   𝑇,π‘Ž,𝑓,β„Ž,π‘₯   πœ‘,π‘Ž,𝑓,β„Ž,π‘₯
Allowed substitution hints:   𝐹(π‘Ž)   ≀ (π‘₯,𝑓,β„Ž,π‘Ž)   ≲ (π‘₯,𝑓,β„Ž,π‘Ž)

Proof of Theorem nsgqusf1olem1
Dummy variables 𝑖 𝑗 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgqusf1o.n . . . . 5 (πœ‘ β†’ 𝑁 ∈ (NrmSGrpβ€˜πΊ))
2 nsgqusf1o.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
32qusgrp 19140 . . . . 5 (𝑁 ∈ (NrmSGrpβ€˜πΊ) β†’ 𝑄 ∈ Grp)
41, 3syl 17 . . . 4 (πœ‘ β†’ 𝑄 ∈ Grp)
54ad2antrr 724 . . 3 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ 𝑄 ∈ Grp)
6 nsgqusf1o.b . . . . . . . . . 10 𝐡 = (Baseβ€˜πΊ)
76subgss 19081 . . . . . . . . 9 (β„Ž ∈ (SubGrpβ€˜πΊ) β†’ β„Ž βŠ† 𝐡)
87ad2antlr 725 . . . . . . . 8 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ β„Ž βŠ† 𝐡)
98sselda 3973 . . . . . . 7 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ π‘₯ ∈ 𝐡)
10 ovex 7446 . . . . . . . 8 (𝐺 ~QG 𝑁) ∈ V
1110ecelqsi 8785 . . . . . . 7 (π‘₯ ∈ 𝐡 β†’ [π‘₯](𝐺 ~QG 𝑁) ∈ (𝐡 / (𝐺 ~QG 𝑁)))
129, 11syl 17 . . . . . 6 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ [π‘₯](𝐺 ~QG 𝑁) ∈ (𝐡 / (𝐺 ~QG 𝑁)))
13 nsgqusf1o.p . . . . . . 7 βŠ• = (LSSumβ€˜πΊ)
14 nsgsubg 19112 . . . . . . . . 9 (𝑁 ∈ (NrmSGrpβ€˜πΊ) β†’ 𝑁 ∈ (SubGrpβ€˜πΊ))
151, 14syl 17 . . . . . . . 8 (πœ‘ β†’ 𝑁 ∈ (SubGrpβ€˜πΊ))
1615ad3antrrr 728 . . . . . . 7 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ 𝑁 ∈ (SubGrpβ€˜πΊ))
176, 13, 16, 9quslsm 33160 . . . . . 6 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ [π‘₯](𝐺 ~QG 𝑁) = ({π‘₯} βŠ• 𝑁))
182a1i 11 . . . . . . . 8 (πœ‘ β†’ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
196a1i 11 . . . . . . . 8 (πœ‘ β†’ 𝐡 = (Baseβ€˜πΊ))
20 ovexd 7448 . . . . . . . 8 (πœ‘ β†’ (𝐺 ~QG 𝑁) ∈ V)
21 subgrcl 19085 . . . . . . . . 9 (𝑁 ∈ (SubGrpβ€˜πΊ) β†’ 𝐺 ∈ Grp)
2215, 21syl 17 . . . . . . . 8 (πœ‘ β†’ 𝐺 ∈ Grp)
2318, 19, 20, 22qusbas 17521 . . . . . . 7 (πœ‘ β†’ (𝐡 / (𝐺 ~QG 𝑁)) = (Baseβ€˜π‘„))
2423ad3antrrr 728 . . . . . 6 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ (𝐡 / (𝐺 ~QG 𝑁)) = (Baseβ€˜π‘„))
2512, 17, 243eltr3d 2839 . . . . 5 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ ({π‘₯} βŠ• 𝑁) ∈ (Baseβ€˜π‘„))
2625ralrimiva 3136 . . . 4 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ βˆ€π‘₯ ∈ β„Ž ({π‘₯} βŠ• 𝑁) ∈ (Baseβ€˜π‘„))
27 eqid 2725 . . . . 5 (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) = (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))
2827rnmptss 7126 . . . 4 (βˆ€π‘₯ ∈ β„Ž ({π‘₯} βŠ• 𝑁) ∈ (Baseβ€˜π‘„) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) βŠ† (Baseβ€˜π‘„))
2926, 28syl 17 . . 3 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) βŠ† (Baseβ€˜π‘„))
30 nfv 1909 . . . 4 β„²π‘₯((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž)
31 ovexd 7448 . . . 4 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ ({π‘₯} βŠ• 𝑁) ∈ V)
32 eqid 2725 . . . . . . 7 (0gβ€˜πΊ) = (0gβ€˜πΊ)
3332subg0cl 19088 . . . . . 6 (β„Ž ∈ (SubGrpβ€˜πΊ) β†’ (0gβ€˜πΊ) ∈ β„Ž)
3433ne0d 4332 . . . . 5 (β„Ž ∈ (SubGrpβ€˜πΊ) β†’ β„Ž β‰  βˆ…)
3534ad2antlr 725 . . . 4 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ β„Ž β‰  βˆ…)
3630, 31, 27, 35rnmptn0 6244 . . 3 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) β‰  βˆ…)
37 nfmpt1 5252 . . . . . . . 8 β„²π‘₯(π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))
3837nfrn 5949 . . . . . . 7 β„²π‘₯ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))
3938nfel2 2911 . . . . . 6 β„²π‘₯ 𝑖 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))
4030, 39nfan 1894 . . . . 5 β„²π‘₯(((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ 𝑖 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
4138nfel2 2911 . . . . . . 7 β„²π‘₯(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))
4238, 41nfralw 3299 . . . . . 6 β„²π‘₯βˆ€π‘— ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))
4338nfel2 2911 . . . . . 6 β„²π‘₯((invgβ€˜π‘„)β€˜π‘–) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))
4442, 43nfan 1894 . . . . 5 β„²π‘₯(βˆ€π‘— ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∧ ((invgβ€˜π‘„)β€˜π‘–) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
45 sneq 4635 . . . . . . . . . . . . 13 (π‘₯ = 𝑧 β†’ {π‘₯} = {𝑧})
4645oveq1d 7428 . . . . . . . . . . . 12 (π‘₯ = 𝑧 β†’ ({π‘₯} βŠ• 𝑁) = ({𝑧} βŠ• 𝑁))
4746cbvmptv 5257 . . . . . . . . . . 11 (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) = (𝑧 ∈ β„Ž ↦ ({𝑧} βŠ• 𝑁))
48 simp-4r 782 . . . . . . . . . . . . . 14 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ β„Ž ∈ (SubGrpβ€˜πΊ))
4948ad2antrr 724 . . . . . . . . . . . . 13 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ β„Ž ∈ (SubGrpβ€˜πΊ))
50 simp-4r 782 . . . . . . . . . . . . 13 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ π‘₯ ∈ β„Ž)
51 simplr 767 . . . . . . . . . . . . 13 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ 𝑦 ∈ β„Ž)
52 eqid 2725 . . . . . . . . . . . . . 14 (+gβ€˜πΊ) = (+gβ€˜πΊ)
5352subgcl 19090 . . . . . . . . . . . . 13 ((β„Ž ∈ (SubGrpβ€˜πΊ) ∧ π‘₯ ∈ β„Ž ∧ 𝑦 ∈ β„Ž) β†’ (π‘₯(+gβ€˜πΊ)𝑦) ∈ β„Ž)
5449, 50, 51, 53syl3anc 1368 . . . . . . . . . . . 12 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ (π‘₯(+gβ€˜πΊ)𝑦) ∈ β„Ž)
55 sneq 4635 . . . . . . . . . . . . . . 15 (𝑧 = (π‘₯(+gβ€˜πΊ)𝑦) β†’ {𝑧} = {(π‘₯(+gβ€˜πΊ)𝑦)})
5655oveq1d 7428 . . . . . . . . . . . . . 14 (𝑧 = (π‘₯(+gβ€˜πΊ)𝑦) β†’ ({𝑧} βŠ• 𝑁) = ({(π‘₯(+gβ€˜πΊ)𝑦)} βŠ• 𝑁))
5756eqeq2d 2736 . . . . . . . . . . . . 13 (𝑧 = (π‘₯(+gβ€˜πΊ)𝑦) β†’ ((𝑖(+gβ€˜π‘„)𝑗) = ({𝑧} βŠ• 𝑁) ↔ (𝑖(+gβ€˜π‘„)𝑗) = ({(π‘₯(+gβ€˜πΊ)𝑦)} βŠ• 𝑁)))
5857adantl 480 . . . . . . . . . . . 12 ((((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) ∧ 𝑧 = (π‘₯(+gβ€˜πΊ)𝑦)) β†’ ((𝑖(+gβ€˜π‘„)𝑗) = ({𝑧} βŠ• 𝑁) ↔ (𝑖(+gβ€˜π‘„)𝑗) = ({(π‘₯(+gβ€˜πΊ)𝑦)} βŠ• 𝑁)))
59 simpr 483 . . . . . . . . . . . . . . . 16 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ 𝑖 = ({π‘₯} βŠ• 𝑁))
6017adantr 479 . . . . . . . . . . . . . . . 16 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ [π‘₯](𝐺 ~QG 𝑁) = ({π‘₯} βŠ• 𝑁))
6159, 60eqtr4d 2768 . . . . . . . . . . . . . . 15 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ 𝑖 = [π‘₯](𝐺 ~QG 𝑁))
6261ad2antrr 724 . . . . . . . . . . . . . 14 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ 𝑖 = [π‘₯](𝐺 ~QG 𝑁))
63 simpr 483 . . . . . . . . . . . . . . 15 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ 𝑗 = ({𝑦} βŠ• 𝑁))
641ad4antr 730 . . . . . . . . . . . . . . . . . 18 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ 𝑁 ∈ (NrmSGrpβ€˜πΊ))
6564ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ 𝑁 ∈ (NrmSGrpβ€˜πΊ))
6665, 14syl 17 . . . . . . . . . . . . . . . 16 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ 𝑁 ∈ (SubGrpβ€˜πΊ))
6749, 7syl 17 . . . . . . . . . . . . . . . . 17 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ β„Ž βŠ† 𝐡)
6867, 51sseldd 3974 . . . . . . . . . . . . . . . 16 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ 𝑦 ∈ 𝐡)
696, 13, 66, 68quslsm 33160 . . . . . . . . . . . . . . 15 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ [𝑦](𝐺 ~QG 𝑁) = ({𝑦} βŠ• 𝑁))
7063, 69eqtr4d 2768 . . . . . . . . . . . . . 14 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ 𝑗 = [𝑦](𝐺 ~QG 𝑁))
7162, 70oveq12d 7431 . . . . . . . . . . . . 13 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ (𝑖(+gβ€˜π‘„)𝑗) = ([π‘₯](𝐺 ~QG 𝑁)(+gβ€˜π‘„)[𝑦](𝐺 ~QG 𝑁)))
729adantr 479 . . . . . . . . . . . . . . 15 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ π‘₯ ∈ 𝐡)
7372ad2antrr 724 . . . . . . . . . . . . . 14 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ π‘₯ ∈ 𝐡)
74 eqid 2725 . . . . . . . . . . . . . . 15 (+gβ€˜π‘„) = (+gβ€˜π‘„)
752, 6, 52, 74qusadd 19142 . . . . . . . . . . . . . 14 ((𝑁 ∈ (NrmSGrpβ€˜πΊ) ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ ([π‘₯](𝐺 ~QG 𝑁)(+gβ€˜π‘„)[𝑦](𝐺 ~QG 𝑁)) = [(π‘₯(+gβ€˜πΊ)𝑦)](𝐺 ~QG 𝑁))
7665, 73, 68, 75syl3anc 1368 . . . . . . . . . . . . 13 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ ([π‘₯](𝐺 ~QG 𝑁)(+gβ€˜π‘„)[𝑦](𝐺 ~QG 𝑁)) = [(π‘₯(+gβ€˜πΊ)𝑦)](𝐺 ~QG 𝑁))
7767, 54sseldd 3974 . . . . . . . . . . . . . 14 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ (π‘₯(+gβ€˜πΊ)𝑦) ∈ 𝐡)
786, 13, 66, 77quslsm 33160 . . . . . . . . . . . . 13 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ [(π‘₯(+gβ€˜πΊ)𝑦)](𝐺 ~QG 𝑁) = ({(π‘₯(+gβ€˜πΊ)𝑦)} βŠ• 𝑁))
7971, 76, 783eqtrd 2769 . . . . . . . . . . . 12 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ (𝑖(+gβ€˜π‘„)𝑗) = ({(π‘₯(+gβ€˜πΊ)𝑦)} βŠ• 𝑁))
8054, 58, 79rspcedvd 3605 . . . . . . . . . . 11 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ βˆƒπ‘§ ∈ β„Ž (𝑖(+gβ€˜π‘„)𝑗) = ({𝑧} βŠ• 𝑁))
81 ovexd 7448 . . . . . . . . . . 11 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ (𝑖(+gβ€˜π‘„)𝑗) ∈ V)
8247, 80, 81elrnmptd 5958 . . . . . . . . . 10 (((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ (𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
8382adantllr 717 . . . . . . . . 9 ((((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑗 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))) ∧ 𝑦 ∈ β„Ž) ∧ 𝑗 = ({𝑦} βŠ• 𝑁)) β†’ (𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
84 sneq 4635 . . . . . . . . . . . . . 14 (π‘₯ = 𝑦 β†’ {π‘₯} = {𝑦})
8584oveq1d 7428 . . . . . . . . . . . . 13 (π‘₯ = 𝑦 β†’ ({π‘₯} βŠ• 𝑁) = ({𝑦} βŠ• 𝑁))
8685cbvmptv 5257 . . . . . . . . . . . 12 (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) = (𝑦 ∈ β„Ž ↦ ({𝑦} βŠ• 𝑁))
87 ovex 7446 . . . . . . . . . . . 12 ({𝑦} βŠ• 𝑁) ∈ V
8886, 87elrnmpti 5957 . . . . . . . . . . 11 (𝑗 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ↔ βˆƒπ‘¦ ∈ β„Ž 𝑗 = ({𝑦} βŠ• 𝑁))
8988biimpi 215 . . . . . . . . . 10 (𝑗 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) β†’ βˆƒπ‘¦ ∈ β„Ž 𝑗 = ({𝑦} βŠ• 𝑁))
9089adantl 480 . . . . . . . . 9 ((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑗 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))) β†’ βˆƒπ‘¦ ∈ β„Ž 𝑗 = ({𝑦} βŠ• 𝑁))
9183, 90r19.29a 3152 . . . . . . . 8 ((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑗 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))) β†’ (𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
9291ralrimiva 3136 . . . . . . 7 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ βˆ€π‘— ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
93 eqid 2725 . . . . . . . . . . 11 (invgβ€˜πΊ) = (invgβ€˜πΊ)
9493subginvcl 19089 . . . . . . . . . 10 ((β„Ž ∈ (SubGrpβ€˜πΊ) ∧ π‘₯ ∈ β„Ž) β†’ ((invgβ€˜πΊ)β€˜π‘₯) ∈ β„Ž)
9594ad5ant24 759 . . . . . . . . 9 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ ((invgβ€˜πΊ)β€˜π‘₯) ∈ β„Ž)
96 simpr 483 . . . . . . . . . . . . 13 ((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 = ((invgβ€˜πΊ)β€˜π‘₯)) β†’ 𝑦 = ((invgβ€˜πΊ)β€˜π‘₯))
9796sneqd 4637 . . . . . . . . . . . 12 ((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 = ((invgβ€˜πΊ)β€˜π‘₯)) β†’ {𝑦} = {((invgβ€˜πΊ)β€˜π‘₯)})
9897oveq1d 7428 . . . . . . . . . . 11 ((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 = ((invgβ€˜πΊ)β€˜π‘₯)) β†’ ({𝑦} βŠ• 𝑁) = ({((invgβ€˜πΊ)β€˜π‘₯)} βŠ• 𝑁))
998adantr 479 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ β„Ž βŠ† 𝐡)
10094ad4ant24 752 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ ((invgβ€˜πΊ)β€˜π‘₯) ∈ β„Ž)
10199, 100sseldd 3974 . . . . . . . . . . . . 13 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ ((invgβ€˜πΊ)β€˜π‘₯) ∈ 𝐡)
1026, 13, 16, 101quslsm 33160 . . . . . . . . . . . 12 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) β†’ [((invgβ€˜πΊ)β€˜π‘₯)](𝐺 ~QG 𝑁) = ({((invgβ€˜πΊ)β€˜π‘₯)} βŠ• 𝑁))
103102ad2antrr 724 . . . . . . . . . . 11 ((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 = ((invgβ€˜πΊ)β€˜π‘₯)) β†’ [((invgβ€˜πΊ)β€˜π‘₯)](𝐺 ~QG 𝑁) = ({((invgβ€˜πΊ)β€˜π‘₯)} βŠ• 𝑁))
10498, 103eqtr4d 2768 . . . . . . . . . 10 ((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 = ((invgβ€˜πΊ)β€˜π‘₯)) β†’ ({𝑦} βŠ• 𝑁) = [((invgβ€˜πΊ)β€˜π‘₯)](𝐺 ~QG 𝑁))
105104eqeq2d 2736 . . . . . . . . 9 ((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ 𝑦 = ((invgβ€˜πΊ)β€˜π‘₯)) β†’ (((invgβ€˜π‘„)β€˜π‘–) = ({𝑦} βŠ• 𝑁) ↔ ((invgβ€˜π‘„)β€˜π‘–) = [((invgβ€˜πΊ)β€˜π‘₯)](𝐺 ~QG 𝑁)))
10661fveq2d 6894 . . . . . . . . . 10 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ ((invgβ€˜π‘„)β€˜π‘–) = ((invgβ€˜π‘„)β€˜[π‘₯](𝐺 ~QG 𝑁)))
107 eqid 2725 . . . . . . . . . . . 12 (invgβ€˜π‘„) = (invgβ€˜π‘„)
1082, 6, 93, 107qusinv 19144 . . . . . . . . . . 11 ((𝑁 ∈ (NrmSGrpβ€˜πΊ) ∧ π‘₯ ∈ 𝐡) β†’ ((invgβ€˜π‘„)β€˜[π‘₯](𝐺 ~QG 𝑁)) = [((invgβ€˜πΊ)β€˜π‘₯)](𝐺 ~QG 𝑁))
10964, 72, 108syl2anc 582 . . . . . . . . . 10 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ ((invgβ€˜π‘„)β€˜[π‘₯](𝐺 ~QG 𝑁)) = [((invgβ€˜πΊ)β€˜π‘₯)](𝐺 ~QG 𝑁))
110106, 109eqtrd 2765 . . . . . . . . 9 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ ((invgβ€˜π‘„)β€˜π‘–) = [((invgβ€˜πΊ)β€˜π‘₯)](𝐺 ~QG 𝑁))
11195, 105, 110rspcedvd 3605 . . . . . . . 8 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ βˆƒπ‘¦ ∈ β„Ž ((invgβ€˜π‘„)β€˜π‘–) = ({𝑦} βŠ• 𝑁))
112 fvexd 6905 . . . . . . . 8 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ ((invgβ€˜π‘„)β€˜π‘–) ∈ V)
11386, 111, 112elrnmptd 5958 . . . . . . 7 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ ((invgβ€˜π‘„)β€˜π‘–) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
11492, 113jca 510 . . . . . 6 (((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ (βˆ€π‘— ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∧ ((invgβ€˜π‘„)β€˜π‘–) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))))
115114adantllr 717 . . . . 5 ((((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ 𝑖 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))) ∧ π‘₯ ∈ β„Ž) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ (βˆ€π‘— ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∧ ((invgβ€˜π‘„)β€˜π‘–) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))))
116 ovex 7446 . . . . . . . 8 ({π‘₯} βŠ• 𝑁) ∈ V
11727, 116elrnmpti 5957 . . . . . . 7 (𝑖 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ↔ βˆƒπ‘₯ ∈ β„Ž 𝑖 = ({π‘₯} βŠ• 𝑁))
118117biimpi 215 . . . . . 6 (𝑖 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) β†’ βˆƒπ‘₯ ∈ β„Ž 𝑖 = ({π‘₯} βŠ• 𝑁))
119118adantl 480 . . . . 5 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ 𝑖 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))) β†’ βˆƒπ‘₯ ∈ β„Ž 𝑖 = ({π‘₯} βŠ• 𝑁))
12040, 44, 115, 119r19.29af2 3255 . . . 4 ((((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) ∧ 𝑖 ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))) β†’ (βˆ€π‘— ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∧ ((invgβ€˜π‘„)β€˜π‘–) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))))
121120ralrimiva 3136 . . 3 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ βˆ€π‘– ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(βˆ€π‘— ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∧ ((invgβ€˜π‘„)β€˜π‘–) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))))
122 eqid 2725 . . . . 5 (Baseβ€˜π‘„) = (Baseβ€˜π‘„)
123122, 74, 107issubg2 19095 . . . 4 (𝑄 ∈ Grp β†’ (ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∈ (SubGrpβ€˜π‘„) ↔ (ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) βŠ† (Baseβ€˜π‘„) ∧ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) β‰  βˆ… ∧ βˆ€π‘– ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(βˆ€π‘— ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∧ ((invgβ€˜π‘„)β€˜π‘–) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))))))
124123biimpar 476 . . 3 ((𝑄 ∈ Grp ∧ (ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) βŠ† (Baseβ€˜π‘„) ∧ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) β‰  βˆ… ∧ βˆ€π‘– ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(βˆ€π‘— ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))(𝑖(+gβ€˜π‘„)𝑗) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∧ ((invgβ€˜π‘„)β€˜π‘–) ∈ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))))) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∈ (SubGrpβ€˜π‘„))
1255, 29, 36, 121, 124syl13anc 1369 . 2 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∈ (SubGrpβ€˜π‘„))
126 nsgqusf1o.t . 2 𝑇 = (SubGrpβ€˜π‘„)
127125, 126eleqtrrdi 2836 1 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  βˆƒwrex 3060  {crab 3419  Vcvv 3463   βŠ† wss 3941  βˆ…c0 4319  {csn 4625   ↦ cmpt 5227  ran crn 5674  β€˜cfv 6543  (class class class)co 7413  [cec 8716   / cqs 8717  Basecbs 17174  +gcplusg 17227  lecple 17234  0gc0g 17415   /s cqus 17481  toInccipo 18513  Grpcgrp 18889  invgcminusg 18890  SubGrpcsubg 19074  NrmSGrpcnsg 19075   ~QG cqg 19076  LSSumclsm 19588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-ec 8720  df-qs 8724  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9460  df-inf 9461  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-uz 12848  df-fz 13512  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-0g 17417  df-imas 17484  df-qus 17485  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-grp 18892  df-minusg 18893  df-subg 19077  df-nsg 19078  df-eqg 19079  df-oppg 19296  df-lsm 19590
This theorem is referenced by:  nsgqusf1olem2  33169  nsgqusf1olem3  33170
  Copyright terms: Public domain W3C validator