Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgqusf1olem1 Structured version   Visualization version   GIF version

Theorem nsgqusf1olem1 33391
Description: Lemma for nsgqusf1o 33394. (Contributed by Thierry Arnoux, 4-Aug-2024.)
Hypotheses
Ref Expression
nsgqusf1o.b 𝐵 = (Base‘𝐺)
nsgqusf1o.s 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
nsgqusf1o.t 𝑇 = (SubGrp‘𝑄)
nsgqusf1o.1 = (le‘(toInc‘𝑆))
nsgqusf1o.2 = (le‘(toInc‘𝑇))
nsgqusf1o.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgqusf1o.p = (LSSum‘𝐺)
nsgqusf1o.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
nsgqusf1o.f 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
nsgqusf1o.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
nsgqusf1olem1 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ 𝑇)
Distinct variable groups:   ,𝑎,𝑓,,𝑥   𝐵,𝑎,𝑓,,𝑥   𝐸,𝑎,𝑓,,𝑥   𝑓,𝐹,,𝑥   𝐺,𝑎,𝑓,,𝑥   𝑁,𝑎,𝑓,,𝑥   𝑄,𝑎,𝑓,,𝑥   𝑆,𝑎,𝑓,,𝑥   𝑇,𝑎,𝑓,,𝑥   𝜑,𝑎,𝑓,,𝑥
Allowed substitution hints:   𝐹(𝑎)   (𝑥,𝑓,,𝑎)   (𝑥,𝑓,,𝑎)

Proof of Theorem nsgqusf1olem1
Dummy variables 𝑖 𝑗 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgqusf1o.n . . . . 5 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
2 nsgqusf1o.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
32qusgrp 19125 . . . . 5 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑄 ∈ Grp)
41, 3syl 17 . . . 4 (𝜑𝑄 ∈ Grp)
54ad2antrr 726 . . 3 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → 𝑄 ∈ Grp)
6 nsgqusf1o.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
76subgss 19066 . . . . . . . . 9 ( ∈ (SubGrp‘𝐺) → 𝐵)
87ad2antlr 727 . . . . . . . 8 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → 𝐵)
98sselda 3949 . . . . . . 7 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → 𝑥𝐵)
10 ovex 7423 . . . . . . . 8 (𝐺 ~QG 𝑁) ∈ V
1110ecelqsi 8746 . . . . . . 7 (𝑥𝐵 → [𝑥](𝐺 ~QG 𝑁) ∈ (𝐵 / (𝐺 ~QG 𝑁)))
129, 11syl 17 . . . . . 6 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → [𝑥](𝐺 ~QG 𝑁) ∈ (𝐵 / (𝐺 ~QG 𝑁)))
13 nsgqusf1o.p . . . . . . 7 = (LSSum‘𝐺)
14 nsgsubg 19097 . . . . . . . . 9 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
151, 14syl 17 . . . . . . . 8 (𝜑𝑁 ∈ (SubGrp‘𝐺))
1615ad3antrrr 730 . . . . . . 7 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → 𝑁 ∈ (SubGrp‘𝐺))
176, 13, 16, 9quslsm 33383 . . . . . 6 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
182a1i 11 . . . . . . . 8 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
196a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
20 ovexd 7425 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝑁) ∈ V)
21 subgrcl 19070 . . . . . . . . 9 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2215, 21syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
2318, 19, 20, 22qusbas 17515 . . . . . . 7 (𝜑 → (𝐵 / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
2423ad3antrrr 730 . . . . . 6 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → (𝐵 / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
2512, 17, 243eltr3d 2843 . . . . 5 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → ({𝑥} 𝑁) ∈ (Base‘𝑄))
2625ralrimiva 3126 . . . 4 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ∀𝑥 ({𝑥} 𝑁) ∈ (Base‘𝑄))
27 eqid 2730 . . . . 5 (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥 ↦ ({𝑥} 𝑁))
2827rnmptss 7098 . . . 4 (∀𝑥 ({𝑥} 𝑁) ∈ (Base‘𝑄) → ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ (Base‘𝑄))
2926, 28syl 17 . . 3 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ (Base‘𝑄))
30 nfv 1914 . . . 4 𝑥((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁)
31 ovexd 7425 . . . 4 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → ({𝑥} 𝑁) ∈ V)
32 eqid 2730 . . . . . . 7 (0g𝐺) = (0g𝐺)
3332subg0cl 19073 . . . . . 6 ( ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ )
3433ne0d 4308 . . . . 5 ( ∈ (SubGrp‘𝐺) → ≠ ∅)
3534ad2antlr 727 . . . 4 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ≠ ∅)
3630, 31, 27, 35rnmptn0 6220 . . 3 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ≠ ∅)
37 nfmpt1 5209 . . . . . . . 8 𝑥(𝑥 ↦ ({𝑥} 𝑁))
3837nfrn 5919 . . . . . . 7 𝑥ran (𝑥 ↦ ({𝑥} 𝑁))
3938nfel2 2911 . . . . . 6 𝑥 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
4030, 39nfan 1899 . . . . 5 𝑥(((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
4138nfel2 2911 . . . . . . 7 𝑥(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
4238, 41nfralw 3287 . . . . . 6 𝑥𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
4338nfel2 2911 . . . . . 6 𝑥((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
4442, 43nfan 1899 . . . . 5 𝑥(∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
45 sneq 4602 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → {𝑥} = {𝑧})
4645oveq1d 7405 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ({𝑥} 𝑁) = ({𝑧} 𝑁))
4746cbvmptv 5214 . . . . . . . . . . 11 (𝑥 ↦ ({𝑥} 𝑁)) = (𝑧 ↦ ({𝑧} 𝑁))
48 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ∈ (SubGrp‘𝐺))
4948ad2antrr 726 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → ∈ (SubGrp‘𝐺))
50 simp-4r 783 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑥)
51 simplr 768 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑦)
52 eqid 2730 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
5352subgcl 19075 . . . . . . . . . . . . 13 (( ∈ (SubGrp‘𝐺) ∧ 𝑥𝑦) → (𝑥(+g𝐺)𝑦) ∈ )
5449, 50, 51, 53syl3anc 1373 . . . . . . . . . . . 12 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑥(+g𝐺)𝑦) ∈ )
55 sneq 4602 . . . . . . . . . . . . . . 15 (𝑧 = (𝑥(+g𝐺)𝑦) → {𝑧} = {(𝑥(+g𝐺)𝑦)})
5655oveq1d 7405 . . . . . . . . . . . . . 14 (𝑧 = (𝑥(+g𝐺)𝑦) → ({𝑧} 𝑁) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
5756eqeq2d 2741 . . . . . . . . . . . . 13 (𝑧 = (𝑥(+g𝐺)𝑦) → ((𝑖(+g𝑄)𝑗) = ({𝑧} 𝑁) ↔ (𝑖(+g𝑄)𝑗) = ({(𝑥(+g𝐺)𝑦)} 𝑁)))
5857adantl 481 . . . . . . . . . . . 12 ((((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) ∧ 𝑧 = (𝑥(+g𝐺)𝑦)) → ((𝑖(+g𝑄)𝑗) = ({𝑧} 𝑁) ↔ (𝑖(+g𝑄)𝑗) = ({(𝑥(+g𝐺)𝑦)} 𝑁)))
59 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑖 = ({𝑥} 𝑁))
6017adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
6159, 60eqtr4d 2768 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑖 = [𝑥](𝐺 ~QG 𝑁))
6261ad2antrr 726 . . . . . . . . . . . . . 14 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑖 = [𝑥](𝐺 ~QG 𝑁))
63 simpr 484 . . . . . . . . . . . . . . 15 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑗 = ({𝑦} 𝑁))
641ad4antr 732 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑁 ∈ (NrmSGrp‘𝐺))
6564ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑁 ∈ (NrmSGrp‘𝐺))
6665, 14syl 17 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑁 ∈ (SubGrp‘𝐺))
6749, 7syl 17 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝐵)
6867, 51sseldd 3950 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑦𝐵)
696, 13, 66, 68quslsm 33383 . . . . . . . . . . . . . . 15 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → [𝑦](𝐺 ~QG 𝑁) = ({𝑦} 𝑁))
7063, 69eqtr4d 2768 . . . . . . . . . . . . . 14 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑗 = [𝑦](𝐺 ~QG 𝑁))
7162, 70oveq12d 7408 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) = ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)))
729adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑥𝐵)
7372ad2antrr 726 . . . . . . . . . . . . . 14 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑥𝐵)
74 eqid 2730 . . . . . . . . . . . . . . 15 (+g𝑄) = (+g𝑄)
752, 6, 52, 74qusadd 19127 . . . . . . . . . . . . . 14 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝐵𝑦𝐵) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
7665, 73, 68, 75syl3anc 1373 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
7767, 54sseldd 3950 . . . . . . . . . . . . . 14 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
786, 13, 66, 77quslsm 33383 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
7971, 76, 783eqtrd 2769 . . . . . . . . . . . 12 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
8054, 58, 79rspcedvd 3593 . . . . . . . . . . 11 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → ∃𝑧 (𝑖(+g𝑄)𝑗) = ({𝑧} 𝑁))
81 ovexd 7425 . . . . . . . . . . 11 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) ∈ V)
8247, 80, 81elrnmptd 5930 . . . . . . . . . 10 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
8382adantllr 719 . . . . . . . . 9 ((((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
84 sneq 4602 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → {𝑥} = {𝑦})
8584oveq1d 7405 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ({𝑥} 𝑁) = ({𝑦} 𝑁))
8685cbvmptv 5214 . . . . . . . . . . . 12 (𝑥 ↦ ({𝑥} 𝑁)) = (𝑦 ↦ ({𝑦} 𝑁))
87 ovex 7423 . . . . . . . . . . . 12 ({𝑦} 𝑁) ∈ V
8886, 87elrnmpti 5929 . . . . . . . . . . 11 (𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ ∃𝑦 𝑗 = ({𝑦} 𝑁))
8988biimpi 216 . . . . . . . . . 10 (𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) → ∃𝑦 𝑗 = ({𝑦} 𝑁))
9089adantl 481 . . . . . . . . 9 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → ∃𝑦 𝑗 = ({𝑦} 𝑁))
9183, 90r19.29a 3142 . . . . . . . 8 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → (𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
9291ralrimiva 3126 . . . . . . 7 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
93 eqid 2730 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
9493subginvcl 19074 . . . . . . . . . 10 (( ∈ (SubGrp‘𝐺) ∧ 𝑥) → ((invg𝐺)‘𝑥) ∈ )
9594ad5ant24 760 . . . . . . . . 9 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝐺)‘𝑥) ∈ )
96 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → 𝑦 = ((invg𝐺)‘𝑥))
9796sneqd 4604 . . . . . . . . . . . 12 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → {𝑦} = {((invg𝐺)‘𝑥)})
9897oveq1d 7405 . . . . . . . . . . 11 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → ({𝑦} 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
998adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → 𝐵)
10094ad4ant24 754 . . . . . . . . . . . . . 14 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → ((invg𝐺)‘𝑥) ∈ )
10199, 100sseldd 3950 . . . . . . . . . . . . 13 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → ((invg𝐺)‘𝑥) ∈ 𝐵)
1026, 13, 16, 101quslsm 33383 . . . . . . . . . . . 12 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
103102ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
10498, 103eqtr4d 2768 . . . . . . . . . 10 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → ({𝑦} 𝑁) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
105104eqeq2d 2741 . . . . . . . . 9 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → (((invg𝑄)‘𝑖) = ({𝑦} 𝑁) ↔ ((invg𝑄)‘𝑖) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁)))
10661fveq2d 6865 . . . . . . . . . 10 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘𝑖) = ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)))
107 eqid 2730 . . . . . . . . . . . 12 (invg𝑄) = (invg𝑄)
1082, 6, 93, 107qusinv 19129 . . . . . . . . . . 11 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
10964, 72, 108syl2anc 584 . . . . . . . . . 10 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
110106, 109eqtrd 2765 . . . . . . . . 9 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘𝑖) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
11195, 105, 110rspcedvd 3593 . . . . . . . 8 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ∃𝑦 ((invg𝑄)‘𝑖) = ({𝑦} 𝑁))
112 fvexd 6876 . . . . . . . 8 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘𝑖) ∈ V)
11386, 111, 112elrnmptd 5930 . . . . . . 7 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
11492, 113jca 511 . . . . . 6 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → (∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
115114adantllr 719 . . . . 5 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → (∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
116 ovex 7423 . . . . . . . 8 ({𝑥} 𝑁) ∈ V
11727, 116elrnmpti 5929 . . . . . . 7 (𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ ∃𝑥 𝑖 = ({𝑥} 𝑁))
118117biimpi 216 . . . . . 6 (𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) → ∃𝑥 𝑖 = ({𝑥} 𝑁))
119118adantl 481 . . . . 5 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → ∃𝑥 𝑖 = ({𝑥} 𝑁))
12040, 44, 115, 119r19.29af2 3246 . . . 4 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → (∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
121120ralrimiva 3126 . . 3 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ∀𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
122 eqid 2730 . . . . 5 (Base‘𝑄) = (Base‘𝑄)
123122, 74, 107issubg2 19080 . . . 4 (𝑄 ∈ Grp → (ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄) ↔ (ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ (Base‘𝑄) ∧ ran (𝑥 ↦ ({𝑥} 𝑁)) ≠ ∅ ∧ ∀𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))))
124123biimpar 477 . . 3 ((𝑄 ∈ Grp ∧ (ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ (Base‘𝑄) ∧ ran (𝑥 ↦ ({𝑥} 𝑁)) ≠ ∅ ∧ ∀𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄))
1255, 29, 36, 121, 124syl13anc 1374 . 2 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄))
126 nsgqusf1o.t . 2 𝑇 = (SubGrp‘𝑄)
127125, 126eleqtrrdi 2840 1 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  c0 4299  {csn 4592  cmpt 5191  ran crn 5642  cfv 6514  (class class class)co 7390  [cec 8672   / cqs 8673  Basecbs 17186  +gcplusg 17227  lecple 17234  0gc0g 17409   /s cqus 17475  toInccipo 18493  Grpcgrp 18872  invgcminusg 18873  SubGrpcsubg 19059  NrmSGrpcnsg 19060   ~QG cqg 19061  LSSumclsm 19571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ec 8676  df-qs 8680  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-0g 17411  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-subg 19062  df-nsg 19063  df-eqg 19064  df-oppg 19285  df-lsm 19573
This theorem is referenced by:  nsgqusf1olem2  33392  nsgqusf1olem3  33393
  Copyright terms: Public domain W3C validator