Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgqusf1olem1 Structured version   Visualization version   GIF version

Theorem nsgqusf1olem1 33428
Description: Lemma for nsgqusf1o 33431. (Contributed by Thierry Arnoux, 4-Aug-2024.)
Hypotheses
Ref Expression
nsgqusf1o.b 𝐵 = (Base‘𝐺)
nsgqusf1o.s 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
nsgqusf1o.t 𝑇 = (SubGrp‘𝑄)
nsgqusf1o.1 = (le‘(toInc‘𝑆))
nsgqusf1o.2 = (le‘(toInc‘𝑇))
nsgqusf1o.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgqusf1o.p = (LSSum‘𝐺)
nsgqusf1o.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
nsgqusf1o.f 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
nsgqusf1o.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
nsgqusf1olem1 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ 𝑇)
Distinct variable groups:   ,𝑎,𝑓,,𝑥   𝐵,𝑎,𝑓,,𝑥   𝐸,𝑎,𝑓,,𝑥   𝑓,𝐹,,𝑥   𝐺,𝑎,𝑓,,𝑥   𝑁,𝑎,𝑓,,𝑥   𝑄,𝑎,𝑓,,𝑥   𝑆,𝑎,𝑓,,𝑥   𝑇,𝑎,𝑓,,𝑥   𝜑,𝑎,𝑓,,𝑥
Allowed substitution hints:   𝐹(𝑎)   (𝑥,𝑓,,𝑎)   (𝑥,𝑓,,𝑎)

Proof of Theorem nsgqusf1olem1
Dummy variables 𝑖 𝑗 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgqusf1o.n . . . . 5 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
2 nsgqusf1o.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
32qusgrp 19169 . . . . 5 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑄 ∈ Grp)
41, 3syl 17 . . . 4 (𝜑𝑄 ∈ Grp)
54ad2antrr 726 . . 3 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → 𝑄 ∈ Grp)
6 nsgqusf1o.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
76subgss 19110 . . . . . . . . 9 ( ∈ (SubGrp‘𝐺) → 𝐵)
87ad2antlr 727 . . . . . . . 8 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → 𝐵)
98sselda 3958 . . . . . . 7 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → 𝑥𝐵)
10 ovex 7438 . . . . . . . 8 (𝐺 ~QG 𝑁) ∈ V
1110ecelqsi 8787 . . . . . . 7 (𝑥𝐵 → [𝑥](𝐺 ~QG 𝑁) ∈ (𝐵 / (𝐺 ~QG 𝑁)))
129, 11syl 17 . . . . . 6 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → [𝑥](𝐺 ~QG 𝑁) ∈ (𝐵 / (𝐺 ~QG 𝑁)))
13 nsgqusf1o.p . . . . . . 7 = (LSSum‘𝐺)
14 nsgsubg 19141 . . . . . . . . 9 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
151, 14syl 17 . . . . . . . 8 (𝜑𝑁 ∈ (SubGrp‘𝐺))
1615ad3antrrr 730 . . . . . . 7 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → 𝑁 ∈ (SubGrp‘𝐺))
176, 13, 16, 9quslsm 33420 . . . . . 6 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
182a1i 11 . . . . . . . 8 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
196a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
20 ovexd 7440 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝑁) ∈ V)
21 subgrcl 19114 . . . . . . . . 9 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2215, 21syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
2318, 19, 20, 22qusbas 17559 . . . . . . 7 (𝜑 → (𝐵 / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
2423ad3antrrr 730 . . . . . 6 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → (𝐵 / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
2512, 17, 243eltr3d 2848 . . . . 5 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → ({𝑥} 𝑁) ∈ (Base‘𝑄))
2625ralrimiva 3132 . . . 4 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ∀𝑥 ({𝑥} 𝑁) ∈ (Base‘𝑄))
27 eqid 2735 . . . . 5 (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥 ↦ ({𝑥} 𝑁))
2827rnmptss 7113 . . . 4 (∀𝑥 ({𝑥} 𝑁) ∈ (Base‘𝑄) → ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ (Base‘𝑄))
2926, 28syl 17 . . 3 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ (Base‘𝑄))
30 nfv 1914 . . . 4 𝑥((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁)
31 ovexd 7440 . . . 4 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → ({𝑥} 𝑁) ∈ V)
32 eqid 2735 . . . . . . 7 (0g𝐺) = (0g𝐺)
3332subg0cl 19117 . . . . . 6 ( ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ )
3433ne0d 4317 . . . . 5 ( ∈ (SubGrp‘𝐺) → ≠ ∅)
3534ad2antlr 727 . . . 4 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ≠ ∅)
3630, 31, 27, 35rnmptn0 6233 . . 3 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ≠ ∅)
37 nfmpt1 5220 . . . . . . . 8 𝑥(𝑥 ↦ ({𝑥} 𝑁))
3837nfrn 5932 . . . . . . 7 𝑥ran (𝑥 ↦ ({𝑥} 𝑁))
3938nfel2 2917 . . . . . 6 𝑥 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
4030, 39nfan 1899 . . . . 5 𝑥(((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
4138nfel2 2917 . . . . . . 7 𝑥(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
4238, 41nfralw 3291 . . . . . 6 𝑥𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
4338nfel2 2917 . . . . . 6 𝑥((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
4442, 43nfan 1899 . . . . 5 𝑥(∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
45 sneq 4611 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → {𝑥} = {𝑧})
4645oveq1d 7420 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ({𝑥} 𝑁) = ({𝑧} 𝑁))
4746cbvmptv 5225 . . . . . . . . . . 11 (𝑥 ↦ ({𝑥} 𝑁)) = (𝑧 ↦ ({𝑧} 𝑁))
48 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ∈ (SubGrp‘𝐺))
4948ad2antrr 726 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → ∈ (SubGrp‘𝐺))
50 simp-4r 783 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑥)
51 simplr 768 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑦)
52 eqid 2735 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
5352subgcl 19119 . . . . . . . . . . . . 13 (( ∈ (SubGrp‘𝐺) ∧ 𝑥𝑦) → (𝑥(+g𝐺)𝑦) ∈ )
5449, 50, 51, 53syl3anc 1373 . . . . . . . . . . . 12 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑥(+g𝐺)𝑦) ∈ )
55 sneq 4611 . . . . . . . . . . . . . . 15 (𝑧 = (𝑥(+g𝐺)𝑦) → {𝑧} = {(𝑥(+g𝐺)𝑦)})
5655oveq1d 7420 . . . . . . . . . . . . . 14 (𝑧 = (𝑥(+g𝐺)𝑦) → ({𝑧} 𝑁) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
5756eqeq2d 2746 . . . . . . . . . . . . 13 (𝑧 = (𝑥(+g𝐺)𝑦) → ((𝑖(+g𝑄)𝑗) = ({𝑧} 𝑁) ↔ (𝑖(+g𝑄)𝑗) = ({(𝑥(+g𝐺)𝑦)} 𝑁)))
5857adantl 481 . . . . . . . . . . . 12 ((((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) ∧ 𝑧 = (𝑥(+g𝐺)𝑦)) → ((𝑖(+g𝑄)𝑗) = ({𝑧} 𝑁) ↔ (𝑖(+g𝑄)𝑗) = ({(𝑥(+g𝐺)𝑦)} 𝑁)))
59 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑖 = ({𝑥} 𝑁))
6017adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
6159, 60eqtr4d 2773 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑖 = [𝑥](𝐺 ~QG 𝑁))
6261ad2antrr 726 . . . . . . . . . . . . . 14 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑖 = [𝑥](𝐺 ~QG 𝑁))
63 simpr 484 . . . . . . . . . . . . . . 15 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑗 = ({𝑦} 𝑁))
641ad4antr 732 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑁 ∈ (NrmSGrp‘𝐺))
6564ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑁 ∈ (NrmSGrp‘𝐺))
6665, 14syl 17 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑁 ∈ (SubGrp‘𝐺))
6749, 7syl 17 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝐵)
6867, 51sseldd 3959 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑦𝐵)
696, 13, 66, 68quslsm 33420 . . . . . . . . . . . . . . 15 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → [𝑦](𝐺 ~QG 𝑁) = ({𝑦} 𝑁))
7063, 69eqtr4d 2773 . . . . . . . . . . . . . 14 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑗 = [𝑦](𝐺 ~QG 𝑁))
7162, 70oveq12d 7423 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) = ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)))
729adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑥𝐵)
7372ad2antrr 726 . . . . . . . . . . . . . 14 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → 𝑥𝐵)
74 eqid 2735 . . . . . . . . . . . . . . 15 (+g𝑄) = (+g𝑄)
752, 6, 52, 74qusadd 19171 . . . . . . . . . . . . . 14 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝐵𝑦𝐵) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
7665, 73, 68, 75syl3anc 1373 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
7767, 54sseldd 3959 . . . . . . . . . . . . . 14 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
786, 13, 66, 77quslsm 33420 . . . . . . . . . . . . 13 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
7971, 76, 783eqtrd 2774 . . . . . . . . . . . 12 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
8054, 58, 79rspcedvd 3603 . . . . . . . . . . 11 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → ∃𝑧 (𝑖(+g𝑄)𝑗) = ({𝑧} 𝑁))
81 ovexd 7440 . . . . . . . . . . 11 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) ∈ V)
8247, 80, 81elrnmptd 5943 . . . . . . . . . 10 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
8382adantllr 719 . . . . . . . . 9 ((((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) ∧ 𝑦) ∧ 𝑗 = ({𝑦} 𝑁)) → (𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
84 sneq 4611 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → {𝑥} = {𝑦})
8584oveq1d 7420 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ({𝑥} 𝑁) = ({𝑦} 𝑁))
8685cbvmptv 5225 . . . . . . . . . . . 12 (𝑥 ↦ ({𝑥} 𝑁)) = (𝑦 ↦ ({𝑦} 𝑁))
87 ovex 7438 . . . . . . . . . . . 12 ({𝑦} 𝑁) ∈ V
8886, 87elrnmpti 5942 . . . . . . . . . . 11 (𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ ∃𝑦 𝑗 = ({𝑦} 𝑁))
8988biimpi 216 . . . . . . . . . 10 (𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) → ∃𝑦 𝑗 = ({𝑦} 𝑁))
9089adantl 481 . . . . . . . . 9 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → ∃𝑦 𝑗 = ({𝑦} 𝑁))
9183, 90r19.29a 3148 . . . . . . . 8 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → (𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
9291ralrimiva 3132 . . . . . . 7 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
93 eqid 2735 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
9493subginvcl 19118 . . . . . . . . . 10 (( ∈ (SubGrp‘𝐺) ∧ 𝑥) → ((invg𝐺)‘𝑥) ∈ )
9594ad5ant24 760 . . . . . . . . 9 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝐺)‘𝑥) ∈ )
96 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → 𝑦 = ((invg𝐺)‘𝑥))
9796sneqd 4613 . . . . . . . . . . . 12 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → {𝑦} = {((invg𝐺)‘𝑥)})
9897oveq1d 7420 . . . . . . . . . . 11 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → ({𝑦} 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
998adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → 𝐵)
10094ad4ant24 754 . . . . . . . . . . . . . 14 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → ((invg𝐺)‘𝑥) ∈ )
10199, 100sseldd 3959 . . . . . . . . . . . . 13 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → ((invg𝐺)‘𝑥) ∈ 𝐵)
1026, 13, 16, 101quslsm 33420 . . . . . . . . . . . 12 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) → [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
103102ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
10498, 103eqtr4d 2773 . . . . . . . . . 10 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → ({𝑦} 𝑁) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
105104eqeq2d 2746 . . . . . . . . 9 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → (((invg𝑄)‘𝑖) = ({𝑦} 𝑁) ↔ ((invg𝑄)‘𝑖) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁)))
10661fveq2d 6880 . . . . . . . . . 10 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘𝑖) = ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)))
107 eqid 2735 . . . . . . . . . . . 12 (invg𝑄) = (invg𝑄)
1082, 6, 93, 107qusinv 19173 . . . . . . . . . . 11 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
10964, 72, 108syl2anc 584 . . . . . . . . . 10 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
110106, 109eqtrd 2770 . . . . . . . . 9 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘𝑖) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
11195, 105, 110rspcedvd 3603 . . . . . . . 8 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ∃𝑦 ((invg𝑄)‘𝑖) = ({𝑦} 𝑁))
112 fvexd 6891 . . . . . . . 8 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘𝑖) ∈ V)
11386, 111, 112elrnmptd 5943 . . . . . . 7 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
11492, 113jca 511 . . . . . 6 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → (∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
115114adantllr 719 . . . . 5 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) ∧ 𝑥) ∧ 𝑖 = ({𝑥} 𝑁)) → (∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
116 ovex 7438 . . . . . . . 8 ({𝑥} 𝑁) ∈ V
11727, 116elrnmpti 5942 . . . . . . 7 (𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ ∃𝑥 𝑖 = ({𝑥} 𝑁))
118117biimpi 216 . . . . . 6 (𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) → ∃𝑥 𝑖 = ({𝑥} 𝑁))
119118adantl 481 . . . . 5 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → ∃𝑥 𝑖 = ({𝑥} 𝑁))
12040, 44, 115, 119r19.29af2 3250 . . . 4 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → (∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
121120ralrimiva 3132 . . 3 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ∀𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
122 eqid 2735 . . . . 5 (Base‘𝑄) = (Base‘𝑄)
123122, 74, 107issubg2 19124 . . . 4 (𝑄 ∈ Grp → (ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄) ↔ (ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ (Base‘𝑄) ∧ ran (𝑥 ↦ ({𝑥} 𝑁)) ≠ ∅ ∧ ∀𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))))
124123biimpar 477 . . 3 ((𝑄 ∈ Grp ∧ (ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ (Base‘𝑄) ∧ ran (𝑥 ↦ ({𝑥} 𝑁)) ≠ ∅ ∧ ∀𝑖 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(∀𝑗 ∈ ran (𝑥 ↦ ({𝑥} 𝑁))(𝑖(+g𝑄)𝑗) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ∧ ((invg𝑄)‘𝑖) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄))
1255, 29, 36, 121, 124syl13anc 1374 . 2 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄))
126 nsgqusf1o.t . 2 𝑇 = (SubGrp‘𝑄)
127125, 126eleqtrrdi 2845 1 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  wss 3926  c0 4308  {csn 4601  cmpt 5201  ran crn 5655  cfv 6531  (class class class)co 7405  [cec 8717   / cqs 8718  Basecbs 17228  +gcplusg 17271  lecple 17278  0gc0g 17453   /s cqus 17519  toInccipo 18537  Grpcgrp 18916  invgcminusg 18917  SubGrpcsubg 19103  NrmSGrpcnsg 19104   ~QG cqg 19105  LSSumclsm 19615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-ec 8721  df-qs 8725  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-0g 17455  df-imas 17522  df-qus 17523  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-subg 19106  df-nsg 19107  df-eqg 19108  df-oppg 19329  df-lsm 19617
This theorem is referenced by:  nsgqusf1olem2  33429  nsgqusf1olem3  33430
  Copyright terms: Public domain W3C validator