Step | Hyp | Ref
| Expression |
1 | | nsgqusf1o.n |
. . . . 5
β’ (π β π β (NrmSGrpβπΊ)) |
2 | | nsgqusf1o.q |
. . . . . 6
β’ π = (πΊ /s (πΊ ~QG π)) |
3 | 2 | qusgrp 19059 |
. . . . 5
β’ (π β (NrmSGrpβπΊ) β π β Grp) |
4 | 1, 3 | syl 17 |
. . . 4
β’ (π β π β Grp) |
5 | 4 | ad2antrr 724 |
. . 3
β’ (((π β§ β β (SubGrpβπΊ)) β§ π β β) β π β Grp) |
6 | | nsgqusf1o.b |
. . . . . . . . . 10
β’ π΅ = (BaseβπΊ) |
7 | 6 | subgss 19001 |
. . . . . . . . 9
β’ (β β (SubGrpβπΊ) β β β π΅) |
8 | 7 | ad2antlr 725 |
. . . . . . . 8
β’ (((π β§ β β (SubGrpβπΊ)) β§ π β β) β β β π΅) |
9 | 8 | sselda 3981 |
. . . . . . 7
β’ ((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β π₯ β π΅) |
10 | | ovex 7438 |
. . . . . . . 8
β’ (πΊ ~QG π) β V |
11 | 10 | ecelqsi 8763 |
. . . . . . 7
β’ (π₯ β π΅ β [π₯](πΊ ~QG π) β (π΅ / (πΊ ~QG π))) |
12 | 9, 11 | syl 17 |
. . . . . 6
β’ ((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β [π₯](πΊ ~QG π) β (π΅ / (πΊ ~QG π))) |
13 | | nsgqusf1o.p |
. . . . . . 7
β’ β =
(LSSumβπΊ) |
14 | | nsgsubg 19032 |
. . . . . . . . 9
β’ (π β (NrmSGrpβπΊ) β π β (SubGrpβπΊ)) |
15 | 1, 14 | syl 17 |
. . . . . . . 8
β’ (π β π β (SubGrpβπΊ)) |
16 | 15 | ad3antrrr 728 |
. . . . . . 7
β’ ((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β π β (SubGrpβπΊ)) |
17 | 6, 13, 16, 9 | quslsm 32504 |
. . . . . 6
β’ ((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β [π₯](πΊ ~QG π) = ({π₯} β π)) |
18 | 2 | a1i 11 |
. . . . . . . 8
β’ (π β π = (πΊ /s (πΊ ~QG π))) |
19 | 6 | a1i 11 |
. . . . . . . 8
β’ (π β π΅ = (BaseβπΊ)) |
20 | | ovexd 7440 |
. . . . . . . 8
β’ (π β (πΊ ~QG π) β V) |
21 | | subgrcl 19005 |
. . . . . . . . 9
β’ (π β (SubGrpβπΊ) β πΊ β Grp) |
22 | 15, 21 | syl 17 |
. . . . . . . 8
β’ (π β πΊ β Grp) |
23 | 18, 19, 20, 22 | qusbas 17487 |
. . . . . . 7
β’ (π β (π΅ / (πΊ ~QG π)) = (Baseβπ)) |
24 | 23 | ad3antrrr 728 |
. . . . . 6
β’ ((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β (π΅ / (πΊ ~QG π)) = (Baseβπ)) |
25 | 12, 17, 24 | 3eltr3d 2847 |
. . . . 5
β’ ((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β ({π₯} β π) β (Baseβπ)) |
26 | 25 | ralrimiva 3146 |
. . . 4
β’ (((π β§ β β (SubGrpβπΊ)) β§ π β β) β βπ₯ β β ({π₯} β π) β (Baseβπ)) |
27 | | eqid 2732 |
. . . . 5
β’ (π₯ β β β¦ ({π₯} β π)) = (π₯ β β β¦ ({π₯} β π)) |
28 | 27 | rnmptss 7118 |
. . . 4
β’
(βπ₯ β
β ({π₯} β π) β (Baseβπ) β ran (π₯ β β β¦ ({π₯} β π)) β (Baseβπ)) |
29 | 26, 28 | syl 17 |
. . 3
β’ (((π β§ β β (SubGrpβπΊ)) β§ π β β) β ran (π₯ β β β¦ ({π₯} β π)) β (Baseβπ)) |
30 | | nfv 1917 |
. . . 4
β’
β²π₯((π β§ β β (SubGrpβπΊ)) β§ π β β) |
31 | | ovexd 7440 |
. . . 4
β’ ((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β ({π₯} β π) β V) |
32 | | eqid 2732 |
. . . . . . 7
β’
(0gβπΊ) = (0gβπΊ) |
33 | 32 | subg0cl 19008 |
. . . . . 6
β’ (β β (SubGrpβπΊ) β
(0gβπΊ)
β β) |
34 | 33 | ne0d 4334 |
. . . . 5
β’ (β β (SubGrpβπΊ) β β β β
) |
35 | 34 | ad2antlr 725 |
. . . 4
β’ (((π β§ β β (SubGrpβπΊ)) β§ π β β) β β β β
) |
36 | 30, 31, 27, 35 | rnmptn0 6240 |
. . 3
β’ (((π β§ β β (SubGrpβπΊ)) β§ π β β) β ran (π₯ β β β¦ ({π₯} β π)) β β
) |
37 | | nfmpt1 5255 |
. . . . . . . 8
β’
β²π₯(π₯ β β β¦ ({π₯} β π)) |
38 | 37 | nfrn 5949 |
. . . . . . 7
β’
β²π₯ran
(π₯ β β β¦ ({π₯} β π)) |
39 | 38 | nfel2 2921 |
. . . . . 6
β’
β²π₯ π β ran (π₯ β β β¦ ({π₯} β π)) |
40 | 30, 39 | nfan 1902 |
. . . . 5
β’
β²π₯(((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π β ran (π₯ β β β¦ ({π₯} β π))) |
41 | 38 | nfel2 2921 |
. . . . . . 7
β’
β²π₯(π(+gβπ)π) β ran (π₯ β β β¦ ({π₯} β π)) |
42 | 38, 41 | nfralw 3308 |
. . . . . 6
β’
β²π₯βπ β ran (π₯ β β β¦ ({π₯} β π))(π(+gβπ)π) β ran (π₯ β β β¦ ({π₯} β π)) |
43 | 38 | nfel2 2921 |
. . . . . 6
β’
β²π₯((invgβπ)βπ) β ran (π₯ β β β¦ ({π₯} β π)) |
44 | 42, 43 | nfan 1902 |
. . . . 5
β’
β²π₯(βπ β ran (π₯ β β β¦ ({π₯} β π))(π(+gβπ)π) β ran (π₯ β β β¦ ({π₯} β π)) β§ ((invgβπ)βπ) β ran (π₯ β β β¦ ({π₯} β π))) |
45 | | sneq 4637 |
. . . . . . . . . . . . 13
β’ (π₯ = π§ β {π₯} = {π§}) |
46 | 45 | oveq1d 7420 |
. . . . . . . . . . . 12
β’ (π₯ = π§ β ({π₯} β π) = ({π§} β π)) |
47 | 46 | cbvmptv 5260 |
. . . . . . . . . . 11
β’ (π₯ β β β¦ ({π₯} β π)) = (π§ β β β¦ ({π§} β π)) |
48 | | simp-4r 782 |
. . . . . . . . . . . . . 14
β’
(((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β β β (SubGrpβπΊ)) |
49 | 48 | ad2antrr 724 |
. . . . . . . . . . . . 13
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β β β (SubGrpβπΊ)) |
50 | | simp-4r 782 |
. . . . . . . . . . . . 13
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β π₯ β β) |
51 | | simplr 767 |
. . . . . . . . . . . . 13
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β π¦ β β) |
52 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(+gβπΊ) = (+gβπΊ) |
53 | 52 | subgcl 19010 |
. . . . . . . . . . . . 13
β’ ((β β (SubGrpβπΊ) β§ π₯ β β β§ π¦ β β) β (π₯(+gβπΊ)π¦) β β) |
54 | 49, 50, 51, 53 | syl3anc 1371 |
. . . . . . . . . . . 12
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β (π₯(+gβπΊ)π¦) β β) |
55 | | sneq 4637 |
. . . . . . . . . . . . . . 15
β’ (π§ = (π₯(+gβπΊ)π¦) β {π§} = {(π₯(+gβπΊ)π¦)}) |
56 | 55 | oveq1d 7420 |
. . . . . . . . . . . . . 14
β’ (π§ = (π₯(+gβπΊ)π¦) β ({π§} β π) = ({(π₯(+gβπΊ)π¦)} β π)) |
57 | 56 | eqeq2d 2743 |
. . . . . . . . . . . . 13
β’ (π§ = (π₯(+gβπΊ)π¦) β ((π(+gβπ)π) = ({π§} β π) β (π(+gβπ)π) = ({(π₯(+gβπΊ)π¦)} β π))) |
58 | 57 | adantl 482 |
. . . . . . . . . . . 12
β’
((((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β§ π§ = (π₯(+gβπΊ)π¦)) β ((π(+gβπ)π) = ({π§} β π) β (π(+gβπ)π) = ({(π₯(+gβπΊ)π¦)} β π))) |
59 | | simpr 485 |
. . . . . . . . . . . . . . . 16
β’
(((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β π = ({π₯} β π)) |
60 | 17 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’
(((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β [π₯](πΊ ~QG π) = ({π₯} β π)) |
61 | 59, 60 | eqtr4d 2775 |
. . . . . . . . . . . . . . 15
β’
(((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β π = [π₯](πΊ ~QG π)) |
62 | 61 | ad2antrr 724 |
. . . . . . . . . . . . . 14
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β π = [π₯](πΊ ~QG π)) |
63 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β π = ({π¦} β π)) |
64 | 1 | ad4antr 730 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β π β (NrmSGrpβπΊ)) |
65 | 64 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β π β (NrmSGrpβπΊ)) |
66 | 65, 14 | syl 17 |
. . . . . . . . . . . . . . . 16
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β π β (SubGrpβπΊ)) |
67 | 49, 7 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β β β π΅) |
68 | 67, 51 | sseldd 3982 |
. . . . . . . . . . . . . . . 16
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β π¦ β π΅) |
69 | 6, 13, 66, 68 | quslsm 32504 |
. . . . . . . . . . . . . . 15
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β [π¦](πΊ ~QG π) = ({π¦} β π)) |
70 | 63, 69 | eqtr4d 2775 |
. . . . . . . . . . . . . 14
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β π = [π¦](πΊ ~QG π)) |
71 | 62, 70 | oveq12d 7423 |
. . . . . . . . . . . . 13
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β (π(+gβπ)π) = ([π₯](πΊ ~QG π)(+gβπ)[π¦](πΊ ~QG π))) |
72 | 9 | adantr 481 |
. . . . . . . . . . . . . . 15
β’
(((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β π₯ β π΅) |
73 | 72 | ad2antrr 724 |
. . . . . . . . . . . . . 14
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β π₯ β π΅) |
74 | | eqid 2732 |
. . . . . . . . . . . . . . 15
β’
(+gβπ) = (+gβπ) |
75 | 2, 6, 52, 74 | qusadd 19061 |
. . . . . . . . . . . . . 14
β’ ((π β (NrmSGrpβπΊ) β§ π₯ β π΅ β§ π¦ β π΅) β ([π₯](πΊ ~QG π)(+gβπ)[π¦](πΊ ~QG π)) = [(π₯(+gβπΊ)π¦)](πΊ ~QG π)) |
76 | 65, 73, 68, 75 | syl3anc 1371 |
. . . . . . . . . . . . 13
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β ([π₯](πΊ ~QG π)(+gβπ)[π¦](πΊ ~QG π)) = [(π₯(+gβπΊ)π¦)](πΊ ~QG π)) |
77 | 67, 54 | sseldd 3982 |
. . . . . . . . . . . . . 14
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β (π₯(+gβπΊ)π¦) β π΅) |
78 | 6, 13, 66, 77 | quslsm 32504 |
. . . . . . . . . . . . 13
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β [(π₯(+gβπΊ)π¦)](πΊ ~QG π) = ({(π₯(+gβπΊ)π¦)} β π)) |
79 | 71, 76, 78 | 3eqtrd 2776 |
. . . . . . . . . . . 12
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β (π(+gβπ)π) = ({(π₯(+gβπΊ)π¦)} β π)) |
80 | 54, 58, 79 | rspcedvd 3614 |
. . . . . . . . . . 11
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β βπ§ β β (π(+gβπ)π) = ({π§} β π)) |
81 | | ovexd 7440 |
. . . . . . . . . . 11
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β (π(+gβπ)π) β V) |
82 | 47, 80, 81 | elrnmptd 5958 |
. . . . . . . . . 10
β’
(((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ β β) β§ π = ({π¦} β π)) β (π(+gβπ)π) β ran (π₯ β β β¦ ({π₯} β π))) |
83 | 82 | adantllr 717 |
. . . . . . . . 9
β’
((((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π β ran (π₯ β β β¦ ({π₯} β π))) β§ π¦ β β) β§ π = ({π¦} β π)) β (π(+gβπ)π) β ran (π₯ β β β¦ ({π₯} β π))) |
84 | | sneq 4637 |
. . . . . . . . . . . . . 14
β’ (π₯ = π¦ β {π₯} = {π¦}) |
85 | 84 | oveq1d 7420 |
. . . . . . . . . . . . 13
β’ (π₯ = π¦ β ({π₯} β π) = ({π¦} β π)) |
86 | 85 | cbvmptv 5260 |
. . . . . . . . . . . 12
β’ (π₯ β β β¦ ({π₯} β π)) = (π¦ β β β¦ ({π¦} β π)) |
87 | | ovex 7438 |
. . . . . . . . . . . 12
β’ ({π¦} β π) β V |
88 | 86, 87 | elrnmpti 5957 |
. . . . . . . . . . 11
β’ (π β ran (π₯ β β β¦ ({π₯} β π)) β βπ¦ β β π = ({π¦} β π)) |
89 | 88 | biimpi 215 |
. . . . . . . . . 10
β’ (π β ran (π₯ β β β¦ ({π₯} β π)) β βπ¦ β β π = ({π¦} β π)) |
90 | 89 | adantl 482 |
. . . . . . . . 9
β’
((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π β ran (π₯ β β β¦ ({π₯} β π))) β βπ¦ β β π = ({π¦} β π)) |
91 | 83, 90 | r19.29a 3162 |
. . . . . . . 8
β’
((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π β ran (π₯ β β β¦ ({π₯} β π))) β (π(+gβπ)π) β ran (π₯ β β β¦ ({π₯} β π))) |
92 | 91 | ralrimiva 3146 |
. . . . . . 7
β’
(((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β βπ β ran (π₯ β β β¦ ({π₯} β π))(π(+gβπ)π) β ran (π₯ β β β¦ ({π₯} β π))) |
93 | | eqid 2732 |
. . . . . . . . . . 11
β’
(invgβπΊ) = (invgβπΊ) |
94 | 93 | subginvcl 19009 |
. . . . . . . . . 10
β’ ((β β (SubGrpβπΊ) β§ π₯ β β) β ((invgβπΊ)βπ₯) β β) |
95 | 94 | ad5ant24 759 |
. . . . . . . . 9
β’
(((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β ((invgβπΊ)βπ₯) β β) |
96 | | simpr 485 |
. . . . . . . . . . . . 13
β’
((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ = ((invgβπΊ)βπ₯)) β π¦ = ((invgβπΊ)βπ₯)) |
97 | 96 | sneqd 4639 |
. . . . . . . . . . . 12
β’
((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ = ((invgβπΊ)βπ₯)) β {π¦} = {((invgβπΊ)βπ₯)}) |
98 | 97 | oveq1d 7420 |
. . . . . . . . . . 11
β’
((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ = ((invgβπΊ)βπ₯)) β ({π¦} β π) = ({((invgβπΊ)βπ₯)} β π)) |
99 | 8 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β β β π΅) |
100 | 94 | ad4ant24 752 |
. . . . . . . . . . . . . 14
β’ ((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β ((invgβπΊ)βπ₯) β β) |
101 | 99, 100 | sseldd 3982 |
. . . . . . . . . . . . 13
β’ ((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β ((invgβπΊ)βπ₯) β π΅) |
102 | 6, 13, 16, 101 | quslsm 32504 |
. . . . . . . . . . . 12
β’ ((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β [((invgβπΊ)βπ₯)](πΊ ~QG π) = ({((invgβπΊ)βπ₯)} β π)) |
103 | 102 | ad2antrr 724 |
. . . . . . . . . . 11
β’
((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ = ((invgβπΊ)βπ₯)) β [((invgβπΊ)βπ₯)](πΊ ~QG π) = ({((invgβπΊ)βπ₯)} β π)) |
104 | 98, 103 | eqtr4d 2775 |
. . . . . . . . . 10
β’
((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ = ((invgβπΊ)βπ₯)) β ({π¦} β π) = [((invgβπΊ)βπ₯)](πΊ ~QG π)) |
105 | 104 | eqeq2d 2743 |
. . . . . . . . 9
β’
((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β§ π¦ = ((invgβπΊ)βπ₯)) β (((invgβπ)βπ) = ({π¦} β π) β ((invgβπ)βπ) = [((invgβπΊ)βπ₯)](πΊ ~QG π))) |
106 | 61 | fveq2d 6892 |
. . . . . . . . . 10
β’
(((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β ((invgβπ)βπ) = ((invgβπ)β[π₯](πΊ ~QG π))) |
107 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(invgβπ) = (invgβπ) |
108 | 2, 6, 93, 107 | qusinv 19063 |
. . . . . . . . . . 11
β’ ((π β (NrmSGrpβπΊ) β§ π₯ β π΅) β ((invgβπ)β[π₯](πΊ ~QG π)) = [((invgβπΊ)βπ₯)](πΊ ~QG π)) |
109 | 64, 72, 108 | syl2anc 584 |
. . . . . . . . . 10
β’
(((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β ((invgβπ)β[π₯](πΊ ~QG π)) = [((invgβπΊ)βπ₯)](πΊ ~QG π)) |
110 | 106, 109 | eqtrd 2772 |
. . . . . . . . 9
β’
(((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β ((invgβπ)βπ) = [((invgβπΊ)βπ₯)](πΊ ~QG π)) |
111 | 95, 105, 110 | rspcedvd 3614 |
. . . . . . . 8
β’
(((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β βπ¦ β β ((invgβπ)βπ) = ({π¦} β π)) |
112 | | fvexd 6903 |
. . . . . . . 8
β’
(((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β ((invgβπ)βπ) β V) |
113 | 86, 111, 112 | elrnmptd 5958 |
. . . . . . 7
β’
(((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β ((invgβπ)βπ) β ran (π₯ β β β¦ ({π₯} β π))) |
114 | 92, 113 | jca 512 |
. . . . . 6
β’
(((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π₯ β β) β§ π = ({π₯} β π)) β (βπ β ran (π₯ β β β¦ ({π₯} β π))(π(+gβπ)π) β ran (π₯ β β β¦ ({π₯} β π)) β§ ((invgβπ)βπ) β ran (π₯ β β β¦ ({π₯} β π)))) |
115 | 114 | adantllr 717 |
. . . . 5
β’
((((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π β ran (π₯ β β β¦ ({π₯} β π))) β§ π₯ β β) β§ π = ({π₯} β π)) β (βπ β ran (π₯ β β β¦ ({π₯} β π))(π(+gβπ)π) β ran (π₯ β β β¦ ({π₯} β π)) β§ ((invgβπ)βπ) β ran (π₯ β β β¦ ({π₯} β π)))) |
116 | | ovex 7438 |
. . . . . . . 8
β’ ({π₯} β π) β V |
117 | 27, 116 | elrnmpti 5957 |
. . . . . . 7
β’ (π β ran (π₯ β β β¦ ({π₯} β π)) β βπ₯ β β π = ({π₯} β π)) |
118 | 117 | biimpi 215 |
. . . . . 6
β’ (π β ran (π₯ β β β¦ ({π₯} β π)) β βπ₯ β β π = ({π₯} β π)) |
119 | 118 | adantl 482 |
. . . . 5
β’ ((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π β ran (π₯ β β β¦ ({π₯} β π))) β βπ₯ β β π = ({π₯} β π)) |
120 | 40, 44, 115, 119 | r19.29af2 3264 |
. . . 4
β’ ((((π β§ β β (SubGrpβπΊ)) β§ π β β) β§ π β ran (π₯ β β β¦ ({π₯} β π))) β (βπ β ran (π₯ β β β¦ ({π₯} β π))(π(+gβπ)π) β ran (π₯ β β β¦ ({π₯} β π)) β§ ((invgβπ)βπ) β ran (π₯ β β β¦ ({π₯} β π)))) |
121 | 120 | ralrimiva 3146 |
. . 3
β’ (((π β§ β β (SubGrpβπΊ)) β§ π β β) β βπ β ran (π₯ β β β¦ ({π₯} β π))(βπ β ran (π₯ β β β¦ ({π₯} β π))(π(+gβπ)π) β ran (π₯ β β β¦ ({π₯} β π)) β§ ((invgβπ)βπ) β ran (π₯ β β β¦ ({π₯} β π)))) |
122 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
123 | 122, 74, 107 | issubg2 19015 |
. . . 4
β’ (π β Grp β (ran (π₯ β β β¦ ({π₯} β π)) β (SubGrpβπ) β (ran (π₯ β β β¦ ({π₯} β π)) β (Baseβπ) β§ ran (π₯ β β β¦ ({π₯} β π)) β β
β§ βπ β ran (π₯ β β β¦ ({π₯} β π))(βπ β ran (π₯ β β β¦ ({π₯} β π))(π(+gβπ)π) β ran (π₯ β β β¦ ({π₯} β π)) β§ ((invgβπ)βπ) β ran (π₯ β β β¦ ({π₯} β π)))))) |
124 | 123 | biimpar 478 |
. . 3
β’ ((π β Grp β§ (ran (π₯ β β β¦ ({π₯} β π)) β (Baseβπ) β§ ran (π₯ β β β¦ ({π₯} β π)) β β
β§ βπ β ran (π₯ β β β¦ ({π₯} β π))(βπ β ran (π₯ β β β¦ ({π₯} β π))(π(+gβπ)π) β ran (π₯ β β β¦ ({π₯} β π)) β§ ((invgβπ)βπ) β ran (π₯ β β β¦ ({π₯} β π))))) β ran (π₯ β β β¦ ({π₯} β π)) β (SubGrpβπ)) |
125 | 5, 29, 36, 121, 124 | syl13anc 1372 |
. 2
β’ (((π β§ β β (SubGrpβπΊ)) β§ π β β) β ran (π₯ β β β¦ ({π₯} β π)) β (SubGrpβπ)) |
126 | | nsgqusf1o.t |
. 2
β’ π = (SubGrpβπ) |
127 | 125, 126 | eleqtrrdi 2844 |
1
β’ (((π β§ β β (SubGrpβπΊ)) β§ π β β) β ran (π₯ β β β¦ ({π₯} β π)) β π) |