Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad4ant13 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant13 | ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantr 480 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜒) |
3 | 2 | adantllr 715 | 1 ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ad5ant14 754 ad5ant24 757 fntpb 7067 peano5 7714 peano5OLD 7715 f1o2ndf1 7934 cantnfle 9359 cantnflem1c 9375 ttukeylem5 10200 rlimsqzlem 15288 dvdslcmf 16264 poslubmo 18044 posglbmo 18045 smndex1mgm 18461 isgrpinv 18547 ghmgrp 18614 dprdfcntz 19533 cply1coe0bi 21381 isnrm3 22418 cnextcn 23126 ustexsym 23275 ustex2sym 23276 ustex3sym 23277 trust 23289 fmucnd 23352 trcfilu 23354 metust 23620 cxpmul2z 25751 umgrres1lem 27580 upgrres1 27583 friendshipgt3 28663 ccatf1 31125 cyc3evpm 31319 znfermltl 31464 rhmimaidl 31511 txomap 31686 zart0 31731 repr0 32491 breprexplemc 32512 hgt750lemb 32536 satffunlem1lem2 33265 satffunlem2lem2 33268 lindsadd 35697 matunitlindflem1 35700 mapss2 42634 supxrge 42767 xrlexaddrp 42781 infxr 42796 infleinf 42801 unb2ltle 42845 supminfxr 42894 limsuppnfdlem 43132 limsupub 43135 limsuppnflem 43141 climinf3 43147 limsupmnflem 43151 climxrre 43181 liminfvalxr 43214 fperdvper 43350 sge0isum 43855 sge0gtfsumgt 43871 sge0seq 43874 nnfoctbdjlem 43883 meaiuninc3v 43912 omeiunltfirp 43947 hspdifhsp 44044 hspmbllem2 44055 pimdecfgtioo 44141 pimincfltioo 44142 preimageiingt 44144 preimaleiinlt 44145 smfid 44175 proththd 44954 |
Copyright terms: Public domain | W3C validator |