Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad4ant13 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant13 | ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantr 484 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜒) |
3 | 2 | adantllr 719 | 1 ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: ad5ant14 758 ad5ant24 761 fntpb 6994 peano5 7636 peano5OLD 7637 f1o2ndf1 7856 cantnfle 9219 cantnflem1c 9235 ttukeylem5 10025 rlimsqzlem 15110 dvdslcmf 16084 poslubmo 17884 posglbmo 17885 smndex1mgm 18200 isgrpinv 18286 ghmgrp 18353 dprdfcntz 19268 cply1coe0bi 21087 isnrm3 22122 cnextcn 22830 ustexsym 22979 ustex2sym 22980 ustex3sym 22981 trust 22993 fmucnd 23056 trcfilu 23058 metust 23323 cxpmul2z 25446 umgrres1lem 27264 upgrres1 27267 friendshipgt3 28347 ccatf1 30810 cyc3evpm 31006 znfermltl 31146 rhmimaidl 31193 txomap 31368 zart0 31413 repr0 32173 breprexplemc 32194 hgt750lemb 32218 satffunlem1lem2 32948 satffunlem2lem2 32951 lindsadd 35425 matunitlindflem1 35428 mapss2 42323 supxrge 42455 xrlexaddrp 42469 infxr 42484 infleinf 42489 unb2ltle 42533 supminfxr 42584 limsuppnfdlem 42824 limsupub 42827 limsuppnflem 42833 climinf3 42839 limsupmnflem 42843 climxrre 42873 liminfvalxr 42906 fperdvper 43042 sge0isum 43547 sge0gtfsumgt 43563 sge0seq 43566 nnfoctbdjlem 43575 meaiuninc3v 43604 omeiunltfirp 43639 hspdifhsp 43736 hspmbllem2 43747 pimdecfgtioo 43833 pimincfltioo 43834 preimageiingt 43836 preimaleiinlt 43837 smfid 43867 proththd 44647 |
Copyright terms: Public domain | W3C validator |