| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > altopthb | Structured version Visualization version GIF version | ||
| Description: Alternate ordered pair theorem with different sethood requirements. See altopth 36013 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
| Ref | Expression |
|---|---|
| altopthb.1 | ⊢ 𝐴 ∈ V |
| altopthb.2 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| altopthb | ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | altopthb.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | altopthb.2 | . 2 ⊢ 𝐷 ∈ V | |
| 3 | altopthbg 36012 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐷 ∈ V) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⟪caltop 36000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-sn 4574 df-pr 4576 df-altop 36002 |
| This theorem is referenced by: altopthc 36015 |
| Copyright terms: Public domain | W3C validator |