| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > altopthb | Structured version Visualization version GIF version | ||
| Description: Alternate ordered pair theorem with different sethood requirements. See altopth 35964 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
| Ref | Expression |
|---|---|
| altopthb.1 | ⊢ 𝐴 ∈ V |
| altopthb.2 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| altopthb | ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | altopthb.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | altopthb.2 | . 2 ⊢ 𝐷 ∈ V | |
| 3 | altopthbg 35963 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐷 ∈ V) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⟪caltop 35951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-sn 4593 df-pr 4595 df-altop 35953 |
| This theorem is referenced by: altopthc 35966 |
| Copyright terms: Public domain | W3C validator |