Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopthb Structured version   Visualization version   GIF version

Theorem altopthb 36014
Description: Alternate ordered pair theorem with different sethood requirements. See altopth 36013 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.)
Hypotheses
Ref Expression
altopthb.1 𝐴 ∈ V
altopthb.2 𝐷 ∈ V
Assertion
Ref Expression
altopthb (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem altopthb
StepHypRef Expression
1 altopthb.1 . 2 𝐴 ∈ V
2 altopthb.2 . 2 𝐷 ∈ V
3 altopthbg 36012 . 2 ((𝐴 ∈ V ∧ 𝐷 ∈ V) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
41, 2, 3mp2an 692 1 (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  caltop 36000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-sn 4574  df-pr 4576  df-altop 36002
This theorem is referenced by:  altopthc  36015
  Copyright terms: Public domain W3C validator