Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopthc Structured version   Visualization version   GIF version

Theorem altopthc 35935
Description: Alternate ordered pair theorem with different sethood requirements. See altopth 35933 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.)
Hypotheses
Ref Expression
altopthc.1 𝐵 ∈ V
altopthc.2 𝐶 ∈ V
Assertion
Ref Expression
altopthc (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem altopthc
StepHypRef Expression
1 eqcom 2742 . 2 (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ⟪𝐶, 𝐷⟫ = ⟪𝐴, 𝐵⟫)
2 altopthc.2 . . 3 𝐶 ∈ V
3 altopthc.1 . . 3 𝐵 ∈ V
42, 3altopthb 35934 . 2 (⟪𝐶, 𝐷⟫ = ⟪𝐴, 𝐵⟫ ↔ (𝐶 = 𝐴𝐷 = 𝐵))
5 eqcom 2742 . . 3 (𝐶 = 𝐴𝐴 = 𝐶)
6 eqcom 2742 . . 3 (𝐷 = 𝐵𝐵 = 𝐷)
75, 6anbi12i 628 . 2 ((𝐶 = 𝐴𝐷 = 𝐵) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
81, 4, 73bitri 297 1 (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  caltop 35920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-sn 4602  df-pr 4604  df-altop 35922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator