Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopth Structured version   Visualization version   GIF version

Theorem altopth 35696
Description: The alternate ordered pair theorem. If two alternate ordered pairs are equal, their first elements are equal and their second elements are equal. Note that 𝐶 and 𝐷 are not required to be a set due to a peculiarity of our specific ordered pair definition, as opposed to the regular ordered pairs used here, which (as in opth 5478), requires 𝐷 to be a set. (Contributed by Scott Fenton, 23-Mar-2012.)
Hypotheses
Ref Expression
altopth.1 𝐴 ∈ V
altopth.2 𝐵 ∈ V
Assertion
Ref Expression
altopth (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem altopth
StepHypRef Expression
1 altopth.1 . 2 𝐴 ∈ V
2 altopth.2 . 2 𝐵 ∈ V
3 altopthg 35694 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
41, 2, 3mp2an 690 1 (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  caltop 35683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-sn 4631  df-pr 4633  df-altop 35685
This theorem is referenced by:  altopthd  35699  altopelaltxp  35703
  Copyright terms: Public domain W3C validator