| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > altopthbg | Structured version Visualization version GIF version | ||
| Description: Alternate ordered pair theorem. (Contributed by Scott Fenton, 14-Apr-2012.) |
| Ref | Expression |
|---|---|
| altopthbg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | altopthsn 35921 | . 2 ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷})) | |
| 2 | sneqbg 4823 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐶} ↔ 𝐴 = 𝐶)) | |
| 3 | sneqbg 4823 | . . . 4 ⊢ (𝐷 ∈ 𝑊 → ({𝐷} = {𝐵} ↔ 𝐷 = 𝐵)) | |
| 4 | eqcom 2741 | . . . 4 ⊢ ({𝐵} = {𝐷} ↔ {𝐷} = {𝐵}) | |
| 5 | eqcom 2741 | . . . 4 ⊢ (𝐵 = 𝐷 ↔ 𝐷 = 𝐵) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | . . 3 ⊢ (𝐷 ∈ 𝑊 → ({𝐵} = {𝐷} ↔ 𝐵 = 𝐷)) |
| 7 | 2, 6 | bi2anan9 638 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (({𝐴} = {𝐶} ∧ {𝐵} = {𝐷}) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 8 | 1, 7 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4606 ⟪caltop 35916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 df-altop 35918 |
| This theorem is referenced by: altopthb 35930 |
| Copyright terms: Public domain | W3C validator |