![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > altopthbg | Structured version Visualization version GIF version |
Description: Alternate ordered pair theorem. (Contributed by Scott Fenton, 14-Apr-2012.) |
Ref | Expression |
---|---|
altopthbg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | altopthsn 34933 | . 2 ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷})) | |
2 | sneqbg 4845 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐶} ↔ 𝐴 = 𝐶)) | |
3 | sneqbg 4845 | . . . 4 ⊢ (𝐷 ∈ 𝑊 → ({𝐷} = {𝐵} ↔ 𝐷 = 𝐵)) | |
4 | eqcom 2740 | . . . 4 ⊢ ({𝐵} = {𝐷} ↔ {𝐷} = {𝐵}) | |
5 | eqcom 2740 | . . . 4 ⊢ (𝐵 = 𝐷 ↔ 𝐷 = 𝐵) | |
6 | 3, 4, 5 | 3bitr4g 314 | . . 3 ⊢ (𝐷 ∈ 𝑊 → ({𝐵} = {𝐷} ↔ 𝐵 = 𝐷)) |
7 | 2, 6 | bi2anan9 638 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (({𝐴} = {𝐶} ∧ {𝐵} = {𝐷}) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
8 | 1, 7 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {csn 4629 ⟪caltop 34928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-sn 4630 df-pr 4632 df-altop 34930 |
This theorem is referenced by: altopthb 34942 |
Copyright terms: Public domain | W3C validator |