MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alxfr Structured version   Visualization version   GIF version

Theorem alxfr 5325
Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 18-Feb-2007.)
Hypothesis
Ref Expression
alxfr.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
alxfr ((∀𝑦 𝐴𝐵 ∧ ∀𝑥𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem alxfr
StepHypRef Expression
1 alxfr.1 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
21spcgv 3525 . . . . . 6 (𝐴𝐵 → (∀𝑥𝜑𝜓))
32com12 32 . . . . 5 (∀𝑥𝜑 → (𝐴𝐵𝜓))
43alimdv 1920 . . . 4 (∀𝑥𝜑 → (∀𝑦 𝐴𝐵 → ∀𝑦𝜓))
54com12 32 . . 3 (∀𝑦 𝐴𝐵 → (∀𝑥𝜑 → ∀𝑦𝜓))
65adantr 480 . 2 ((∀𝑦 𝐴𝐵 ∧ ∀𝑥𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 → ∀𝑦𝜓))
7 nfa1 2150 . . . . . 6 𝑦𝑦𝜓
8 nfv 1918 . . . . . 6 𝑦𝜑
9 sp 2178 . . . . . . 7 (∀𝑦𝜓𝜓)
109, 1syl5ibrcom 246 . . . . . 6 (∀𝑦𝜓 → (𝑥 = 𝐴𝜑))
117, 8, 10exlimd 2214 . . . . 5 (∀𝑦𝜓 → (∃𝑦 𝑥 = 𝐴𝜑))
1211alimdv 1920 . . . 4 (∀𝑦𝜓 → (∀𝑥𝑦 𝑥 = 𝐴 → ∀𝑥𝜑))
1312com12 32 . . 3 (∀𝑥𝑦 𝑥 = 𝐴 → (∀𝑦𝜓 → ∀𝑥𝜑))
1413adantl 481 . 2 ((∀𝑦 𝐴𝐵 ∧ ∀𝑥𝑦 𝑥 = 𝐴) → (∀𝑦𝜓 → ∀𝑥𝜑))
156, 14impbid 211 1 ((∀𝑦 𝐴𝐵 ∧ ∀𝑥𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator