| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alxfr | Structured version Visualization version GIF version | ||
| Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 18-Feb-2007.) |
| Ref | Expression |
|---|---|
| alxfr.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| alxfr | ⊢ ((∀𝑦 𝐴 ∈ 𝐵 ∧ ∀𝑥∃𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alxfr.1 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | spcgv 3595 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓)) |
| 3 | 2 | com12 32 | . . . . 5 ⊢ (∀𝑥𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| 4 | 3 | alimdv 1915 | . . . 4 ⊢ (∀𝑥𝜑 → (∀𝑦 𝐴 ∈ 𝐵 → ∀𝑦𝜓)) |
| 5 | 4 | com12 32 | . . 3 ⊢ (∀𝑦 𝐴 ∈ 𝐵 → (∀𝑥𝜑 → ∀𝑦𝜓)) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((∀𝑦 𝐴 ∈ 𝐵 ∧ ∀𝑥∃𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 → ∀𝑦𝜓)) |
| 7 | nfa1 2150 | . . . . . 6 ⊢ Ⅎ𝑦∀𝑦𝜓 | |
| 8 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 9 | sp 2182 | . . . . . . 7 ⊢ (∀𝑦𝜓 → 𝜓) | |
| 10 | 9, 1 | syl5ibrcom 247 | . . . . . 6 ⊢ (∀𝑦𝜓 → (𝑥 = 𝐴 → 𝜑)) |
| 11 | 7, 8, 10 | exlimd 2217 | . . . . 5 ⊢ (∀𝑦𝜓 → (∃𝑦 𝑥 = 𝐴 → 𝜑)) |
| 12 | 11 | alimdv 1915 | . . . 4 ⊢ (∀𝑦𝜓 → (∀𝑥∃𝑦 𝑥 = 𝐴 → ∀𝑥𝜑)) |
| 13 | 12 | com12 32 | . . 3 ⊢ (∀𝑥∃𝑦 𝑥 = 𝐴 → (∀𝑦𝜓 → ∀𝑥𝜑)) |
| 14 | 13 | adantl 481 | . 2 ⊢ ((∀𝑦 𝐴 ∈ 𝐵 ∧ ∀𝑥∃𝑦 𝑥 = 𝐴) → (∀𝑦𝜓 → ∀𝑥𝜑)) |
| 15 | 6, 14 | impbid 212 | 1 ⊢ ((∀𝑦 𝐴 ∈ 𝐵 ∧ ∀𝑥∃𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |