| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eusv4 | Structured version Visualization version GIF version | ||
| Description: Two ways to express single-valuedness of a class expression 𝐵(𝑦). (Contributed by NM, 27-Oct-2010.) |
| Ref | Expression |
|---|---|
| eusv4.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| eusv4 | ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reusv2lem3 5375 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ V → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | |
| 2 | eusv4.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝑦 ∈ 𝐴 → 𝐵 ∈ V) |
| 4 | 1, 3 | mprg 3058 | 1 ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃!weu 2568 ∀wral 3052 ∃wrex 3061 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-nul 5281 ax-pow 5340 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-v 3466 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |