MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusv4 Structured version   Visualization version   GIF version

Theorem eusv4 5344
Description: Two ways to express single-valuedness of a class expression 𝐵(𝑦). (Contributed by NM, 27-Oct-2010.)
Hypothesis
Ref Expression
eusv4.1 𝐵 ∈ V
Assertion
Ref Expression
eusv4 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃!𝑥𝑦𝐴 𝑥 = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem eusv4
StepHypRef Expression
1 reusv2lem3 5338 . 2 (∀𝑦𝐴 𝐵 ∈ V → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃!𝑥𝑦𝐴 𝑥 = 𝐵))
2 eusv4.1 . . 3 𝐵 ∈ V
32a1i 11 . 2 (𝑦𝐴𝐵 ∈ V)
41, 3mprg 3053 1 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃!𝑥𝑦𝐴 𝑥 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  ∃!weu 2563  wral 3047  wrex 3056  Vcvv 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-nul 5244  ax-pow 5303
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-v 3438  df-dif 3905  df-nul 4284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator