| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eusv4 | Structured version Visualization version GIF version | ||
| Description: Two ways to express single-valuedness of a class expression 𝐵(𝑦). (Contributed by NM, 27-Oct-2010.) |
| Ref | Expression |
|---|---|
| eusv4.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| eusv4 | ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reusv2lem3 5338 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ V → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | |
| 2 | eusv4.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝑦 ∈ 𝐴 → 𝐵 ∈ V) |
| 4 | 1, 3 | mprg 3053 | 1 ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃!weu 2563 ∀wral 3047 ∃wrex 3056 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-nul 5244 ax-pow 5303 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-v 3438 df-dif 3905 df-nul 4284 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |