MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbid Structured version   Visualization version   GIF version

Theorem nfbid 1901
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 29-Dec-2017.)
Hypotheses
Ref Expression
nfbid.1 (𝜑 → Ⅎ𝑥𝜓)
nfbid.2 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
nfbid (𝜑 → Ⅎ𝑥(𝜓𝜒))

Proof of Theorem nfbid
StepHypRef Expression
1 dfbi2 474 . 2 ((𝜓𝜒) ↔ ((𝜓𝜒) ∧ (𝜒𝜓)))
2 nfbid.1 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
3 nfbid.2 . . . 4 (𝜑 → Ⅎ𝑥𝜒)
42, 3nfimd 1893 . . 3 (𝜑 → Ⅎ𝑥(𝜓𝜒))
53, 2nfimd 1893 . . 3 (𝜑 → Ⅎ𝑥(𝜒𝜓))
64, 5nfand 1896 . 2 (𝜑 → Ⅎ𝑥((𝜓𝜒) ∧ (𝜒𝜓)))
71, 6nfxfrd 1853 1 (𝜑 → Ⅎ𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1779  df-nf 1783
This theorem is referenced by:  nfbi  1902  nfeqd  2908  nfiotadw  6484  nfiotad  6486  iota2df  6515  axextnd  10598  axrepndlem1  10599  axrepndlem2  10600  axacndlem4  10617  axacndlem5  10618  axacnd  10619  axsepg2  35042  axsepg2ALT  35043  axextdist  35746  copsex2d  37086  cbveud  37319  wl-eudf  37519  wl-sb8eut  37525  wl-sb8eutv  37526
  Copyright terms: Public domain W3C validator