| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfbid | Structured version Visualization version GIF version | ||
| Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 ↔ 𝜒). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 29-Dec-2017.) |
| Ref | Expression |
|---|---|
| nfbid.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| nfbid.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| Ref | Expression |
|---|---|
| nfbid | ⊢ (𝜑 → Ⅎ𝑥(𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 474 | . 2 ⊢ ((𝜓 ↔ 𝜒) ↔ ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) | |
| 2 | nfbid.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 3 | nfbid.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 4 | 2, 3 | nfimd 1894 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
| 5 | 3, 2 | nfimd 1894 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜒 → 𝜓)) |
| 6 | 4, 5 | nfand 1897 | . 2 ⊢ (𝜑 → Ⅎ𝑥((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) |
| 7 | 1, 6 | nfxfrd 1854 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfbi 1903 nfeqd 2902 nfiotadw 6441 nfiotad 6443 iota2df 6469 axextnd 10485 axrepndlem1 10486 axrepndlem2 10487 axacndlem4 10504 axacndlem5 10505 axacnd 10506 axsepg2 35065 axsepg2ALT 35066 axextdist 35793 copsex2d 37133 cbveud 37366 wl-eudf 37566 wl-sb8eut 37572 wl-sb8eutv 37573 |
| Copyright terms: Public domain | W3C validator |