MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbid Structured version   Visualization version   GIF version

Theorem nfbid 1905
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 29-Dec-2017.)
Hypotheses
Ref Expression
nfbid.1 (𝜑 → Ⅎ𝑥𝜓)
nfbid.2 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
nfbid (𝜑 → Ⅎ𝑥(𝜓𝜒))

Proof of Theorem nfbid
StepHypRef Expression
1 dfbi2 475 . 2 ((𝜓𝜒) ↔ ((𝜓𝜒) ∧ (𝜒𝜓)))
2 nfbid.1 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
3 nfbid.2 . . . 4 (𝜑 → Ⅎ𝑥𝜒)
42, 3nfimd 1897 . . 3 (𝜑 → Ⅎ𝑥(𝜓𝜒))
53, 2nfimd 1897 . . 3 (𝜑 → Ⅎ𝑥(𝜒𝜓))
64, 5nfand 1900 . 2 (𝜑 → Ⅎ𝑥((𝜓𝜒) ∧ (𝜒𝜓)))
71, 6nfxfrd 1856 1 (𝜑 → Ⅎ𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787
This theorem is referenced by:  nfbi  1906  nfeqd  2917  nfiotadw  6394  nfiotad  6396  iota2df  6420  axextnd  10347  axrepndlem1  10348  axrepndlem2  10349  axacndlem4  10366  axacndlem5  10367  axacnd  10368  axextdist  33775  copsex2d  35310  cbveud  35543  wl-eudf  35727  wl-sb8eut  35732
  Copyright terms: Public domain W3C validator