MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbid Structured version   Visualization version   GIF version

Theorem nfbid 1901
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 29-Dec-2017.)
Hypotheses
Ref Expression
nfbid.1 (𝜑 → Ⅎ𝑥𝜓)
nfbid.2 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
nfbid (𝜑 → Ⅎ𝑥(𝜓𝜒))

Proof of Theorem nfbid
StepHypRef Expression
1 dfbi2 474 . 2 ((𝜓𝜒) ↔ ((𝜓𝜒) ∧ (𝜒𝜓)))
2 nfbid.1 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
3 nfbid.2 . . . 4 (𝜑 → Ⅎ𝑥𝜒)
42, 3nfimd 1893 . . 3 (𝜑 → Ⅎ𝑥(𝜓𝜒))
53, 2nfimd 1893 . . 3 (𝜑 → Ⅎ𝑥(𝜒𝜓))
64, 5nfand 1896 . 2 (𝜑 → Ⅎ𝑥((𝜓𝜒) ∧ (𝜒𝜓)))
71, 6nfxfrd 1852 1 (𝜑 → Ⅎ𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by:  nfbi  1902  nfeqd  2919  nfiotadw  6528  nfiotad  6530  iota2df  6560  axextnd  10660  axrepndlem1  10661  axrepndlem2  10662  axacndlem4  10679  axacndlem5  10680  axacnd  10681  axsepg2  35058  axsepg2ALT  35059  axextdist  35763  copsex2d  37105  cbveud  37338  wl-eudf  37526  wl-sb8eut  37532  wl-sb8eutv  37533
  Copyright terms: Public domain W3C validator