MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbid Structured version   Visualization version   GIF version

Theorem nfbid 1903
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 29-Dec-2017.)
Hypotheses
Ref Expression
nfbid.1 (𝜑 → Ⅎ𝑥𝜓)
nfbid.2 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
nfbid (𝜑 → Ⅎ𝑥(𝜓𝜒))

Proof of Theorem nfbid
StepHypRef Expression
1 dfbi2 474 . 2 ((𝜓𝜒) ↔ ((𝜓𝜒) ∧ (𝜒𝜓)))
2 nfbid.1 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
3 nfbid.2 . . . 4 (𝜑 → Ⅎ𝑥𝜒)
42, 3nfimd 1895 . . 3 (𝜑 → Ⅎ𝑥(𝜓𝜒))
53, 2nfimd 1895 . . 3 (𝜑 → Ⅎ𝑥(𝜒𝜓))
64, 5nfand 1898 . 2 (𝜑 → Ⅎ𝑥((𝜓𝜒) ∧ (𝜒𝜓)))
71, 6nfxfrd 1855 1 (𝜑 → Ⅎ𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785
This theorem is referenced by:  nfbi  1904  nfeqd  2905  nfiotadw  6446  nfiotad  6448  iota2df  6474  axextnd  10488  axrepndlem1  10489  axrepndlem2  10490  axacndlem4  10507  axacndlem5  10508  axacnd  10509  axsepg2  35101  axsepg2ALT  35102  axextdist  35848  copsex2d  37190  cbveud  37423  wl-eudf  37623  wl-sb8eut  37629  wl-sb8eutv  37630
  Copyright terms: Public domain W3C validator