![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfbid | Structured version Visualization version GIF version |
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 ↔ 𝜒). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 29-Dec-2017.) |
Ref | Expression |
---|---|
nfbid.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
nfbid.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
Ref | Expression |
---|---|
nfbid | ⊢ (𝜑 → Ⅎ𝑥(𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi2 474 | . 2 ⊢ ((𝜓 ↔ 𝜒) ↔ ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) | |
2 | nfbid.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
3 | nfbid.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
4 | 2, 3 | nfimd 1893 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
5 | 3, 2 | nfimd 1893 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜒 → 𝜓)) |
6 | 4, 5 | nfand 1896 | . 2 ⊢ (𝜑 → Ⅎ𝑥((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) |
7 | 1, 6 | nfxfrd 1852 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 |
This theorem is referenced by: nfbi 1902 nfeqd 2919 nfiotadw 6528 nfiotad 6530 iota2df 6560 axextnd 10660 axrepndlem1 10661 axrepndlem2 10662 axacndlem4 10679 axacndlem5 10680 axacnd 10681 axsepg2 35058 axsepg2ALT 35059 axextdist 35763 copsex2d 37105 cbveud 37338 wl-eudf 37526 wl-sb8eut 37532 wl-sb8eutv 37533 |
Copyright terms: Public domain | W3C validator |