| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfbid | Structured version Visualization version GIF version | ||
| Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 ↔ 𝜒). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 29-Dec-2017.) |
| Ref | Expression |
|---|---|
| nfbid.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| nfbid.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| Ref | Expression |
|---|---|
| nfbid | ⊢ (𝜑 → Ⅎ𝑥(𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 474 | . 2 ⊢ ((𝜓 ↔ 𝜒) ↔ ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) | |
| 2 | nfbid.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 3 | nfbid.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 4 | 2, 3 | nfimd 1894 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
| 5 | 3, 2 | nfimd 1894 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜒 → 𝜓)) |
| 6 | 4, 5 | nfand 1897 | . 2 ⊢ (𝜑 → Ⅎ𝑥((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) |
| 7 | 1, 6 | nfxfrd 1854 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfbi 1903 nfeqd 2902 nfiotadw 6467 nfiotad 6469 iota2df 6498 axextnd 10544 axrepndlem1 10545 axrepndlem2 10546 axacndlem4 10563 axacndlem5 10564 axacnd 10565 axsepg2 35072 axsepg2ALT 35073 axextdist 35787 copsex2d 37127 cbveud 37360 wl-eudf 37560 wl-sb8eut 37566 wl-sb8eutv 37567 |
| Copyright terms: Public domain | W3C validator |