MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbid Structured version   Visualization version   GIF version

Theorem nfbid 1902
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 29-Dec-2017.)
Hypotheses
Ref Expression
nfbid.1 (𝜑 → Ⅎ𝑥𝜓)
nfbid.2 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
nfbid (𝜑 → Ⅎ𝑥(𝜓𝜒))

Proof of Theorem nfbid
StepHypRef Expression
1 dfbi2 474 . 2 ((𝜓𝜒) ↔ ((𝜓𝜒) ∧ (𝜒𝜓)))
2 nfbid.1 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
3 nfbid.2 . . . 4 (𝜑 → Ⅎ𝑥𝜒)
42, 3nfimd 1894 . . 3 (𝜑 → Ⅎ𝑥(𝜓𝜒))
53, 2nfimd 1894 . . 3 (𝜑 → Ⅎ𝑥(𝜒𝜓))
64, 5nfand 1897 . 2 (𝜑 → Ⅎ𝑥((𝜓𝜒) ∧ (𝜒𝜓)))
71, 6nfxfrd 1854 1 (𝜑 → Ⅎ𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  nfbi  1903  nfeqd  2902  nfiotadw  6441  nfiotad  6443  iota2df  6469  axextnd  10485  axrepndlem1  10486  axrepndlem2  10487  axacndlem4  10504  axacndlem5  10505  axacnd  10506  axsepg2  35065  axsepg2ALT  35066  axextdist  35793  copsex2d  37133  cbveud  37366  wl-eudf  37566  wl-sb8eut  37572  wl-sb8eutv  37573
  Copyright terms: Public domain W3C validator